Paper 4, Section I

9H Markov Chains

Let $X_{0}, X_{1}, X_{2}, \ldots$ be independent identically distributed random variables with $\mathbb{P}\left(X_{i}=1\right)=1-\mathbb{P}\left(X_{i}=0\right)=p, 0<p<1$. Let $Z_{n}=X_{n-1}+c X_{n}, n=1,2, \ldots$, where c is a constant. For each of the following cases, determine whether or not $\left(Z_{n}: n \geqslant 1\right)$ is a Markov chain:
(a) $c=0$;
(b) $c=1$;
(c) $c=2$.

In each case, if ($Z_{n}: n \geqslant 1$) is a Markov chain, explain why, and give its state space and transition matrix; if it is not a Markov chain, give an example to demonstrate that it is not.

Paper 3, Section I

9H Markov Chains

Define what is meant by a communicating class and a closed class in a Markov chain.
A Markov chain $\left(X_{n}: n \geqslant 0\right)$ with state space $\{1,2,3,4\}$ has transition matrix

$$
P=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2}
\end{array}\right)
$$

Write down the communicating classes for this Markov chain and state whether or not each class is closed.

If $X_{0}=2$, let N be the smallest n such that $X_{n} \neq 2$. Find $\mathbb{P}(N=n)$ for $n=1,2, \ldots$ and $\mathbb{E}(N)$. Describe the evolution of the chain if $X_{0}=2$.

Paper 2, Section II

20H Markov Chains

(a) What does it mean for a transition matrix P and a distribution λ to be in detailed balance? Show that if P and λ are in detailed balance then $\lambda=\lambda P$.
(b) A mathematician owns r bicycles, which she sometimes uses for her journey from the station to College in the morning and for the return journey in the evening. If it is fine weather when she starts a journey, and if there is a bicycle available at the current location, then she cycles; otherwise she takes the bus. Assume that with probability p, $0<p<1$, it is fine when she starts a journey, independently of all other journeys. Let X_{n} denote the number of bicycles at the current location, just before the mathematician starts the nth journey.
(i) Show that $\left(X_{n} ; n \geqslant 0\right)$ is a Markov chain and write down its transition matrix.
(ii) Find the invariant distribution of the Markov chain.
(iii) Show that the Markov chain satisfies the necessary conditions for the convergence theorem for Markov chains and find the limiting probability that the mathematician's nth journey is by bicycle.
[Results from the course may be used without proof provided that they are clearly stated.]

Paper 1, Section II

20H Markov Chains

Consider a particle moving between the vertices of the graph below, taking steps along the edges. Let X_{n} be the position of the particle at time n. At time $n+1$ the particle moves to one of the vertices adjoining X_{n}, with each of the adjoining vertices being equally likely, independently of previous moves. Explain briefly why ($X_{n} ; n \geqslant 0$) is a Markov chain on the vertices. Is this chain irreducible? Find an invariant distribution for this chain.

Suppose that the particle starts at B. By adapting the transition matrix, or otherwise, find the probability that the particle hits vertex A before vertex F.

Find the expected first passage time from B to F given no intermediate visit to A.
[Results from the course may be used without proof provided that they are clearly stated.]

Paper 4, Section I

9H Markov Chains

Let ($X_{n}: n \geqslant 0$) be a homogeneous Markov chain with state space S and transition $\operatorname{matrix} P=\left(p_{i, j}: i, j \in S\right)$.
(a) Let $W_{n}=X_{2 n}, n=0,1,2, \ldots$ Show that $\left(W_{n}: n \geqslant 0\right)$ is a Markov chain and give its transition matrix. If $\lambda_{i}=\mathbb{P}\left(X_{0}=i\right), i \in S$, find $\mathbb{P}\left(W_{1}=0\right)$ in terms of the λ_{i} and the $p_{i, j}$.
[Results from the course may be quoted without proof, provided they are clearly stated.]
(b) Suppose that $S=\{-1,0,1\}, p_{0,1}=p_{-1,-1}=0$ and $p_{-1,0} \neq p_{1,0}$. Let $Y_{n}=\left|X_{n}\right|$, $n=0,1,2, \ldots$ In terms of the $p_{i, j}$, find
(i) $\mathbb{P}\left(Y_{n+1}=0 \mid Y_{n}=1, Y_{n-1}=0\right)$ and
(ii) $\mathbb{P}\left(Y_{n+1}=0 \mid Y_{n}=1, Y_{n-1}=1, Y_{n-2}=0\right)$.

What can you conclude about whether or not $\left(Y_{n}: n \geqslant 0\right)$ is a Markov chain?

Paper 3, Section I

9H Markov Chains

Let $\left(X_{n}: n \geqslant 0\right)$ be a homogeneous Markov chain with state space S. For i, j in S let $p_{i, j}(n)$ denote the n-step transition probability $\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)$.
(i) Express the $(m+n)$-step transition probability $p_{i, j}(m+n)$ in terms of the n-step and m-step transition probabilities.
(ii) Write $i \rightarrow j$ if there exists $n \geqslant 0$ such that $p_{i, j}(n)>0$, and $i \leftrightarrow j$ if $i \rightarrow j$ and $j \rightarrow i$. Prove that if $i \leftrightarrow j$ and $i \neq j$ then either both i and j are recurrent or both i and j are transient. [You may assume that a state i is recurrent if and only if $\sum_{n=0}^{\infty} p_{i, i}(n)=\infty$, and otherwise i is transient.]
(iii) A Markov chain has state space $\{0,1,2,3\}$ and transition matrix

$$
\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{3} & 0 & \frac{1}{6} \\
0 & \frac{3}{4} & 0 & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2}
\end{array}\right),
$$

For each state i, determine whether i is recurrent or transient. [Results from the course may be quoted without proof, provided they are clearly stated.]

Paper 1, Section II

20H Markov Chains

Consider a homogeneous Markov chain ($X_{n}: n \geqslant 0$) with state space S and transition matrix $P=\left(p_{i, j}: i, j \in S\right)$. For a state i, define the terms aperiodic, positive recurrent and ergodic.

Let $S=\{0,1,2, \ldots\}$ and suppose that for $i \geqslant 1$ we have $p_{i, i-1}=1$ and

$$
p_{0,0}=0, p_{0, j}=p q^{j-1}, j=1,2, \ldots
$$

where $p=1-q \in(0,1)$. Show that this Markov chain is irreducible.
Let $T_{0}=\inf \left\{n \geqslant 1: X_{n}=0\right\}$ be the first passage time to 0. Find $\mathbb{P}\left(T_{0}=n \mid X_{0}=0\right)$ and show that state 0 is ergodic.

Find the invariant distribution π for this Markov chain. Write down:
(i) the mean recurrence time for state $i, i \geqslant 1$;
(ii) $\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n} \neq 0 \mid X_{0}=0\right)$.
[Results from the course may be quoted without proof, provided they are clearly stated.]

Paper 2, Section II

20H Markov Chains

Let ($X_{n}: n \geqslant 0$) be a homogeneous Markov chain with state space S and transition matrix $P=\left(p_{i, j}: i, j \in S\right)$. For $A \subseteq S$, let

$$
H^{A}=\inf \left\{n \geqslant 0: X_{n} \in A\right\} \text { and } h_{i}^{A}=\mathbb{P}\left(H^{A}<\infty \mid X_{0}=i\right), i \in S
$$

Prove that $h^{A}=\left(h_{i}^{A}: i \in S\right)$ is the minimal non-negative solution to the equations

$$
h_{i}^{A}= \begin{cases}1 & \text { for } i \in A \\ \sum_{j \in S} p_{i, j} h_{j}^{A} & \text { otherwise }\end{cases}
$$

Three people A, B and C play a series of two-player games. In the first game, two people play and the third person sits out. Any subsequent game is played between the winner of the previous game and the person sitting out the previous game. The overall winner of the series is the first person to win two consecutive games. The players are evenly matched so that in any game each of the two players has probability $\frac{1}{2}$ of winning the game, independently of all other games. For $n=1,2, \ldots$, let X_{n} be the ordered pair consisting of the winners of games n and $n+1$. Thus the state space is $\{A A, A B, A C, B A, B B, B C, C A, C B, C C\}$, and, for example, $X_{1}=A C$ if A wins the first game and C wins the second.

The first game is between A and B. Treating $A A, B B$ and $C C$ as absorbing states, or otherwise, find the probability of winning the series for each of the three players.

Paper 4, Section I

9H Markov Chains

Suppose P is the transition matrix of an irreducible recurrent Markov chain with state space I. Show that if x is an invariant measure and $x_{k}>0$ for some $k \in I$, then $x_{j}>0$ for all $j \in I$.

Let

$$
\gamma_{j}^{k}=p_{k j}+\sum_{t=1}^{\infty} \sum_{i_{1} \neq k, \ldots, i_{t} \neq k} p_{k i_{t}} p_{i_{t} i_{t-1}} \cdots p_{i_{1} j} .
$$

Give a meaning to γ_{j}^{k} and explain why $\gamma_{k}^{k}=1$.
Suppose x is an invariant measure with $x_{k}=1$. Prove that $x_{j} \geqslant \gamma_{j}^{k}$ for all j.

Paper 3, Section I

9H Markov Chains

Prove that if a distribution π is in detailed balance with a transition matrix P then it is an invariant distribution for P.

Consider the following model with 2 urns. At each time, $t=0,1, \ldots$ one of the following happens:

- with probability β a ball is chosen at random and moved to the other urn (but nothing happens if both urns are empty);
- with probability γ a ball is chosen at random and removed (but nothing happens if both urns are empty);
- with probability α a new ball is added to a randomly chosen urn,
where $\alpha+\beta+\gamma=1$ and $\alpha<\gamma$. State (i, j) denotes that urns 1,2 contain i and j balls respectively. Prove that there is an invariant measure

$$
\lambda_{i, j}=\frac{(i+j)!}{i!j!}(\alpha / 2 \gamma)^{i+j}
$$

Find the proportion of time for which there are n balls in the system.

Paper 1, Section II

20H Markov Chains

A Markov chain has state space $\{a, b, c\}$ and transition matrix

$$
P=\left(\begin{array}{ccc}
0 & 3 / 5 & 2 / 5 \\
3 / 4 & 0 & 1 / 4 \\
2 / 3 & 1 / 3 & 0
\end{array}\right)
$$

where the rows $1,2,3$ correspond to a, b, c, respectively. Show that this Markov chain is equivalent to a random walk on some graph with 6 edges.

Let $k(i, j)$ denote the mean first passage time from i to j.
(i) Find $k(a, a)$ and $k(a, b)$.
(ii) Given $X_{0}=a$, find the expected number of steps until the walk first completes a step from b to c.
(iii) Suppose the distribution of X_{0} is $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=(5,4,3) / 12$. Let $\tau(a, b)$ be the least m such that $\{a, b\}$ appears as a subsequence of $\left\{X_{0}, X_{1}, \ldots, X_{m}\right\}$. By comparing the distributions of $\left\{X_{0}, X_{1}, \ldots, X_{m}\right\}$ and $\left\{X_{m}, \ldots, X_{1}, X_{0}\right\}$ show that $E \tau(a, b)=E \tau(b, a)$ and that

$$
k(b, a)-k(a, b)=\sum_{i \in\{a, b, c\}} \pi_{i}[k(i, a)-k(i, b)] .
$$

Paper 2, Section II

20H Markov Chains

(i) Suppose $\left(X_{n}\right)_{n \geqslant 0}$ is an irreducible Markov chain and $f_{i j}=P\left(X_{n}=j\right.$ for some $\left.n \geqslant 1 \mid X_{0}=i\right)$. Prove that $f_{i i} \geqslant f_{i j} f_{j i}$ and that

$$
\sum_{n=0}^{\infty} P_{i}\left(X_{n}=i\right)=\sum_{n=1}^{\infty} f_{i i}^{n-1} .
$$

(ii) Let $\left(X_{n}\right)_{n \geqslant 0}$ be a symmetric random walk on the \mathbb{Z}^{2} lattice. Prove that $\left(X_{n}\right)_{n \geqslant 0}$ is recurrent. You may assume, for $n \geqslant 1$,

$$
1 / 2<2^{-2 n} \sqrt{n}\binom{2 n}{n}<1 .
$$

(iii) A princess and monster perform independent random walks on the \mathbb{Z}^{2} lattice. The trajectory of the princess is the symmetric random walk $\left(X_{n}\right)_{n \geqslant 0}$. The monster's trajectory, denoted $\left(Z_{n}\right)_{n \geqslant 0}$, is a sleepy version of an independent symmetric random walk $\left(Y_{n}\right)_{n \geqslant 0}$. Specifically, given an infinite sequence of integers $0=n_{0}<n_{1}<\cdots$, the monster sleeps between these times, so $Z_{n_{i}+1}=\cdots=Z_{n_{i+1}}=Y_{i+1}$. Initially, $X_{0}=(100,0)$ and $Z_{0}=Y_{0}=(0,100)$. The princess is captured if and only if at some future time she and the monster are simultaneously at $(0,0)$.

Compare the capture probabilities for an active monster, who takes $n_{i+1}=n_{i}+1$ for all i, and a sleepy monster, who takes n_{i} spaced sufficiently widely so that

$$
P\left(X_{k}=(0,0) \text { for some } k \in\left\{n_{i}+1, \ldots, n_{i+1}\right\}\right)>1 / 2 .
$$

Paper 3, Section I

9H Markov Chains

A runner owns k pairs of running shoes and runs twice a day. In the morning she leaves her house by the front door, and in the evening she leaves by the back door. On starting each run she looks for shoes by the door through which she exits, and runs barefoot if none are there. At the end of each run she is equally likely to return through the front or back doors. She removes her shoes (if any) and places them by the door. In the morning of day 1 all shoes are by the back door so she must run barefoot.

Let $p_{00}^{(n)}$ be the probability that she runs barefoot on the morning of day $n+1$. What conditions are satisfied in this problem which ensure $\lim _{n \rightarrow \infty} p_{00}^{(n)}$ exists? Show that its value is $1 / 2 k$.

Find the expected number of days that will pass until the first morning that she finds all k pairs of shoes at her front door.

Paper 4, Section I

9H Markov Chains

Let $\left(X_{n}\right)_{n \geqslant 0}$ be an irreducible Markov chain with $p_{i j}^{(n)}=P\left(X_{n}=j \mid X_{0}=i\right)$. Define the meaning of the statements:
(i) state i is transient,
(ii) state i is aperiodic.

Give a criterion for transience that can be expressed in terms of the probabilities $\left(p_{i i}^{(n)}, n=0,1, \ldots\right)$.

Prove that if a state i is transient then all states are transient.
Prove that if a state i is aperiodic then all states are aperiodic.
Suppose that $p_{i i}^{(n)}=0$ unless n is divisible by 3 . Given any other state j, prove that $p_{j j}^{(n)}=0$ unless n is divisible by 3 .

Paper 1, Section II

20H Markov Chains

A Markov chain $\left(X_{n}\right)_{n \geqslant 0}$ has as its state space the integers, with

$$
p_{i, i+1}=p, \quad p_{i, i-1}=q=1-p
$$

and $p_{i j}=0$ otherwise. Assume $p>q$.
Let $T_{j}=\inf \left\{n \geqslant 1: X_{n}=j\right\}$ if this is finite, and $T_{j}=\infty$ otherwise. Let V_{0} be the total number of hits on 0 , and let $V_{0}(n)$ be the total number of hits on 0 within times $0, \ldots, n-1$. Let

$$
\begin{aligned}
h_{i} & =P\left(V_{0}>0 \mid X_{0}=i\right) \\
r_{i}(n) & =E\left[V_{0}(n) \mid X_{0}=i\right] \\
r_{i} & =E\left[V_{0} \mid X_{0}=i\right] .
\end{aligned}
$$

(i) Quoting an appropriate theorem, find, for every i, the value of h_{i}.
(ii) Show that if $\left(x_{i}, i \in \mathbb{Z}\right)$ is any non-negative solution to the system of equations

$$
\begin{aligned}
x_{0} & =1+q x_{1}+p x_{-1}, \\
x_{i} & =q x_{i-1}+p x_{i+1}, \quad \text { for all } i \neq 0,
\end{aligned}
$$

then $x_{i} \geqslant r_{i}(n)$ for all i and n.
(iii) Show that $P\left(V_{0}\left(T_{1}\right) \geqslant k \mid X_{0}=1\right)=q^{k}$ and $E\left[V_{0}\left(T_{1}\right) \mid X_{0}=1\right]=q / p$.
(iv) Explain why $r_{i+1}=(q / p) r_{i}$ for $i>0$.
(v) Find r_{i} for all i.

Paper 2, Section II

20H Markov Chains

Let $\left(X_{n}\right)_{n \geqslant 0}$ be the symmetric random walk on vertices of a connected graph. At each step this walk jumps from the current vertex to a neighbouring vertex, choosing uniformly amongst them. Let $T_{i}=\inf \left\{n \geqslant 1: X_{n}=i\right\}$. For each $i \neq j$ let $q_{i j}=P\left(T_{j}<T_{i} \mid X_{0}=i\right)$ and $m_{i j}=E\left(T_{j} \mid X_{0}=i\right)$. Stating any theorems that you use:
(i) Prove that the invariant distribution π satisfies detailed balance.
(ii) Use reversibility to explain why $\pi_{i} q_{i j}=\pi_{j} q_{j i}$ for all i, j.

Consider a symmetric random walk on the graph shown below.

(iii) Find m_{33}.
(iv) The removal of any edge (i, j) leaves two disjoint components, one which includes i and one which includes j. Prove that $m_{i j}=1+2 e_{i j}(i)$, where $e_{i j}(i)$ is the number of edges in the component that contains i.
(v) Show that $m_{i j}+m_{j i} \in\{18,36,54,72\}$ for all $i \neq j$.

Paper 3, Section I

9H Markov Chains

Let $\left(X_{n}\right)_{n \geqslant 0}$ be a Markov chain with state space S.
(i) What does it mean to say that $\left(X_{n}\right)_{n \geqslant 0}$ has the strong Markov property? Your answer should include the definition of the term stopping time.
(ii) Show that

$$
\mathbb{P}\left(X_{n}=i \text { at least } k \text { times } \mid X_{0}=i\right)=\left[\mathbb{P}\left(X_{n}=i \text { at least once } \mid X_{0}=i\right)\right]^{k}
$$

for a state $i \in S$. You may use without proof the fact that $\left(X_{n}\right)_{n \geqslant 0}$ has the strong Markov property.

Paper 4, Section I

9H Markov Chains

Let $\left(X_{n}\right)_{n \geqslant 0}$ be a Markov chain on a state space S, and let $p_{i j}(n)=\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)$.
(i) What does the term communicating class mean in terms of this chain?
(ii) Show that $p_{i i}(m+n) \geqslant p_{i j}(m) p_{j i}(n)$.
(iii) The period d_{i} of a state i is defined to be

$$
d_{i}=\operatorname{gcd}\left\{n \geqslant 1: p_{i i}(n)>0\right\} .
$$

Show that if i and j are in the same communicating class and $p_{j j}(r)>0$, then d_{i} divides r.

Paper 1, Section II

20H Markov Chains

Let $P=\left(p_{i j}\right)_{i, j \in S}$ be the transition matrix for an irreducible Markov chain on the finite state space S.
(i) What does it mean to say π is the invariant distribution for the chain?
(ii) What does it mean to say the chain is in detailed balance with respect to π ?
(iii) A symmetric random walk on a connected finite graph is the Markov chain whose state space is the set of vertices of the graph and whose transition probabilities are

$$
p_{i j}= \begin{cases}1 / D_{i} & \text { if } j \text { is adjacent to } i \\ 0 & \text { otherwise }\end{cases}
$$

where D_{i} is the number of vertices adjacent to vertex i. Show that the random walk is in detailed balance with respect to its invariant distribution.
(iv) Let π be the invariant distribution for the transition matrix P, and define an inner product for vectors $x, y \in \mathbb{R}^{S}$ by the formula

$$
\langle x, y\rangle=\sum_{i \in S} x_{i} \pi_{i} y_{i}
$$

Show that the equation

$$
\langle x, P y\rangle=\langle P x, y\rangle
$$

holds for all vectors $x, y \in \mathbb{R}^{S}$ if and only if the chain is in detailed balance with respect to π. [Here $z \in \mathbb{R}^{S}$ means $z=\left(z_{i}\right)_{i \in S}$.]

Paper 2, Section II

20H Markov Chains

(i) Let $\left(X_{n}\right)_{n \geqslant 0}$ be a Markov chain on the finite state space S with transition matrix P.

Fix a subset $A \subseteq S$, and let

$$
H=\inf \left\{n \geqslant 0: X_{n} \in A\right\} .
$$

Fix a function g on S such that $0<g(i) \leqslant 1$ for all $i \in S$, and let

$$
V_{i}=\mathbb{E}\left[\prod_{n=0}^{H-1} g\left(X_{n}\right) \mid X_{0}=i\right]
$$

where $\prod_{n=0}^{-1} a_{n}=1$ by convention. Show that

$$
V_{i}= \begin{cases}1 & \text { if } i \in A \\ g(i) \sum_{j \in S} P_{i j} V_{j} & \text { otherwise }\end{cases}
$$

(ii) A flea lives on a polyhedron with N vertices, labelled $1, \ldots, N$. It hops from vertex to vertex in the following manner: if one day it is on vertex $i>1$, the next day it hops to one of the vertices labelled $1, \ldots, i-1$ with equal probability, and it dies upon reaching vertex 1. Let X_{n} be the position of the flea on day n. What are the transition probabilities for the Markov chain $\left(X_{n}\right)_{n \geqslant 0}$?
(iii) Let H be the number of days the flea is alive, and let

$$
V_{i}=\mathbb{E}\left(s^{H} \mid X_{0}=i\right)
$$

where s is a real number such that $0<s \leqslant 1$. Show that $V_{1}=1$ and

$$
\frac{i}{s} V_{i+1}=V_{i}+\frac{i-1}{s} V_{i}
$$

for $i \geqslant 1$. Conclude that

$$
\mathbb{E}\left(s^{H} \mid X_{0}=N\right)=\prod_{i=1}^{N-1}\left(1+\frac{s-1}{i}\right)
$$

[Hint. Use part (i) with $A=\{1\}$ and a well-chosen function g.]
(iv) Show that

$$
\mathbb{E}\left(H \mid X_{0}=N\right)=\sum_{i=1}^{N-1} \frac{1}{i}
$$

Paper 3, Section I

9E Markov Chains

An intrepid tourist tries to ascend Springfield's famous infinite staircase on an icy day. When he takes a step with his right foot, he reaches the next stair with probability $1 / 2$, otherwise he falls down and instantly slides back to the bottom with probability $1 / 2$. Similarly, when he steps with his left foot, he reaches the next stair with probability $1 / 3$, or slides to the bottom with probability $2 / 3$. Assume that he always steps first with his right foot when he is at the bottom, and alternates feet as he ascends. Let X_{n} be his position after his nth step, so that $X_{n}=i$ when he is on the stair $i, i=0,1,2, \ldots$, where 0 is the bottom stair.
(a) Specify the transition probabilities $p_{i j}$ for the Markov chain $\left(X_{n}\right)_{n \geqslant 0}$ for any $i, j \geqslant 0$.
(b) Find the equilibrium probabilities π_{i}, for $i \geqslant 0$. [Hint: $\pi_{0}=5 / 9$.]
(c) Argue that the chain is irreducible and aperiodic and evaluate the limit

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=i\right)
$$

for each $i \geqslant 0$.

Paper 4, Section I

9E Markov Chains

Consider a Markov chain $\left(X_{n}\right)_{n \geqslant 0}$ with state space $\{a, b, c, d\}$ and transition probabilities given by the following table.

	a	b	c	d
a	$1 / 4$	$1 / 4$	$1 / 2$	0
b	0	$1 / 4$	0	$3 / 4$
c	$1 / 2$	0	$1 / 4$	$1 / 4$
d	0	$1 / 2$	0	$1 / 2$

By drawing an appropriate diagram, determine the communicating classes of the chain, and classify them as either open or closed. Compute the following transition and hitting probabilities:

- $\mathbb{P}\left(X_{n}=b \mid X_{0}=d\right)$ for a fixed $n \geqslant 0$,
- $\mathbb{P}\left(X_{n}=c\right.$ for some $\left.n \geqslant 1 \mid X_{0}=a\right)$.

Paper 1, Section II

20E Markov Chains

Let $\left(X_{n}\right)_{n \geqslant 0}$ be a Markov chain.
(a) What does it mean to say that a state i is positive recurrent? How is this property related to the equilibrium probability π_{i} ? You do not need to give a full proof, but you should carefully state any theorems you use.
(b) What is a communicating class? Prove that if states i and j are in the same communicating class and i is positive recurrent then j is positive recurrent also.

A frog is in a pond with an infinite number of lily pads, numbered $1,2,3, \ldots$ She hops from pad to pad in the following manner: if she happens to be on pad i at a given time, she hops to one of pads $(1,2, \ldots, i, i+1)$ with equal probability.
(c) Find the equilibrium distribution of the corresponding Markov chain.
(d) Now suppose the frog starts on pad k and stops when she returns to it. Show that the expected number of times the frog hops is $e(k-1)$! where $e=2.718 \ldots$ What is the expected number of times she will visit the lily pad $k+1$?

Paper 2, Section II

20E Markov Chains

Let $\left(X_{n}\right)_{n \geqslant 0}$ be a simple, symmetric random walk on the integers $\{\ldots,-1,0,1, \ldots\}$, with $X_{0}=0$ and $\mathbb{P}\left(X_{n+1}=i \pm 1 \mid X_{n}=i\right)=1 / 2$. For each integer $a \geqslant 1$, let $T_{a}=\inf \left\{n \geqslant 0: X_{n}=a\right\}$. Show that T_{a} is a stopping time.

Define a random variable Y_{n} by the rule

$$
Y_{n}= \begin{cases}X_{n} & \text { if } n<T_{a} \\ 2 a-X_{n} & \text { if } n \geqslant T_{a}\end{cases}
$$

Show that $\left(Y_{n}\right)_{n \geqslant 0}$ is also a simple, symmetric random walk.
Let $M_{n}=\max _{0 \leqslant i \leqslant n} X_{n}$. Explain why $\left\{M_{n} \geqslant a\right\}=\left\{T_{a} \leqslant n\right\}$ for $a \geqslant 0$. By using the process $\left(Y_{n}\right)_{n \geqslant 0}$ constructed above, show that, for $a \geqslant 0$,

$$
\mathbb{P}\left(M_{n} \geqslant a, X_{n} \leqslant a-1\right)=\mathbb{P}\left(X_{n} \geqslant a+1\right)
$$

and thus

$$
\mathbb{P}\left(M_{n} \geqslant a\right)=\mathbb{P}\left(X_{n} \geqslant a\right)+\mathbb{P}\left(X_{n} \geqslant a+1\right)
$$

Hence compute

$$
\mathbb{P}\left(M_{n}=a\right)
$$

when a and n are positive integers with $n \geqslant a$. [Hint: if n is even, then X_{n} must be even, and if n is odd, then X_{n} must be odd.]

Paper 3, Section I

9H Markov Chains
Let $\left(X_{n}\right)_{n \geqslant 0}$ be a simple random walk on the integers: the random variables $\xi_{n} \equiv X_{n}-X_{n-1}$ are independent, with distribution

$$
P(\xi=1)=p, \quad P(\xi=-1)=q
$$

where $0<p<1$, and $q=1-p$. Consider the hitting time $\tau=\inf \left\{n: X_{n}=0\right.$ or $\left.X_{n}=N\right\}$, where $N>1$ is a given integer. For fixed $s \in(0,1)$ define $\xi_{k}=E\left[s^{\tau}: X_{\tau}=0 \mid X_{0}=k\right]$ for $k=0, \ldots, N$. Show that the ξ_{k} satisfy a second-order difference equation, and hence find them.

Paper 4, Section I

9H Markov Chains

In chess, a bishop is allowed to move only in straight diagonal lines. Thus if the bishop stands on the square marked A in the diagram, it is able in one move to reach any of the squares marked with an asterisk. Suppose that the bishop moves at random around the chess board, choosing at each move with equal probability from the squares it can reach, the square chosen being independent of all previous choices. The bishop starts at the bottom left-hand corner of the board.

If X_{n} is the position of the bishop at time n, show that $\left(X_{n}\right)_{n \geqslant 0}$ is a reversible Markov chain, whose statespace you should specify. Find the invariant distribution of this Markov chain.

What is the expected number of moves the bishop will make before first returning to its starting square?

				$*$			
			$*$				
$*$		$*$					
	A						
$*$		$*$					
			$*$				
				$*$			
					$*$		

Paper 1, Section II

19H Markov Chains

A gerbil is introduced into a maze at the node labelled 0 in the diagram. It roams at random through the maze until it reaches the node labelled 1. At each vertex, it chooses to move to one of the neighbouring nodes with equal probability, independently of all other choices. Find the mean number of moves required for the gerbil to reach node 1.

Suppose now that the gerbil is intelligent, in that when it reaches a node it will not immediately return to the node from which it has just come, choosing with equal probability from all other neighbouring nodes. Express the movement of the gerbil in terms of a Markov chain whose states and transition probabilities you should specify. Find the mean number of moves until the intelligent gerbil reaches node 1. Compare with your answer to the first part, and comment briefly.

Paper 2, Section II

20H Markov Chains

Suppose that B is a non-empty subset of the statespace I of a Markov chain X with transition matrix P, and let $\tau \equiv \inf \left\{n \geqslant 0: X_{n} \in B\right\}$, with the convention that $\inf \emptyset=\infty$. If $h_{i}=P\left(\tau<\infty \mid X_{0}=i\right)$, show that the equations
(a)

$$
\begin{aligned}
g_{i} \geqslant(P g)_{i} & \equiv \sum_{j \in I} p_{i j} g_{j} \geqslant 0 \quad \forall i \\
g_{i} & =1 \quad \forall i \in B
\end{aligned}
$$

are satisfied by $g=h$.
If g satisfies (a), prove that g also satisfies
(c)

$$
g_{i} \geqslant(\tilde{P} g)_{i} \quad \forall i
$$

where

$$
\tilde{p}_{i j}=\left\{\begin{array}{cc}
p_{i j} & (i \notin B), \\
\delta_{i j} & (i \in B)
\end{array}\right.
$$

By interpreting the transition matrix \tilde{P}, prove that h is the minimal solution to the equations (a), (b).

Now suppose that P is irreducible. Prove that P is recurrent if and only if the only solutions to (a) are constant functions.

1/II/19H Markov Chains

The village green is ringed by a fence with N fenceposts, labelled $0,1, \ldots, N-1$. The village idiot is given a pot of paint and a brush, and started at post 0 with instructions to paint all the posts. He paints post 0 , and then chooses one of the two nearest neighbours, 1 or $N-1$, with equal probability, moving to the chosen post and painting it. After painting a post, he chooses with equal probability one of the two nearest neighbours, moves there and paints it (regardless of whether it is already painted). Find the distribution of the last post unpainted.

2/II/20H Markov Chains

A Markov chain with state-space $I=\mathbb{Z}^{+}$has non-zero transition probabilities $p_{00}=q_{0}$ and

$$
p_{i, i+1}=p_{i}, \quad p_{i+1, i}=q_{i+1} \quad(i \in I) .
$$

Prove that this chain is recurrent if and only if

$$
\sum_{n \geqslant 1} \prod_{r=1}^{n} \frac{q_{r}}{p_{r}}=\infty
$$

Prove that this chain is positive-recurrent if and only if

$$
\sum_{n \geqslant 1} \prod_{r=1}^{n} \frac{p_{r-1}}{q_{r}}<\infty
$$

3/I/9H Markov Chains

What does it mean to say that a Markov chain is recurrent?
Stating clearly any general results to which you appeal, prove that the symmetric simple random walk on \mathbb{Z} is recurrent.

4/I/9H Markov Chains

A Markov chain on the state-space $I=\{1,2,3,4,5,6,7\}$ has transition matrix

$$
P=\left(\begin{array}{ccccccc}
0 & 1 / 2 & 1 / 4 & 0 & 1 / 4 & 0 & 0 \\
1 / 3 & 0 & 1 / 2 & 0 & 0 & 1 / 6 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 / 2 & 0 & 1 / 2
\end{array}\right) .
$$

Classify the chain into its communicating classes, deciding for each what the period is, and whether the class is recurrent.

For each $i, j \in I$ say whether the limit $\lim _{n \rightarrow \infty} p_{i j}^{(n)}$ exists, and evaluate the limit when it does exist.

1/II/19C Markov Chains

Consider a Markov chain $\left(X_{n}\right)_{n \geqslant 0}$ on states $\{0,1, \ldots, r\}$ with transition matrix $\left(P_{i j}\right)$, where $P_{0,0}=1=P_{r, r}$, so that 0 and r are absorbing states. Let

$$
A=\left(X_{n}=0, \text { for some } n \geqslant 0\right),
$$

be the event that the chain is absorbed in 0 . Assume that $h_{i}=\mathbb{P}\left(A \mid X_{0}=i\right)>0$ for $1 \leqslant i<r$.

Show carefully that, conditional on the event $A,\left(X_{n}\right)_{n \geqslant 0}$ is a Markov chain and determine its transition matrix.

Now consider the case where $P_{i, i+1}=\frac{1}{2}=P_{i, i-1}$, for $1 \leqslant i<r$. Suppose that $X_{0}=i, 1 \leqslant i<r$, and that the event A occurs; calculate the expected number of transitions until the chain is first in the state 0 .

2/II/20C Markov Chains

Consider a Markov chain with state space $S=\{0,1,2, \ldots\}$ and transition matrix given by

$$
P_{i, j}= \begin{cases}q p^{j-i+1} & \text { for } i \geqslant 1 \text { and } j \geqslant i-1, \\ q p^{j} & \text { for } i=0 \text { and } j \geqslant 0,\end{cases}
$$

and $P_{i, j}=0$ otherwise, where $0<p=1-q<1$.
For each value of $p, 0<p<1$, determine whether the chain is transient, null recurrent or positive recurrent, and in the last case find the invariant distribution.

3/I/9C Markov Chains

Consider a Markov chain $\left(X_{n}\right)_{n \geqslant 0}$ with state space $S=\{0,1\}$ and transition matrix

$$
P=\left(\begin{array}{cc}
\alpha & 1-\alpha \\
1-\beta & \beta
\end{array}\right),
$$

where $0<\alpha<1$ and $0<\beta<1$.
Calculate $\mathbb{P}\left(X_{n}=0 \mid X_{0}=0\right)$ for each $n \geqslant 0$.

4/I/9C Markov Chains

For a Markov chain with state space S , define what is meant by the following:
(i) states $i, j \in S$ communicate;
(ii) state $i \in S$ is recurrent.

Prove that communication is an equivalence relation on S and that if two states i, j communicate and i is recurrent then j is recurrent.

1/II/19C Markov Chains

Explain what is meant by a stopping time of a Markov chain $\left(X_{n}\right)_{n \geq 0}$. State the strong Markov property.

Show that, for any state i, the probability, starting from i, that $\left(X_{n}\right)_{n \geq 0}$ makes infinitely many visits to i can take only the values 0 or 1 .

Show moreover that, if

$$
\sum_{n=0}^{\infty} \mathbb{P}_{i}\left(X_{n}=i\right)=\infty
$$

then $\left(X_{n}\right)_{n \geq 0}$ makes infinitely many visits to i with probability 1 .

2/II/20C Markov Chains

Consider the Markov chain $\left(X_{n}\right)_{n \geq 0}$ on the integers \mathbb{Z} whose non-zero transition probabilities are given by $p_{0,1}=p_{0,-1}=1 / 2$ and

$$
\begin{gathered}
p_{n, n-1}=1 / 3, \quad p_{n, n+1}=2 / 3, \\
p_{n, n-1}=3 / 4, \quad p_{n, n+1}=1 / 4, \quad \text { for } n \geq 1 \\
\end{gathered}
$$

(a) Show that, if $X_{0}=1$, then $\left(X_{n}\right)_{n \geq 0}$ hits 0 with probability $1 / 2$.
(b) Suppose now that $X_{0}=0$. Show that, with probability 1 , as $n \rightarrow \infty$ either $X_{n} \rightarrow \infty$ or $X_{n} \rightarrow-\infty$.
(c) In the case $X_{0}=0$ compute $\mathbb{P}\left(X_{n} \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right)$.

3/I/9C Markov Chains

A hungry student always chooses one of three places to get his lunch, basing his choice for one day on his gastronomic experience the day before. He sometimes tries a sandwich from Natasha's Patisserie: with probability $1 / 2$ this is delicious so he returns the next day; if the sandwich is less than delicious, he chooses with equal probability $1 / 4$ either to eat in Hall or to cook for himself. Food in Hall leaves no strong impression, so he chooses the next day each of the options with equal probability $1 / 3$. However, since he is a hopeless cook, he never tries his own cooking two days running, always preferring to buy a sandwich the next day. On the first day of term the student has lunch in Hall. What is the probability that 60 days later he is again having lunch in Hall?
[Note $0^{0}=1$.]

4/I/9C Markov Chains

A game of chance is played as follows. At each turn the player tosses a coin, which lands heads or tails with equal probability $1 / 2$. The outcome determines a score for that turn, which depends also on the cumulative score so far. Write S_{n} for the cumulative score after n turns. In particular $S_{0}=0$. When S_{n} is odd, a head scores 1 but a tail scores 0 . When S_{n} is a multiple of 4 , a head scores 4 and a tail scores 1 . When S_{n} is even but is not a multiple of 4 , a head scores 2 and a tail scores 1 . By considering a suitable four-state Markov chain, determine the long run proportion of turns for which S_{n} is a multiple of 4 . State clearly any general theorems to which you appeal.

1/II/19D Markov Chains

Every night Lancelot and Guinevere sit down with four guests for a meal at a circular dining table. The six diners are equally spaced around the table and just before each meal two individuals are chosen at random and they exchange places from the previous night while the other four diners stay in the same places they occupied at the last meal; the choices on successive nights are made independently. On the first night Lancelot and Guinevere are seated next to each other.

Find the probability that they are seated diametrically opposite each other on the $(n+1)$ th night at the round table, $n \geqslant 1$.

2/II/20D Markov Chains

Consider a Markov chain $\left(X_{n}\right)_{n \geqslant 0}$ with state space $\{0,1,2, \ldots\}$ and transition probabilities given by

$$
P_{i, j}=p q^{i-j+1}, \quad 0<j \leqslant i+1, \quad \text { and } \quad P_{i, 0}=q^{i+1} \quad \text { for } \quad i \geqslant 0
$$

with $P_{i, j}=0$, otherwise, where $0<p<1$ and $q=1-p$.
For each $i \geqslant 1$, let

$$
h_{i}=\mathbb{P}\left(X_{n}=0, \text { for some } n \geqslant 0 \mid X_{0}=i\right),
$$

that is, the probability that the chain ever hits the state 0 given that it starts in state i. Write down the equations satisfied by the probabilities $\left\{h_{i}, i \geqslant 1\right\}$ and hence, or otherwise, show that they satisfy a second-order recurrence relation with constant coefficients. Calculate h_{i} for each $i \geqslant 1$.

Determine for each value of $p, 0<p<1$, whether the chain is transient, null recurrent or positive recurrent and in the last case calculate the stationary distribution.
[Hint: When the chain is positive recurrent, the stationary distribution is geometric.]

3/I/9D Markov Chains

Prove that if two states of a Markov chain communicate then they have the same period.

Consider a Markov chain with state space $\{1,2, \ldots, 7\}$ and transition probabilities determined by the matrix

$$
\left(\begin{array}{ccccccc}
0 & \frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{2} & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Identify the communicating classes of the chain and for each class state whether it is open or closed and determine its period.

4/I/9D Markov Chains

Prove that the simple symmetric random walk in three dimensions is transient.
[You may wish to recall Stirling's formula: $n!\sim(2 \pi)^{\frac{1}{2}} n^{n+\frac{1}{2}} e^{-n}$.]

1/I/11H Markov Chains

Let $P=\left(P_{i j}\right)$ be a transition matrix. What does it mean to say that P is (a) irreducible, (b) recurrent?

Suppose that P is irreducible and recurrent and that the state space contains at least two states. Define a new transition matrix \tilde{P} by

$$
\tilde{P}_{i j}=\left\{\begin{array}{lll}
0 & \text { if } & i=j \\
\left(1-P_{i i}\right)^{-1} P_{i j} & \text { if } & i \neq j .
\end{array}\right.
$$

Prove that \tilde{P} is also irreducible and recurrent.

1/II/22H Markov Chains

Consider the Markov chain with state space $\{1,2,3,4,5,6\}$ and transition matrix

$$
\left(\begin{array}{cccccc}
0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
\frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{3} \\
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
0 & 0 & 0 & 0 & 1 & 0 \\
\frac{1}{4} & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{4}
\end{array}\right) .
$$

Determine the communicating classes of the chain, and for each class indicate whether it is open or closed.

Suppose that the chain starts in state 2; determine the probability that it ever reaches state 6 .

Suppose that the chain starts in state 3 ; determine the probability that it is in state 6 after exactly n transitions, $n \geqslant 1$.

2/I/11H Markov Chains

Let $\left(X_{r}\right)_{r \geqslant 0}$ be an irreducible, positive-recurrent Markov chain on the state space S with transition matrix $\left(P_{i j}\right)$ and initial distribution $P\left(X_{0}=i\right)=\pi_{i}, i \in S$, where $\left(\pi_{i}\right)$ is the unique invariant distribution. What does it mean to say that the Markov chain is reversible?

Prove that the Markov chain is reversible if and only if $\pi_{i} P_{i j}=\pi_{j} P_{j i}$ for all $i, j \in S$.

2/II/22H Markov Chains

Consider a Markov chain on the state space $S=\{0,1,2, \ldots\} \cup\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots\right\}$ with transition probabilities as illustrated in the diagram below, where $0<q<1$ and $p=1-q$.

For each value of $q, 0<q<1$, determine whether the chain is transient, null recurrent or positive recurrent.

When the chain is positive recurrent, calculate the invariant distribution.

A1/1 B1/1 Markov Chains

(i) Let $\left(X_{n}, Y_{n}\right)_{n \geqslant 0}$ be a simple symmetric random walk in \mathbb{Z}^{2}, starting from (0,0), and set $T=\inf \left\{n \geqslant 0: \max \left\{\left|X_{n}\right|,\left|Y_{n}\right|\right\}=2\right\}$. Determine the quantities $\mathbb{E}(T)$ and $\mathbb{P}\left(X_{T}=2\right.$ and $\left.Y_{T}=0\right)$.
(ii) Let $\left(X_{n}\right)_{n \geqslant 0}$ be a discrete-time Markov chain with state-space I and transition matrix P. What does it mean to say that a state $i \in I$ is recurrent? Prove that i is recurrent if and only if $\sum_{n=0}^{\infty} p_{i i}^{(n)}=\infty$, where $p_{i i}^{(n)}$ denotes the (i, i) entry in P^{n}.

Show that the simple symmetric random walk in \mathbb{Z}^{2} is recurrent.

A2/1 Markov Chains

(i) What is meant by a Poisson process of rate λ ? Show that if $\left(X_{t}\right)_{t \geqslant 0}$ and $\left(Y_{t}\right)_{t \geqslant 0}$ are independent Poisson proeesses of rates λ and μ respectively, then $\left(X_{t}+Y_{t}\right)_{t \geqslant 0}$ is also a Poisson proeess, and determine its rate.
(ii) A Poisson process of rate λ is observed by someone who believes that the first holding time is longer than all subsequent holding times. How long on average will it take before the observer is proved wrong?

A3/1 B3/1 Markov Chains

(i) Gonsider the continuous time Markor chain $\left(X_{t}\right)_{t \geqslant 0}$ with statespace $\{1,2,3,4\}$ and Q-matrix

$$
Q=\left(\begin{array}{rrrr}
-z & \theta & \theta & z \\
1 & -3 & z & \theta \\
\theta & 2 & -z & \theta \\
1 & 5 & z & -8
\end{array}\right)
$$

Set

$$
Y_{t}= \begin{cases}X_{t} & \text { if } X_{t} \in\{1,2,3\} \\ z & \text { if } X_{t}=4\end{cases}
$$

and

$$
Z_{t}= \begin{cases}X_{t} & \text { if } X_{t} \in\{1,2,3\} \\ 1 & \text { if } X_{t}=4 .\end{cases}
$$

Determine whieh, if any, of the proeesses $\left(Y_{l}\right)_{t \geqslant 0}$ and $\left(Z_{l}\right)_{t \geqslant 0}$ are Markor ehains.
(ii) Find an invariant distribution for the chain $\left(X_{t}\right)_{t \geqslant 0}$ given in Part (i). Suppose $X_{0}=1$. Find, for all $t \geqslant \theta$, the probability that $X_{t}=1$.

A4/1 Markov Chains

Consider a pack of cards labelled $1, \ldots, 52$. We repeatedly take the top card and insert it uniformly at random in one of the 52 possible places, that is, either on the top or on the bottom or in one of the 50 places inside the pack. How long on average will it take for the bottom card to reach the top?

Let p_{n} denote the probability that after n iterations the cards are found in increasing order. Show that, irrespective of the initial ordering, p_{n} converges as $n \rightarrow \infty$, and determine the limit p. You should give precise statements of any general results to which you appeal.

Show that, at least until the bottom card reaches the top, the ordering of cards inserted beneath it is uniformly random. Hence or otherwise show that, for all n,

$$
\left|p_{n}-p\right| \leqslant 52(1+\log 52) / n .
$$

A1/1 B1/1 Markov Chains

(i) We are given a finite set of airports. Assume that between any two airports, i and j, there are $a_{i j}=a_{j i}$ flights in each direction on every day. A confused traveller takes one flight per day, choosing at random from all available flights. Starting from i, how many days on average will pass until the traveller returns again to i ? Be careful to allow for the case where there may be no flights at all between two given airports.
(ii) Consider the infinite tree T with root R, where, for all $m \geqslant 0$, all vertices at distance 2^{m} from R have degree 3 , and where all other vertices (except R) have degree 2 . Show that the random walk on T is recurrent.

A2/1 Markov Chains

(i) In each of the following eases, the state-space I and non-zero transition rates $q_{i j}$ $(\dot{z} \neq j)$ of a continuous time Markov chain are given. Determine in which eases the ehain is explosive.

$$
\begin{array}{llll}
\text { (a) } & I=\left\{1,2,3, \ldots \frac{)}{5,}\right. & \quad \begin{array}{ll}
q_{i, i+1}=i^{2}, & i \in I, \\
\text { (b) } & I=\mathbb{Z},
\end{array} & q i, i=1=q, i, i+1=2^{i},
\end{array} \quad i \in I .
$$

(ii) Children arrive at a sec-saw according to a Poisson process of rate 1. Initially there are no-children. The first child to arrive waits at the see-saw. When the seeond ehild arrives, they play on the see-saw. When the third child arrives, they all deeide to go and play on the merry-go-round. The eyele then repeats. Show that the number of ehildren at the see-saw evolves as a Markou Chain and determine its generator matrix. Find the probability that there are no children at the see-saw at time t.

Henee obtain the identity

$$
\sum_{n=0}^{\infty} e^{-t} \frac{t^{3 n}}{(3 n)!}=\frac{1}{3}+\frac{2}{3} e^{-\frac{3}{2} t} \operatorname{eos} \frac{\overline{\sqrt{3}}}{2} t
$$

A3/1 B3/1 Markov Chains

(i) Gonsider the continuous-time Markov chain $\left(X_{t}\right)_{t \geqslant 0}$ on $\{1,2,3,4,5,6,7\}$ with generator matrix

$$
Q=\left(\begin{array}{rrrrrrr}
-6 & z & \theta & \theta & \theta & 4 & \theta \\
z & -3 & \theta & \theta & \theta & 4 & \theta \\
\theta & 1 & -5 & 1 & z & \theta & 1 \\
\theta & \theta & \theta & \theta & \theta & \theta & \theta \\
\theta & z & z & \theta & -6 & \theta & z \\
1 & z & \theta & \theta & \theta & -3 & \theta \\
\theta & \theta & 1 & \theta & 1 & \theta & -z
\end{array}\right)
$$

Compute the probability, starting from state 3 , that X_{t} hits state 2 eventually.
Deduee that

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(X_{t}=2 \mid X_{\theta}=3\right)=\frac{4}{45} .
$$

[Justification of standard anguments is not expected.]

(ii) A colony of cells contains immature and mature cells. Each immature cell, after an exponential time of parameter 2, becomes a mature cell. Each mature cell, after an exponential time of parameter 3 , divides into two immature cells. Suppose we begin with one immature cell and let $n(t)$ denote the expected number of immature cells at time t. Show that

$$
n(t)=\left(4 e^{t}+3 e^{-6 t}\right) / 7
$$

A4/1 Markov Chains

Write an essay on the long-time behaviour of discrete-time Markov chains on a finite state space. Your essay should include discussion of the convergence of probabilities as well as almost-sure behaviour. You should also explain what happens when the chain is not irreducible.

A1/1 B1/1 Markov Chains

(i) Let $X=\left(X_{n}: 0 \leqslant n \leqslant N\right)$ be an irreducible Markov chain on the finite state space S with transition matrix $P=\left(p_{i j}\right)$ and invariant distribution π. What does it mean to say that X is reversible in equilibrium?

Show that X is reversible in equilibrium if and only if $\pi_{i} p_{i j}=\pi_{j} p_{j i}$ for all $i, j \in S$.
(ii) A finite connected graph G has vertex set V and edge set E, and has neither loops nor multiple edges. A particle performs a random walk on V, moving at each step to a randomly chosen neighbour of the current position, each such neighbour being picked with equal probability, independently of all previous moves. Show that the unique invariant distribution is given by $\pi_{v}=d_{v} /(2|E|)$ where d_{v} is the degree of vertex v.

A rook performs a random walk on a chessboard; at each step, it is equally likely to make any of the moves which are legal for a rook. What is the mean recurrence time of a corner square. (You should give a clear statement of any general theorem used.)
[A chessboard is an 8×8 square grid. A legal move is one of any length parallel to the axes.]

A2/1
 Markov Chains

(i) The fire alarm in Mill Lane is set off at random times. The probability of an alarm during the time-interval $(u, u \backslash h)$ is $\lambda(u) h \mid o(h)$ where the 'intensity function' $\lambda(u)$ may vary with the time u. Let $N(t)$ be the number of alarms by time t, and set $N(0)=0$. Show, subject to reasonable extra assumptions to be stated clearly, that $p_{i}(t)=P(N(t)=i)$ satisfies

$$
p_{0}^{t}(t)=-\lambda(t)_{P_{0}}(t), \quad p_{i}^{t}(t)=\lambda(t)\left\{p_{i=1}(t)-p_{i}(t)\right\}, \quad i \geqslant 1
$$

Beduee that $N(t)$ has the Poisson distribution with parameter $\Lambda(t)=\bar{\int}_{0}^{t} \lambda(u) d u$.
(ii) The fire alarm in Clarkson Road is different. The number $M(t)$ of alarms by time t is sueh that

$$
P(M(t \mid h)=m+1+M(t)=m)=\lambda_{m} h+o(h)
$$

where $\lambda_{m}=$ am $\mid \beta, m \geqslant 0$, and $\alpha, \beta>\theta$. Show, subject to suitable extra conditions, that $p_{m}(t)=P(M(t)=m)$ satisfies a set of differential-differenee equations to be specified. Deduee without solving these equations in their entirety that $M(t)$ has mean $\beta\left(e^{a t}-1\right)+\theta$, and find the varianee of $M(t)$.

A3/1 B3/1 Markev Chains

(i) Explain what is meant by the transition semigroup $\left\{P_{l}\right\}$ of a Markor chain X in eontinuous time. If the state space is finite, show under assumptions to be stated clearly, that $P_{t}^{t}=G P_{t}$ for some matrix G. Show that a distribution \mathcal{F} satisfies $\pi G=0$ if and only if $\pi P_{t} \equiv \pi$ for all $t \geqslant \theta$, and explain the importanee of such π -
(ii) Let X be a continuous time Markov chain on the state space $S=\{1,2\}$ with generator

$$
G \equiv\left(\begin{array}{cc}
-\beta & \beta \\
\psi & -\psi
\end{array}\right), \quad \text { where } \beta, \gamma>\theta \text {. }
$$

Show that the transition semigroup $P_{t}=\exp (t G)$ is given by

$$
(\beta+\gamma) P_{t}=\left(\begin{array}{cc}
\psi+\beta h(t) & \beta(1-h(t)) \\
\psi(1-h(t)) & \beta+\underline{\psi} h(t)
\end{array}\right)
$$

where $h(t)=e^{-t(\beta+\gamma)}$.
For $\theta<\alpha<1$, let

$$
H(\alpha)=\left(\begin{array}{cc}
\theta & \pm-\theta \\
1-\theta & \theta
\end{array}\right)
$$

For a continuous time ehain X, let M be a matrix with (i, j) entry
$P(X(1)=j \nmid X(0)=i)$, for $i, j \in S$. Show that there is a chain X with $M=H(a)$ if and only if $\alpha>\frac{1}{2}$.

A4/1 Markov Chains

Write an essay on the convergence to equilibrium of a discrete-time Markov chain on a countable state-space. You should include a discussion of the existence of invariant distributions, and of the limit theorem in the non-null recurrent case.

