We define as Markov process by:

where B is a future event; A is past event X(z) is the present state of the system.

There is complete symmetry between past and future. The Markov process is the reversible.

dfn.

We associate the matrix P with (pij) and the vector p, with the pi.

The component (pP"); = pr(X(a)=j).

Intercommunication

inj when i=j or i+j and I M,N st. P11 > 0 P11 > 0

This is an equivalence relation. note Pih^{mtn} > Pij mpjhm.

ex.
$$\begin{pmatrix} x & 1-x & 0 \\ 0 & \beta & 1-\beta \\ 1 & 0 & 0 \end{pmatrix}$$

there classes, no one absorbing

three classes, 3 an absorbing state

Persistance

We define the first passage probabilities: fij" = pr & start at i reach j for the first time at ten 3 Fij = Z fij = pr & stort at i and reach j eventually 3

If $F_{ii} = 1$ we say class i is persistant. pr & state i is hit twice in 1 st & n, once being at += n 3 = \(\sum_{ii} f_{ii}^{r} f_{ii}^{n-r} \) pr & i hit at least s times 3 = Fiis pr & i let exactly s times 3 - Fis- Fis+1 - Fis (1- Fii) If a class is persistant then pr & i is hit finitely often 3 = 0 Fire 1 is the transvent case pr & i is hit at least stimes 3 - Fis - 0 as s- 00 so prEi hit 00 often 3 - 0 E(no. of hits) = \$ sFiis(1-Fii) = Fii/(1-Fii) Dfn: Y(n) = 1 if x(n) = i · 0 if otherwise $:= E_i(\sum_{n\geq 1} Y(n)) = E_i(no.of hits)$ = \(\Sigma \) \(Hence i is persistant $\iff \sum_{n \geq 1} pii^n$ diverges Th^m 1: Persistance and Transcience are class properties. pf. Suppose i~j pij">0 pij">0
 Σ pij^{m+n+r}
 > Σ pij^m Pij^r Pjiⁿ

 Σ pij^{m+n+r}
 > Σ pij^m Pij^r Pij^m
 ⇒ If ∑piir converges so does ∑piir

```
Th~ 2:
Persistant classes are closed
et:
Say i & h and Pik"> O for some mo; i persistant
1 - pri E i hit so often 3
 = Zpri 2 x(m) = h and i hit so often 3
 = \(\frac{\tau}{\text{pr}}\) \(\frac{\tau}{\text{sum}}\) = h\(\frac{\tau}{\text{pr}}\) \(\text{con}\) hits on i)
Z pih" = Z pih" pra(ochits oni)
Z pihm (1 - prn ( to hits on i )) = 0 Y m
in particular for mo. But pinmo > 0
i persistant => pr. ( oo hits on i ) = 1
i persistant inh = hai
.. inch je i and h are in the same
cbss.
Davidson's Inequality
1 - p_{ii}^{m+n} \ge p_{ii}^{m} (1 - p_{ii}^{n})
pf:
          = pr (sturt at i, not od i at mon)
             \sum pr_i(X(m)=\alpha \text{ and not } i \text{ at m+n})
          = E pri(X(m)=x) pra(not i at m+n)
           > term with a= i
              = pii" (1 - pii")
    1- pii men > pii (1- pii )
               > pii" (1 - pii")
```

Assume $p_{ii}^{m} > p_{ii}^{n}$ or $p_{ii}^{m} < p_{ii}^{n}$ $p_{ii}^{m} (1 - p_{ii}^{n}) > p_{ii}^{m} (1 - p_{ii}^{m})$ $p_{ii}^{n} (1 - p_{ii}^{n}) > p_{ii}^{m} (1 - p_{ii}^{n})$ $p_{ii}^{m} < p_{ii}^{n}$ Hence $1 - p_{ii}^{m+n} > p_{ii}^{m} (1 - p_{ii}^{m})$.

Suppose i is persistant $\sum_{\alpha} p_{i\alpha}^{m} (1 - pr_{k}(\alpha) \text{ many hits to i })$

= $1 - \sum_{\alpha} pr_i(X(m) = \alpha)$ and so many hits to i) = $1 - pr_i(\infty)$ many hits to i) = 1 - 1 = 0

So Y m, a pian (1 - pra (00 many hits to i)) = 0

Suppose i persistent and $i \sim j$ put x = j m st $p_{ij}^{n} \neq 0$ $pr_{ij} = pr_{ij} = pr_{i$

1,j. Suppose state space finite

Aij = 'start at i , & hits on j'

Y Aij = 'start at i & hits somewhere'

 $P(yA_{ij}) = 1 \leq \sum_{j} pr_{j}(A_{ij})$

So given i given finite state space.

3j s.t. pr; (Aij) > 0

pr; (oo hits on j) > 0

E pr. (j avoided for letem, X(m)=j, so hits on j)

> pri(j avoided for leten, X(m)=j)=

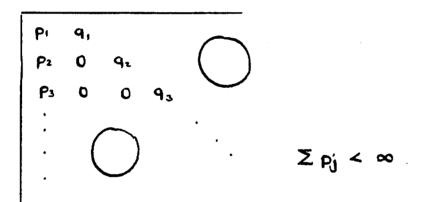
Fij prj(∞ hits on j) > 0

given i and state space finite.

⇒ ∃j s.t. j is persistant; i~j

Hence when the SIS is finite then closed class \equiv persistant class.

This is false if the 5,5 is infinale.



Here the whole matrix is a closed class. But it is not persistent. $q_1 \cdots q_n \cdots = \prod_j (1-p_j) > 0$ so we do not necessarily return to state 1.

Let C be a closed class. α^{c} : = pr; (trapped in C) α^{c} is the vector of absorption probabilities.

$$\sum_{h} p_{ih}(\alpha^{c})_{h} = \sum_{h} pr_{i}(X(1)=h) pr_{h}(trapped in C)$$

$$= \sum_{h} pr_{i}(X(1)=h) and trapped in C)$$

=
$$\Sigma$$
 = pr; (trapped in C) = α_i^c .

$$\therefore$$
 yi = 1 on C

$$Py = y$$

$$y_i = \sum_{\alpha} p_i \hat{a} y_{\alpha} + \sum_{\beta} p_i \hat{\beta} y_{\beta} + \sum_{\beta} p_i \hat{\beta} y_j$$

we non-closed pe closed classes $j \in C$

$$pri(X(n) \in C) \leq y_i$$

 $pri(trapped in C) \leq y_i$
 $\alpha_i^c \leq y_i$

like climbing a ladder,

$$y_{i} = 1 + \frac{y_{i} - 1 + \prod_{i}^{\infty}}{\prod_{i}^{i-1}} - \frac{\prod_{i}^{\infty}}{\prod_{i}^{i-1}}$$

$$\frac{y_{i} - 1 + \prod_{i}^{\infty}}{\prod_{i}^{i-1}} \geqslant 0$$

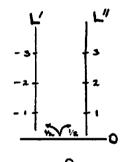
It can be zero as we can take
$$y_1 = 1 - \prod_{j \geqslant 1} (1-p_j)$$

So this y_1 must give the minimum $pr_1(absorption) = 1 - (q_1q_2 \cdots)$.

Here we have one large class. Is it persistemet? We freeze at state zero. If state zero is persistant. Then pr (absorption) in 10 pr 0 qr

pr (return to po) ______ po qo
pi 0 qi
pz 0 0 qi

We have seen that the first is <1: pr(return to po) <1 \Rightarrow the class is not persistant.

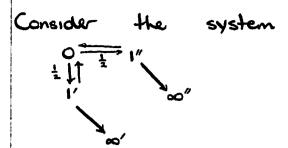


has matrix:

	ې ا	
0	P2 P:	0 0 4.
- - 1	0	1/2
9, 0	P ₁	0
	9, 0 9, 0	i o

A: eventually 11 in L'B: eventually 11 in L'' (11: goes up forever)

pr;(A) + pr;(B) ≤ 1 .



0,1',1'' form a class, transient 0',0'' are closed absorbing classes 0,1',0'' 0''

where
$$\Pi = \prod_{\alpha \geqslant 1} q_{\alpha}$$

$$y_{1} = p_{r_{1}}(abs. at 00')$$
 $y>0$
 $y_{0} = \frac{1}{2}y_{1}' + \frac{1}{2}y_{1}''$ $y_{00'} = 1$
 $y_{1'} = (1-\Pi)y_{0} + \Pi.1$ $y_{00'} = 0$
 $y_{10} = (1-\Pi)y_{0} + 0$ $Py = y$

$$y_0 = \frac{1}{2}(2(1-\Pi)y_0 + \Pi)$$
 $y_0 = y_0(1-\Pi) + \frac{1}{2}\Pi$
 $y_0 = \frac{1}{2} \Rightarrow$
 $P_0(AL') + P_0(AL'') = 1$
Hence the walk is certain to stay on one ladder after some point.

```
Strong Morkov Theorem
pri (returns to i and immediately after the
    first such return and goes j)
= \sum_{n\geqslant 1} pri( # i up ton, X(n)= i, X(n+1)= j)
 ∑ pri (≠i, X(n)=i) pij
- Fiipij
Now consider:
pri (hits i but only finitely often and after
    the last hit goes to k immediately)
= \sum_{n\geq 1} pr: (X(n)=i, X(n)=k, \neq i)
= \( \text{pr}_i \( \text{X(1)} = i \) \( \text{pr}_i \( \text{X(1)} = k \, \neq i \)
+ pri(hits i finitely often) pri(X(1) = k, + i)
    Markov time.
          a r.v. taking values 0,1,2,..., ∞
       15
s.t.
            statement "T = n" is a
Vn the
statement about X(0), X(1), \dots, X(n)
Theorem: Let T be a Morkov time; let A be
a pre-T event. Let B be a post
T event.
```

Θ(i,, iz,..) = (iz, iz,...)

```
So there is some set of pooths
E s.t. B = 0-TE
"T=n and B" = "T=n and \theta^{-1}E"
pr(BIA and X(T)=j) = prj(E)
T=n is a statement about X(0), \dots, X(n)
A and T=n
B and T=n = T=n and O'E
We say A,B are pre and post T events.
pr ( A, X(T)= j, B ) =
Σ pr (A, T=n, X(n)=j, T=n, B).
\sum_{n\geqslant 0} pr(A,T=n, X(n)=j) prj(E) where E=0B =
pr(A, T<∞, X(T)-j)prj(E) -
pr (A, XCT)= j) prj(E).
ez.
pri(exactly m hits on state i).
= F<sub>ij</sub> F<sub>ij</sub><sup>m</sup>"(1-F<sub>ji</sub>)
Df": $ij = E; (no. of hits on j not preceded by a
              hit on i)
        if i persistant
```

·· Śli · Fii · I

where
$$J(h) = 1$$
 if $X(h) = j$ with no previous hits on i = 0 otherwise

If $i \neq j$ and one in the same class then $0 < \widehat{z}_{ij} < \infty$

x>0 xF & x left hand inequality.

zipij + Z xapaj & zj

SO

 $x_i \left(p_{ij} + \sum_{\beta \neq i} p_{i\beta} p_{\beta j} + \cdots \right) \leq x_j$ by induction $x_i \hat{x}_{ij} \leq x_j$ $x_{\alpha} \hat{x}_{\alpha} \leq x_{\alpha}$

Now def zij =
$$\begin{cases} 1 & i = j \\ \hat{z}_{ij} & i \neq j \end{cases}$$

 $(z_{\alpha}, P)_{j} = z_{\alpha\alpha} p_{\alpha j} + \sum_{\alpha \neq \alpha} \hat{z}_{\alpha\alpha} p_{\alpha j}$

=
$$p_{\alpha j}$$
 + $\sum_{\alpha \neq \alpha}$ $\hat{z}_{\alpha \kappa} p_{\alpha j}$ = $\hat{z}_{\alpha j} \leq z_{\alpha j}$

$$50$$
 za. is the minimal x s.t.

Suppose all states belong to one persistant dass

Ratio ergodic theorem

how many hits on k for each arc.

As
$$Y_1 + \cdots + Y_n \rightarrow E(Y)$$
 with probability 1.

$$\frac{Y_{1}+\cdots+Y_{W}}{W}\cdot\frac{W}{W+1}\longrightarrow\frac{M_{1}}{M_{2}}$$

$$E(Y_{1})=z_{3}k=M_{1}/M_{2}<\infty$$

$$\frac{U}{W+1} - O$$

$$\frac{Z}{W+1} \leq \frac{Y_{\omega+1}}{W+1} = \left(\frac{Y_{1}+\cdots+Y_{\omega+1}}{W+1}\right) - \frac{W}{W+1}\left(\frac{Y_{1}+\cdots+Y_{\omega}}{W}\right)$$

$$\frac{H_n(k|i)}{H_n(i|i)} \rightarrow \frac{\mu_k}{\mu_j} \quad a.s.$$

```
We use the Abel sum:
Σ pij s (1-s)
                                 04541
 lim (1-5) \( \sigma_{n\gamma_0} \partial_{ij}^n s^n \) if it converges is called
                               the Abel lim pij"
pij = pri ( X() hits j first a t leten ; X(n)-j)
    = $ pri( x hits j first at t; X(n)=j)
    = \sum_{t=1}^{2} pri( + j, X(t) = j, X(n) = j)
    - fij Pij + ... + fij Pij + fij
P_{ij} = f_{ij}
P_{ij}^{n+1} = (f_{ij} P_{ij}^{n} + \cdots + f_{ij}^{n} P_{ij}^{n}) + f_{ij}^{n+1}
put i = j
eij - fij
Bij_{u_{u_{1}}} = (ti)Bij_{u_{1}} + \cdots + tij_{u_{n}} Bij_{u_{n}} + tij_{u_{n}}
let Pij(s) = \ \ \ Pij \ sn
                                         05541
       Fij (s) = Z fij sn
F; (1) ≤ 1 P; (1) ≤ ∞.
P_{ii}(s) = F_{ii}(s) + F_{ii}(s)P_{ii}(s)
Pii(s) . Fii(s)/(1- Fii(s))
```

Fil (a) = Pil (a) / (1 + Pil(a))

$$\frac{1-F_{ij}(s)}{1-s} = \frac{1-F_{ij}(s)+F_{ij}(s)-F_{ij}(s)}{1-s}$$

$$= \frac{1 - F_{ij}(s)}{1 - s} + \sum_{n \ge 1} f_{ij}^{n} (1 + s + s^{2} + \cdots + s^{n-1})$$

what happens as st 1.

$$\rightarrow \left\{ \begin{array}{ccc} 0 & \text{pst} \\ \infty & \text{t-+} \end{array} \right\} + \sum_{n \geq 1} n f j j^{n} = \sum_{n = 1}^{\infty} n f j j^{n}$$

$$(1-s) Pij(s) \rightarrow Fij(s)/mj = \pi ij$$

So the abel limit alway exists

Trij =
$$\alpha_j^{(c(j))}/m_j$$
 where $\alpha_i^{(c(j))}$ = prob. of being

absorbed from i into the persistant class to which j belongs.

```
How do we compute mj.?
Write  \ \( \mathbb{A} \) = \mildoon_i
We consider persistant j only, since j
transient - xj = 0
We consider one persistant class:
\pi_{ij} = \pi_{ij} \Pi = (\pi_{ij}) (\pi_{ij}) has identical rows.
1= (1,1, ... 1)
P(s)=
5 phen Ossel R(s)
Q(a) = Z prer Ossal
R(s): (1-s) Q(s)
(R(s))_{ij} \rightarrow \pi_{ij} \quad R(s) \rightarrow \Pi \quad as \quad s \rightarrow 1.
sPR(s) = (1-s)sPQ(s) = oR(s)P
    = Ps-R(s)
s PR(s) = R(s) s P
      = R(s) - (1-s)sP
511
Ps R(s) = R(s) - (1-s) s P
       а П - О
Ps R(s) → PN
\therefore P\Pi = \Pi
sR(s)P = R(s) - (1-s)sP take limits
\therefore \Pi P \in \Pi since \sum_{\alpha} p_{\alpha j} \leq \infty
```

```
Thus we have P∏=∏ ПР≤П
   口= 1/入
    (P1') \ = 1'\ gives 1'\ - 1'\
    (1'XP) & 1'X gives
   1:(XP)_j \in 1:X_j : XP \in X.
But the class was persistant so XP = X
   and I must be a multiple of , w.
each mi>0 mP=m
   ui Suppose Zuj <∞
   mp = m Q(s) = m6/(1-5)
               m. R(8) - ms
   take limit: μΠ = μ
   m(1/x)= m (mi/) x= m giving
   Zmj zj = mj
   | li = mj/zmi
corrollary \Sigma \lambda j - 1
   \pi_{ij} = \pi_{ij} = \lambda_{ij} = \frac{1}{m_{ij}}, so if all stakes from a persistant class.
   persistant class
   Zrij = 1. So 17 is a stochastic matrix.
   \sum \frac{1}{m_1} = 1: \sum \frac{1}{\text{mean recurrence}} = 1
   (ii) Suppose ∑nj = ∞
    м. R(s) » su we get
                  ∑ mj λj ≤ mj
pos. finite
    سههاس
```

 Thus in a persistant Zuj < 0 \ \lambda = uj /		boitive
or Σμj = ∞ - λj = 0		Noll
In the positive case positive stochastic ma	I is a stric	
		T
personal process and the second secon		
		Q

Continuous Time Markov Processes

We could define discrete time by $P(\cdot): \mathbb{Z} \xrightarrow{\text{fin}} \Sigma \text{ (semi-group of stocastic modifices)}$

P(o)- I P(m+n) = P(m)P(n) $P_1(P_2P_3) = (P_1P_2)P_3$

The extention to continuous time is $P(\cdot)$: T_{+} \overrightarrow{HOM} Σ

P(0) = 1 P(1) = 1 P(1)

Levy's Containing Lemma

pij (++8) - pij (+) = Z pia (8) paj (+) - pij (+)

< ∑ pix(8) + pii(8) pij(+) - pij(+)

= 1 - pii(8) - pij(+)[1 - pii(8)]

< (1- py(+))(1-pi(4))

It implies pij(·) is uniformly continuous on the whole of the real line.

It is also uniform w.r.t. the second state j.

Positivity Lemma

$$p_{ii}(t) > p_{ii}(\frac{1}{2}) p_{ii}(\frac{1}{2}) > \cdots > \begin{cases} p_{ii}(\frac{1}{2k}) \end{cases}^{2k}$$
fix i and t
chose k large enough so $p_{ii}(\frac{1}{2k}) > \frac{1}{7}$ say then $p_{ii}(t) > 0$ $\forall i \forall t$

 $p(n\delta) = p(\delta)^n$ a δ -skeleton.

Differentiability

$$i = j$$
 $pii(t) > 0$
 $pii(t) = e^{-x(t)}$ $0 \le x(t) < \infty$
 $x(0) = \lim_{t \to 0} x(t) - 0$
 $x(t+s) \le x(t) + x(s)$

Let
$$0<\overline{0}<\overline{1}<\infty$$
 $t=N\overline{0}+s=N\in\mathbb{Z}^{+}$
 $0\leq s<\overline{0}$
 $\frac{x(t)}{t}\leq \frac{Nx(t)}{t}+\frac{x(s)}{t}$
 $\leq (\underline{1}-\underline{s})\cdot x(\underline{t})+\frac{x(s)}{t}$

let
$$v \rightarrow 0$$

 $x(s)/t \rightarrow 0$
 $x(t)/t \leq \lim_{t \to 0} \inf_{t \to 0} x(t)/t$

Let
$$t \rightarrow 0$$

 $\limsup_{t \downarrow 0} \frac{x(t)}{t} \leq \limsup_{t \downarrow 0} \inf \frac{x(t)}{t}$
 $\Rightarrow \lim_{t \downarrow 0} \frac{x(t)}{t} = q$ exists

and from *
$$z(t) \leq qt \quad \forall t$$
.

$$0 \le e^{-\alpha} \le 1$$

$$0 \le 1 - e^{-\alpha} \le \alpha$$

$$0 \le \alpha - 1 + \alpha^{-\alpha} \le \alpha^{2}/2$$

$$\alpha(1 - \frac{\alpha}{2}) \le 1 - e^{-\alpha} \le \alpha$$

$$\frac{x(t)}{t}(1 - x(t)) \le \frac{1 - p_{ii}(t)}{t} \le \frac{x(t)}{t} \rightarrow q$$

$$\vdots \quad 1 - p_{ii}(t) \rightarrow q_{i} < \infty \quad \text{as} \quad 1 \rightarrow 0$$

By Levy
$$|p_{ij}(+) - p_{ij}(s)| \le 1 - e^{-q_{i}|t-s|}$$

We can have
$$q_i = \infty$$
, but in few practical examples.

 $p_{ij}'(0)$ exists = $-q_i$ = q_{ii} anticipating $p_{ij}'(0)$ = q_{ij} which exists, is never infinate. (very hard to prove).

Z pia(t) < 1- pii(t)

∑ qia € q; ∀ N

 $\sum_{n\neq i} q_{in} \leq q_i$

< can happen

finite < 00 "

Further conditions:

A) $q_i < \infty$ $\forall i$ "stable" $p_{ij}(+) = \delta_{ij} + q_{ij} \cdot + o(+)$

B) $\sum_{\alpha\neq i} q_{i\alpha} = q_i$ ie. Q has zero row sums called "conservative"

I flow of probability from 1 to a = flow of probability out of 1.

Consider 1 = 0,1,2,...

i	j	9.1	a brth-deat		
_0	1	KDO			
i > 1	1+1	K+Xi R Mi	$\lambda_{i}\mu > 0$		
	i - 1	R Mi			
		,			
		'			

If we confine discussion to A), B).
then a system with this Q matrix exists.
C) makes it unique.

an epidemic process

m= no. of suseptibles

n= no. actively infected

i = (m,n)

i	i	9:
(m,0)	absorbing	state
r>1 (m,n)	n→ n-1 m → m	В'n
n≫1 (m,n) m≥1	m → m+1 n → n+1	BMA

stays within D

g states there are only finitely many states.

Finitely many states

Existence

Let P(+) = exp(Q+)

We then get all the proper properties for PCt)

P(U)P(V) = P(U+V) etc.

P(+) is stochastic since:

 $P(+)1 = (I + +Q + \frac{1^2}{2}Q^2 + \cdots)1$

= II. 1 unity row sums.

Consider cI+Q. Make c larger thom

any of the qi so cI+Q is non-negative.

P(+) = exp { -c+I + + (c+ Q)}

=
$$e^{-ct}$$
 exp $\{ +(cI+Q) \} > 0$
... $p_{ij}(t) > 0$

Finite states:

chose
$$z>0$$
 st. $tq_i \leq 1$ $\forall i$ R

$$P(+) = \exp \{-t/\tau I + t/\tau (I+cQ)\}$$

$$= \sum_{n\geq 0} e^{-t/\tau} (t/\tau)^n R^n$$
much better than $n!$

$$P(+) = \sum_{n>0} t^n Q^n$$

C) Qy = y has no bounded solution except y = 0.

Finitely many states.

If
$$y\neq 0$$
 $y_j>0$
 $(1+q_j) \leq q_j \quad \# \quad \therefore y=0$

pij(n8) = (pij(8)) ij
8-skeleton of the process
Q, qij. No matter how small we make 8
con we make the continuous problem discrete.

(A,B) - Q matrix.

Residence times

pr: (stoys in i up to time t)

= $\lim_{n\to\infty} pri(in i at each of the times <math>\frac{mt}{2n})$

where m. 0,1,2,..., 27.

 $= \lim_{n\to\infty} \left\{ p_{ii}\left(\frac{1}{2^n}\right) \right\}^{2^n+1}$

 $\lim_{n \to \infty} \left\{ 1 - \frac{1}{2^n} \frac{(1 - p_{ii}(\frac{1}{2^n}))}{\frac{1}{2^n}} \right\}^{2^n + 1}$

apply $(1-\frac{x_m}{m})^m \rightarrow e^{-x}$ if $x_m \rightarrow x$

= e-9i+

p (Tist) = 1- e-9it

p (T; > +) . e-qit

Let Z be Q with zeros on the main diagonal let S be: if $q_i = 0$ sij = 8ij $q_i > 0$ sii = 0 sij = q_{ij}/q_i

5 is stochastic.

 $\sum_{n\geq 1} T_{j_n} < \infty$ may occur ie. Infinodely many steps in finite time. We say the process has run out of instructions.

```
Let g_{ij}^{n}(t) = pr_{i}(jumps to be in state j at time t)
go; (+) = Sije-9i+
gm+1 ; (+) = [ + e-910 g/du = 910 gm (+-0)
Gm+1 = G°ZGm where
                         the convolution is
                   taken to be implied
in fact:
G - G Z G
use induction on n. true for n=0
G^{m+(n+1)+1} = G^{(m+n+1)+1} = G^{\circ} Z G^{m+n+1}
GZ(GZG)
matrix multiplication and convolution are
associative so this is:
-(G°ZG')ZG^ - G^*'ZG^
Let fij(t) = pri( n jumps to be in state j at time t)
- Z g (+)
F" = G" + G' + ... + G"
G"(0+v) = = = G(0)G(v)
F<sup>n</sup> is f and bounded above,
F → 4
F^(0+1) - \(\sum_{\text{23.5}} \sum_{\text{C3.5}} \G^{\text{C0}} \G^{\text{S}}(\text{V})
```


$$F^{m+1} = G^{\circ} + G^{\circ}ZF^{m}$$

$$= F^{\circ} + F^{\circ}ZF^{m}$$

· Fo + & Z F° consolution implied throughout.

```
Z f (+) ≤ 1
                let n-∞
                  why < 1 ?
Z $ij(+) ≤ 1
Dij(1) . Im pri ( at most to X(1) = j )
= pr; (finitely many jumps to X(t) = j)

Z = Dij(t) = pr; (finitely many jumps to time t)
                 the process has
         then
    instruction.
If we do not run out
                                  of
                                        instructions,
文 車;(H) = 1
D is stochastic, and so a Markov
process.
1- Ξ $ ij(t) = Δi(t) - prob. of explosion starting
                in statei.
Recall condition (c). I no bounded solution
to Qy=y some y=0
4 = F° + F°z4
1- Δ; (+) - = e-qi+ = [-qi+ = [-qi+ α]
: Δ; (+) - Σ ( e-qiu qi Δ (+ - u) du
Def: \Delta'(s) = \int_{a}^{\infty} e^{-st} \Delta_{i}(t) du
\therefore \Delta_i^*(s) = \sum_{\alpha \neq i} q_{i\alpha} \frac{1}{q_{i+s}} \Delta_{\alpha}^*(s)
```

$$(-q_{i} + s)\Delta_{i}^{*}(s) = \sum_{x \neq i} q_{ix} \Delta_{x}^{*}(s) \qquad \forall i$$

$$s\Delta_{i}^{*}(s) = (Q\Delta_{i}^{*}(s));$$

$$s = 1 \quad \text{if} \quad \forall_{i} \cdot \Delta_{i}^{*}(1) \quad \text{then} \quad Qy = y$$

$$y \quad \text{will} \quad \text{be} \quad \text{bounded}.$$

$$\int_{s}^{s} e^{-t} \Delta_{i}(t) dt = 0 \quad \forall i$$

$$\Delta_{i}^{*}(t) = 0 \quad \sum_{j=1}^{s} d_{j}(t) = 1$$

$$\Delta_{i}^{*}(t) = 1 - \sum_{j=1}^{s} d_{j}(t) \quad \Delta_{i}^{*}(t) = 1$$

$$\sum_{j=1}^{s} d_{j}(t) = \sum_{j=1}^{s} d_{j}(t) \quad \Delta_{i}^{*}(t) = 0$$

$$\Delta_{i}^{*}(t) = 1 - e^{-q_{i}t} \quad d_{i}^{*}(t) = 0$$

$$\Delta_{i}^{*}(t) = 1 \quad \forall i, t \quad (by \quad convention)$$

$$\Delta_{i}^{*}(s) = \sum_{j=1}^{s} q_{ij} \frac{1}{q_{i+s}} \Delta_{i}^{*}(s)$$

$$\int_{s}^{s} e^{-st} 1 dt = \frac{1}{s} \quad \Delta_{i}^{*}(s) = \frac{1}{s}$$

 $\exists y \neq 0 \quad \text{bounded} \quad \text{s.t.} \quad Qy = y$ $(q_i + 1)y_i = \sum_{\alpha \neq i} q_{i\alpha}y_{\alpha}, \quad y_i = \sum_{\alpha \neq i} q_{i\alpha} \frac{1}{q_{i+1}}y_{\alpha}$ $\leq \sum_{\alpha \neq i} q_{i\alpha} \frac{1}{q_{i+1}} 1_{\alpha}$ $y_i \leq \sum_{\alpha \neq i} q_{i\alpha} \frac{1}{q_{i+1}} \Delta^{-1}(1) = \Delta^{\circ}_{i}(1)$

repeating $y_i \in \Delta^*_i(1)$

$$0 \le \gamma_i \le \Delta_i^n(1)$$
 $\forall n n \to \infty$
 $1 \ge \Delta^n \quad \downarrow \quad \Delta$
 $0 \le \gamma \le \Delta_i^n(1) = \int_0^\infty e^{-t} \Delta_i(t) dt$

For some i and some
$$t$$
, $\Delta_i(t) > 0$. i.e. $\sum_{j} \Phi_{ij}(t) < 1$

: Starting in j pr (so many steps) > 0.

$$P(0) = I \quad P(1) > 0$$

$$P(u+v) = P(u)P(v)$$

$$P(+) = QP(+)$$

$$1 \ge \sum_{j} p_{ij}(+) \ge \sum_{j} \Phi_{ij}(+)$$

: (c)
$$\Rightarrow$$
 pij(t) · $\Phi_{ij}(t)$ ie. unique solution

Birth and Death process

$$Qy = y$$
 -f(1)y, + f(1)yz = y, etc.
 $y_{n+1} = \frac{1 + f(n)}{f(n)} y_n$

$$= y_{n} \prod_{1 \le r \le n} \left(1 + \frac{1}{f(r)} \right) \left(1 + \frac{1}{f(r)} \right) \cdots \left(1 + \frac{1}{f(r-1)} \right)$$

(c) is satisfied
$$\Leftrightarrow$$
 yn is divergent ie. If $\Sigma \frac{1}{2} = \infty$

Poisson Process

$$Q = \begin{pmatrix} -\lambda & \lambda & & 0 \\ & -\lambda & \lambda & & \\ & & -\lambda & \lambda & \\ & & & & \ddots & \\ & & & & & & \\ \end{pmatrix}$$

$$\Sigma \stackrel{1}{\times} = \infty$$
 so condition (C) is sofisfied.

$$P_{0j}(t) = P_{i,j+i}(t)$$

$$P_{00}(t) = e^{-\lambda t}$$

$$P_{0n+i}(t) = \int_{0}^{t} \lambda P_{0n}(t-u) e^{-\lambda u} du$$

$$V = t - u$$

$$= \int_{0}^{t} \lambda P_{0n}(u) e^{-\lambda t} e^{\lambda v} dv$$

$$p_{oo}(+) = e^{-\lambda t}$$
 $e^{\lambda t} p_{oo}(t) = 1$
 $p_{oi}(+) = \lambda t e^{-\lambda t}$
 $e^{\lambda t} p_{oi}(t) = \lambda t$
 $e^{\lambda t} p_{oi}(t) =$

$$Q = \begin{pmatrix} \lambda_1 & -\lambda_1 & & & & & \\ & \lambda_2 & -\lambda_2 & & & & \\ & & \lambda_3 & -\lambda_3 & & \\ & O & & & & & \end{pmatrix}$$

$$\lambda_n = n\lambda$$
 $\sum \frac{1}{\lambda_n} = \frac{1}{\lambda} \sum \frac{1}{n} = \infty$: (c).

let X(t) be the r.v.: state at time t.

$$\phi(s,t) = E(s^{x})$$
 be the generating function
$$= \sum_{n \geq 0} s^{n} pr_{i}(X(t) = n)$$

$$\phi(s,+) = e^{-\lambda +} s + \int_0^+ \phi(s,+-u)^2 e^{-\lambda u} \lambda du$$

$$e^{\lambda +} \varphi = 5 + \int_{0}^{+} \varphi^{2} e^{\lambda v} \lambda dv$$
 $e^{\lambda +} (\lambda \varphi + \frac{\partial \varphi}{\partial r}) = \varphi^{2} e^{\lambda +} \lambda$

$$\left(\frac{1}{\Phi-1} - \frac{1}{\Phi}\right) d\Phi = \lambda dt$$

$$\log\left(\frac{\phi-1}{\phi}\right) = \lambda + c(s) \quad \text{and} \quad \phi(s,0) = 6$$

so
$$\log(\frac{\phi-1}{\phi}) = \lambda + \log(\frac{s-1}{s})$$

$$\phi(s,t) = \frac{se^{-\lambda t}}{1-s(1-e^{-\lambda t})}$$

= se<sup>-
$$\lambda$$
+</sup> $\sum_{n\geqslant 0}$ sⁿ(1-e^{- λ +})ⁿ

$$p_{in}(+)$$
 is the loseff of $s^n = e^{-\lambda t}(1 - e^{-\lambda t})^{n-1}$

```
pmin(+): 1/(0) = M
    ie. a population starting with
                                                                naviduals.
    φm(s,+) = {φ(s,+)}<sup>m</sup>
    = sme-mx+/[ 1-s(1-e-x+)]"
    P_{m,n}(t) = e^{-\lambda mt} \frac{m(m+1)\cdots(n-1)}{(n-m)!} (1-e^{-\lambda t})^n
    Death process
Q = \begin{pmatrix} 0 & 0 & 0 \\ M & -(\lambda+\mu) & \lambda \\ 2\mu & -7(\lambda+\mu) & 2\lambda \end{pmatrix}
    Qy = y : 0 = y = 1
    0 - (x+m)y, + xy2 = y,
     so we must have y_1 \neq 0 say y_1 = 1
   \mu y_{j-1} - (\lambda + \mu) y_j + \lambda y_{j+1} = y_j
  \lambda(y_{j+1}-y_j) = \mu(y_j-y_{j-1}) + y_j
    y_0 = 0 y_1 = 1 y_2 = \frac{1 + \lambda + \mu}{\lambda}
    (\lambda+\mu)y_{j+1} = \lambda y_j + \mu y_j - \mu y_{j-1} + y_j
                      > (x+m)yj + yj
     y_{j+1} > (1 + \frac{1}{(x+\mu)_j})y_j
```

$$y_{j+1} > \frac{1}{n_{\infty}} \left(1 + \frac{1}{n_{\infty}(\lambda + \mu_{\infty})} \right)$$

$$z > \frac{1}{n_{\infty}} \left(1 + \frac{1}{n_{\infty}(\lambda + \mu_{\infty})} \right) = \infty$$

so the birth-death process is regular.

$$0 \le s \le 1 \quad |E_{SX}| = |\Phi(s_{1} + \lambda_{\infty})| = e^{-(\lambda + \mu_{\infty})} + e^{-$$

Epidemics suseptibles. infectious removables (had disease, died, quareenteened) dx at = - Bxy dy at = Bxy - by p= 8/p changing time scale. y= xy - ρy intrally N suseptibles, I infectious: 4= $x+y+p\ln(\frac{N}{2})$ has demostive zero. before after N-E E+I 4 = N+3 + pln(N) = N+3 4 = N-E + pln (NE)

