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In recent years, Sparse Principal Component Analysis has emerged
as an extremely popular dimension reduction technique for high-
dimensional data. The theoretical challenge, in the simplest case, is
to estimate the leading eigenvector of a population covariance matrix
under the assumption that this eigenvector is sparse. An impressive
range of estimators have been proposed; some of these are fast to
compute, while others are known to achieve the minimax optimal
rate over certain Gaussian or subgaussian classes. In this paper we
show that, under a widely-believed assumption from computational
complexity theory, there is a fundamental trade-off between statisti-
cal and computational performance in this problem. More precisely,
working with new, larger classes satisfying a Restricted Covariance
Concentration condition, we show that there is an effective sample
size regime in which no randomised polynomial time algorithm can
achieve the minimax optimal rate. We also study the theoretical per-
formance of a (polynomial time) variant of the well-known semidef-
inite relaxation estimator, revealing a subtle interplay between sta-
tistical and computational efficiency.

1. Introduction. Principal Component Analysis (PCA), which involves
projecting a sample of multivariate data onto the space spanned by the lead-
ing eigenvectors of the sample covariance matrix, is one of the oldest and
most widely-used dimension reduction devices in Statistics. It has proved to
be particularly effective when the dimension of the data is relatively small
by comparison with the sample size. However, the work of Johnstone and Lu
(2009) and Paul (2007) shows that PCA breaks down in the high-dimensional
settings that are frequently encountered in many diverse modern application
areas. For instance, consider the spiked covariance model where X1, . . . ,Xn

are independent Np(0,Σ) random vectors, with Σ = Ip + θv1v
⊤
1 for some

θ > 0 and an arbitrary unit vector v1 ∈ R
p. In this case, v1 is the lead-

ing eigenvector (principal component) of Σ, and the classical PCA estimate
would be v̂1, a unit-length leading eigenvector of the sample covariance ma-
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trix Σ̂ := n−1
∑n

i=1XiX
⊤
i . In the high-dimensional setting where p = pn is

such that p/n→ c ∈ (0, 1), Paul (2007) showed that

|v̂⊤1 v1|
a.s.→
{ √

1−c/θ2

1+c/θ if θ >
√
c

0 if θ ≤ √
c.

In other words, v̂1 is inconsistent as an estimator of v1 in this asymptotic
regime. This phenomenon is related to the so-called ‘BBP’ transition in
random matrix theory (Baik, Ben Arous and Péché, 2005).

Sparse Principal Component Analysis was designed to remedy this incon-
sistency and to give additional interpretability to the projected data. In the
simplest case, it is assumed that the leading eigenvector v1 of the population
covariance matrix Σ belongs to the k-sparse unit Euclidean sphere in R

p,
given by

(1) B0(k) :=

{

u = (u1, . . . , up)
⊤ ∈ R

p :

p
∑

j=1

1{uj 6=0} ≤ k, ‖u‖2 = 1

}

.

A remarkable number of recent papers have proposed estimators of v1 in
this setting, including Jolliffe, Trendafilov and Uddin (2003), Zou, Hastie
and Tibshirani (2006), d’Aspremont et al. (2007), Johnstone and Lu (2009),
Witten, Tibshirani and Hastie (2009), Journée et al. (2010), Birnbaum et al.
(2013), Cai, Ma and Wu (2013), Ma (2013), Shen, Shen and Marron (2013)
and Vu and Lei (2013).

Sparse PCA methods have gained high popularity in many diverse applied
fields where high-dimensional datasets are routinely handled. These include
computer vision for online visual tracking (Wang, Lu and Yang, 2013) and
pattern recognition (Naikal, Yang and Sastry, 2011), signal processing for
image compression (Majumdar, 2009) and Electrocardiography feature ex-
traction (Johnstone and Lu, 2009), and biomedical research for gene expres-
sion analysis (Zou, Hastie and Tibshirani, 2006; Chun and Sündüz, 2009;
Parkhomenko, Tritchler and Beyene, 2009; Chan and Hall, 2010), RNA-seq
classification (Tan, Petersen and Witten, 2014) and metabolomics studies
(Genevera and Maletić-Savatić, 2011). In these applications, Sparse PCA is
employed to identify a small number of interpretable directions that rep-
resent the data succinctly, typically as the first stage of a more involved
procedure such as classification, clustering or regression.

The success of the ultimate inferential methods in the types of applica-
tion described above depends critically on how well the particular Sparse
PCA technique involved identifies the relevant meaningful directions in the
underlying population. It therefore becomes important to understand the
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ways in which our ability to estimate these directions from data depends on
the characteristics of the problem, including the sample size, dimensionality,
sparsity level and signal-to-noise ratio. Such results form a key component
of any theoretical analysis of an inference problem in which Sparse PCA is
employed as a first step.

In terms of the theoretical properties of existing methods for Sparse PCA,
Ma (2013) was able to show that his estimator attains the minimax rate of
convergence over a certain Gaussian class of distributions, provided that k
is treated as a fixed constant. Both Cai, Ma and Wu (2013) and Vu and
Lei (2013) also study minimax properties, but treat k as a parameter of the
problem that may vary with the sample size n. In particular, for a certain
class Pp(n, k) of subgaussian distributions and in a particular asymptotic
regime, Vu and Lei (2013) show1 that

inf
v̂

sup
P∈Pp(n,k)

EP {1− (v⊤1 v̂)
2} ≍ k log p

n
,

where the infimum is taken over all estimators v̂; see also Birnbaum et al.
(2013). Moreover, they show that the minimax rate is attained by a leading
k-sparse eigenvector of Σ̂, given by

(2) v̂kmax ∈ argmax
u∈B0(k)

u⊤Σ̂u.

The papers cited above would appear to settle the question of sparse
principal component estimation (at least in a subgaussian setting) from the
perspective of statistical theory. However, there remains an unsettling fea-
ture, namely that neither the estimator of Cai, Ma and Wu (2013), nor that
of Vu and Lei (2013), is computable in polynomial time2. For instance, com-
puting the estimator (2) is an NP-hard problem, and the naive algorithm
that searches through all

(

p
k

)

of the k× k principal submatrices of Σ̂ quickly
becomes infeasible for even moderately large p and k.

Given that Sparse PCA methods are typically applied to massive high-
dimensional datasets, it is crucial to understand the rates that can be
achieved using only computationally efficient procedures. Specifically, in this
paper, we address the question of whether it is possible to find an estima-
tor of v1 that is computable in (randomised) polynomial time, and that

1Here and below, an ≍ bn means 0 < lim infn→∞ |an/bn| ≤ lim supn→∞ |an/bn| <∞.
2Since formal definitions of such notions from computational complexity theory may be

unfamiliar to many statisticians, and to keep the paper as self-contained as possible, we
provide a brief introduction to this topic in Section 2 of the online supplementary material
Wang, Berthet and Samworth (2015).
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attains the minimax optimal rate of convergence when the sparsity of v1
is allowed to vary with the sample size. Some progress in a related di-
rection was made by Berthet and Rigollet (2013a,b), who considered the
problem of testing the null hypothesis H0 : Σ = Ip against the alternative
H1 : v⊤Σv ≥ 1 + θ for some v ∈ B0(k) and θ > 0. Of interest here is the
minimal level θ = θn,p,k that ensures small asymptotic testing error. Under
a hypothesis on the computational intractability of a certain well-known
problem from theoretical computer science (the ‘Planted Clique’ detection
problem), Berthet and Rigollet showed that for certain classes of distri-
butions, there is a gap between the minimal θ-level permitting successful
detection with a randomised polynomial time test, and the corresponding
θ-level when arbitrary tests are allowed.

The particular classes of distributions considered in Berthet and Rigollet
(2013a,b) were highly tailored to the testing problem, and do not provide suf-
ficient structure to study principal component estimation. The thesis of this
paper, however, is that from the point of view of both theory and applica-
tions, it is the estimation of sparse principal components, rather than testing
for the existence of a distinguished direction, that is the more natural and
fundamental (as well as more challenging) problem. Indeed, we observe sub-
tle phase transition phenomena that are absent from the hypothesis testing
problem; see Section 4.4 for further details. It is worth noting that different
results for statistical and computational trade-offs for estimation and testing
were also observed in the context of k-SAT formulas in Feldman, Perkins
and Vempala (2015) and Berthet (2015) respectively.

Our first contribution, in Section 2, is to introduce a new Restricted Co-
variance Concentration (RCC) condition that underpins the classes of distri-
butions Pp(n, k, θ) over which we perform the statistical and computational
analyses (see (4) for a precise definition). The RCC condition is satisfied by
subgaussian distributions, and moreover has the advantage of being more
robust to certain mixture contaminations that turn out to be of key im-
portance in the statistical analysis under the computational constraint. We
show that subject to mild restrictions on the parameter values,

inf
v̂

sup
P∈Pp(n,k,θ)

EPL(v̂, v1) ≍
√

k log p

nθ2
,

where L(u, v) := {1 − (u⊤v)2}1/2, and where no restrictions are placed on
the class of estimators v̂. By contrast, in Section 3, we show that a variant
v̂SDP of the semidefinite relaxation estimator of d’Aspremont et al. (2007)
and Bach, Ahipaşaoǧlu and d’Aspremont (2010), which is computable in
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polynomial time, satisfies

sup
P∈Pp(n,k,θ)

EPL(v̂
SDP, v1) ≤ (16

√
2 + 2)

√

k2 log p

nθ2
.

Our main result, in Section 4, is that, under a much weaker Planted Clique
hypothesis than that in Berthet and Rigollet (2013a,b), for any α ∈ (0, 1),
there exists a moderate effective sample size asymptotic regime in which
every sequence (v̂(n)) of randomised polynomial time estimators satisfies

√

nθ2

k1+α log p
sup

P∈Pp(n,k,θ)
EPL(v̂

(n), v1) → ∞.

This result shows that there is a fundamental trade-off between statistical
and computational efficiency in the estimation of sparse principal compo-
nents, and that there is in general no consistent sequence of randomised
polynomial time estimators in this regime. Interestingly, in a high effective
sample size regime, where even randomised polynomial time estimators can
be consistent, we are able to show in Theorem 7 that under additional dis-
tributional assumptions, a modified (but still polynomial time) version of
v̂SDP attains the minimax optimal rate. Thus, the trade-off disappears for a
sufficiently high effective sample size, at least over a subset of the parameter
space.

Statistical and computational trade-offs have also recently been studied
in the context of convex relaxation algorithms (Chandrasekaran and Jordan,
2013), submatrix signal detection (Ma and Wu, 2015; Chen and Xu, 2014),
sparse linear regression (Zhang, Wainwright and Jordan, 2014), community
detection (Hajek, Wu and Xu, 2014) and Sparse Canonical Correlation Anal-
ysis (Gao, Ma and Zhou, 2014). Given the importance of computationally
feasible algorithms with good statistical performance in today’s era of Big
Data, it seems clear that understanding the extent of this phenomenon in
different settings will represent a key challenge for theoreticians in the com-
ing years.

Proofs of our main results are given in the Appendix, while several ancil-
lary results are deferred to the online supplementary material Wang, Berthet
and Samworth (2015). We end this section by introducing some notation
used throughout the paper. For a vector u = (u1, . . . , uM )⊤ ∈ R

M , a matrix

A = (Aij) ∈ R
M×N and for q ∈ [1,∞), we write ‖u‖q :=

(
∑M

i=1 |ui|q
)1/q

and

‖A‖q :=
(
∑M

i=1

∑N
j=1 |Aij |q

)1/q
for their (entrywise) ℓq-norms. We also write

‖u‖0 :=
∑M

i=1 1{ui 6=0}, supp(u) := {i : ui 6= 0}, ‖A‖0 :=
∑M

i=1

∑N
j=1 1{Aij 6=0}
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6 T. WANG, Q. BERTHET AND R. J. SAMWORTH

and supp(A) := {(i, j) : Aij 6= 0}. For S ⊆ {1, . . . ,M} and T ⊆ {1, . . . , N},
we write uS := (ui : i ∈ S)⊤ and write MS,T for the |S| × |T | submatrix
of M obtained by extracting the rows and columns with indices in S and
T respectively. For positive sequences (an) and (bn), we write an ≪ bn to
mean an/bn → 0.

2. Restricted Covariance Concentration and minimax rate of
estimation. Let p ≥ 2 and let P denote the class of probability dis-
tributions P on R

p with
∫

Rp x dP (x) = 0 and such that the entries of
Σ(P ) :=

∫

Rp xx
⊤ dP (x) are finite. For P ∈ P, write λ1(P ), . . . , λp(P ) for the

eigenvalues of Σ(P ), arranged in decreasing order. When λ1(P )−λ2(P ) > 0,
the first principal component v1(P ), i.e. a unit-length eigenvector of Σ cor-
responding to the eigenvalue λ1(P ), is well-defined up to sign. In some
places below, and where it is clear from the context, we suppress the de-
pendence of these quantities on P , or write the eigenvalues and eigenvectors
as λ1(Σ), . . . , λp(Σ) and v1(Σ), . . . , vp(Σ) respectively. Let X1, . . . ,Xn be in-
dependent and identically distributed random vectors with distribution P ,
and form the n × p matrix X := (X1, . . . ,Xn)

⊤. An estimator of v1 is a
measurable function from R

n×p to R
p, and we write Vn,p for the class of all

such estimators.
Given unit vectors u, v ∈ R

p, let Θ(u, v) := cos−1(|u⊤v|) denote the acute
angle between u and v, and define the loss function

L(u, v) := sinΘ(u, v) = {1− (u⊤v)2}1/2 =
1√
2
‖uu⊤ − vv⊤‖2.

Note that L(·, ·) is invariant to sign changes of either of its arguments.
The directional variance of P along a unit vector u ∈ R

p is defined to
be V (u) := E{(u⊤X1)

2} = u⊤Σu. Its empirical counterpart is V̂ (u) :=
n−1

∑n
i=1(u

⊤Xi)
2 = u⊤Σ̂u, where Σ̂ := n−1

∑n
i=1XiX

⊤
i denotes the sample

covariance matrix.
Recall the definition of the k-sparse unit ball B0(k) from (1). Given

ℓ ∈ {1, . . . , p} and C ∈ (0,∞), we say P satisfies a Restricted Covariance
Concentration (RCC) condition with parameters p, n, ℓ and C, and write
P ∈ RCCp(n, ℓ, C), if

(3) P

{

sup
u∈B0(ℓ)

|V̂ (u)− V (u)| ≥ Cmax

(

√

ℓ log(p/δ)

n
,
ℓ log(p/δ)

n

)}

≤ δ

for all δ > 0. It is also convenient to define

RCCp(ℓ, C) :=
∞
⋂

n=1

RCCp(n, ℓ, C) and RCCp(C) :=

p
⋂

ℓ=1

RCCp(ℓ, C).
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The RCC conditions amount to uniform Bernstein-type concentration prop-
erties of the directional variance around its expectation along all sparse di-
rections. This condition turns out to be particularly convenient in the study
of convergence rates in Sparse PCA, and moreover, as we show in Propo-
sition 1 below, subgaussian distributions satisfy an RCC condition for all
sample sizes n and all sparsity levels ℓ. Recall that a mean-zero distribution
Q on R

p is subgaussian with parameter3 σ2 ∈ (0,∞), written

Q ∈ subgaussianp(σ
2),

if whenever Y ∼ Q, we have E(eu
⊤Y ) ≤ eσ

2‖u‖2/2 for all u ∈ R
p.

Proposition 1. (i) For every σ > 0, we have

subgaussianp(σ
2) ⊆ RCCp

(

16σ2
(

1 +
9

log p

)

)

.

(ii) In the special case where P = Np(0,Σ), we have P ∈ RCCp

(

8λ1(P )(1+
9

log p)
)

.

Our convergence rate results for sparse principal component estimation
will be proved over the following classes of distributions. For θ > 0, let

Pp(n, k, θ) :=
{

P ∈ RCCp(n, 2, 1) ∩ RCCp(n, 2k, 1) :

v1(P ) ∈ B0(k), λ1(P )− λ2(P ) ≥ θ
}

.(4)

Observe that RCC classes have the scaling property that if the distribution
of a random vector Y belongs to RCCp(n, ℓ, C) and if r > 0, then the
distribution of rY belongs to RCCp(n, ℓ, r

2C). It is therefore convenient to
fix C = 1 in both RCC classes in (4), so that θ becomes a measure of the
signal-to-noise level.

For a symmetric A ∈ R
p×p, define v̂kmax(A) := sargmaxu∈B0(k) u

⊤Au to
be the k-sparse maximum eigenvector of A, where sargmax denotes the
smallest element of the argmax in the lexicographic ordering. (This choice
ensures that v̂kmax(A) is a measurable function of A.) Theorem 2 below gives
a finite-sample minimax upper bound for estimating v1(P ) over Pp(n, k, θ).
For similar bounds over Gaussian or subgaussian classes, see Cai, Ma and
Wu (2013) and Vu and Lei (2013), who consider the more general problem
of principal subspace estimation. As well as working with a larger class of
distributions, our different proof techniques facilitate an explicit constant.

3Note that some authors say that distributions satisfying this condition are subgaussian
with parameter σ, rather than σ2.
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Theorem 2. For 2k log p ≤ n, the k-sparse empirical maximum eigen-
vector, v̂kmax(Σ̂), satisfies

sup
P∈Pp(n,k,θ)

EPL
(

v̂kmax(Σ̂), v1(P )
)

≤ 2
√
2

(

1 +
1

log p

)

√

k log p

nθ2
≤ 7

√

k log p

nθ2
.

A matching minimax lower bound of the same order in all parameters
k, p, n and θ is given below. The proof techniques are adapted from Vu and
Lei (2013).

Theorem 3. Suppose that 7 ≤ k ≤ p1/2 and 0 < θ ≤ 1
16(1+ 9

log p
)
. Then

inf
v̂∈Vn,p

sup
P∈Pp(n,k,θ)

EPL
(

v̂, v1(P )
)

≥ min

{

1

1660

√

k log p

nθ2
,

5

18
√
3

}

.

We remark that the conditions in the statement of Theorem 3 can be
strengthened or weakened, with a corresponding weakening or strengthening
of the constants in the bound. For instance, a bound of the same order in
k, p, n and θ could be obtained assuming only that k ≤ p1−δ for some δ > 0.
The upper bound on θ is also not particularly restrictive. For example, if
P = Np(0, σ

2Ip + θe1e
⊤
1 ), where e1 is the first standard basis vector in

R
p, then it can be shown that the condition P ∈ Pp(n, k, θ) requires that

θ ≤ 1− σ2.

3. Computationally efficient estimation. As was mentioned in the
introduction, the trouble with the estimator v̂kmax(Σ̂) of Section 2, as well as
the estimator of Cai, Ma and Wu (2013), is that there are no known poly-
nomial time algorithms for their computation. In this section, we therefore
study the (polynomial time) semidefinite relaxation estimator v̂SDP defined
by the Algorithm 1 below. This estimator is a variant of one proposed by
d’Aspremont et al. (2007), whose support recovery properties were studied
for a particular class of Gaussian distributions and a known sparsity level
by Amini and Wainwright (2009).

To motivate the main step (Step 2) of Algorithm 1, it is convenient to let
M denote the class of p× p non-negative definite real, symmetric matrices,
and let M1 := {M ∈ M : tr(M) = 1}. Let M1,1(k

2) := {M ∈ M1 :
rank(M) = 1, ‖M‖0 = k2} and observe that

max
u∈B0(k)

u⊤Σ̂u = max
u∈B0(k)

tr(Σ̂uu⊤) = max
M∈M1,1(k2)

tr(Σ̂M).

In the final expression, the rank and sparsity constraints are non-convex. We
therefore adopt the standard semidefinite relaxation approach of dropping
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the rank constraint and replacing the sparsity (ℓ0) constraint with an ℓ1
penalty to obtain the convex optimisation problem

(5) max
M∈M1

{

tr(Σ̂M)− λ‖M‖1
}

Algorithm 1: Pseudo-code for computing the semidefinite relaxation
estimator v̂SDP

Input: X = (X1, . . . , Xn)
⊤ ∈ R

n×p, λ > 0, ǫ > 0
begin

Step 1: Set Σ̂← n−1X⊤X.

Step 2: For f(M) := tr(Σ̂M)− λ‖M‖1, let M̂ ǫ be an ǫ-maximiser of f inM1.
In other words, M̂ ǫ satisfies f(M̂ ǫ) ≥ maxM∈M1

f(M) − ǫ.

Step 3: Let v̂SDP := v̂SDP
λ,ǫ ∈ argmaxu:‖u‖2=1 u

⊤M̂ ǫu.

end

Output: v̂SDP

We now discuss the complexity of computing v̂SDP in detail. One possible
way of implementing Step 2 is to use a generic interior-point method. How-
ever, as shown in Nesterov (2005), Nemirovski (2004) and Bach, Ahipaşaoǧlu
and d’Aspremont (2010), certain first-order algorithms (i.e. methods requir-
ing O(1/ǫ) steps to find a feasible point achieving an ǫ-approximation of the
optimal objective function value) can significantly outperform such generic
interior-point solvers. The key idea in both Nesterov (2005) and Nemirovski
(2004) is that the optimisation problem in Step 2 can be rewritten in a
saddlepoint formulation:

max
M∈M1

tr(Σ̂M)− λ‖M‖1 = max
M∈M1

min
U∈U

tr
(

(Σ̂ + U)M
)

,

where U := {U ∈ R
p×p : U⊤ = U, ‖U‖∞ ≤ λ}. The fact that tr

(

(Σ̂ +
U)M

)

is linear in both M and U makes the problem amenable to proximal
methods. In Algorithm 2 below, we state a possible implementation of Step
2 of Algorithm 1, derived from the ‘basic implementation’ in Nemirovski
(2004). In the algorithm, the ‖ · ‖2-norm projection ΠU (A) of a symmetric
matrix A = (Aij) ∈ R

p×p onto U is given by

(

ΠU (A)
)

ij
:= sign(Aij)min(|Aij |, λ).

For the projection ΠM1(A), first decompose A =: PDP⊤ for some or-
thogonal P and diagonal D = diag(d), where d = (d1, . . . , dp)

⊤ ∈ R
p.

Now let ΠW(d) be the projection image of d on the unit (p − 1)-simplex
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10 T. WANG, Q. BERTHET AND R. J. SAMWORTH

W := {(w1, . . . , wp) : wj ≥ 0,
∑p

j=1wj = 1}. Finally, transform back to

obtain ΠM1(A) := Pdiag
(

ΠW(d)
)

P⊤. The fact that Algorithm 2 outputs
an ǫ-maximiser of the optimisation problem in Step 2 of Algorithm 1 follows
from Nemirovski (2004, Theorem 3.2), which implies in our particular case
that after N iterations,

max
M∈M1

min
U∈U

tr
(

(Σ̂ + U)M
)

−min
U∈U

tr
(

(Σ̂ + U)M̂ ǫ
)

≤ λ2p2 + 1√
2N

.

Algorithm 2: A possible implementation of Step 2 of Algorithm 1

Input: Σ̂ ∈ M, λ > 0, ǫ > 0.
begin

Set M0 ← Ip/p, U0 ← 0 ∈ R
p×p and N ←

⌈

λ2p2+1√
2ǫ

⌉

.

for t← 1 to N do

U ′
t ← ΠU

(

Ut−1 − 1√
2
Mt−1

)

, M ′
t ← ΠM1

(

Mt−1 +
1√
2
Σ̂ + 1√

2
Ut−1

)

.

Ut ← ΠU
(

Ut−1 − 1√
2
M ′

t

)

, Mt ← ΠM1

(

Mt−1 +
1√
2
Σ̂ + 1√

2
U ′

t

)

.

end

Set M̂ ǫ ← 1
N

∑N
t=1 M

′
t .

end

Output: M̂ ǫ

In Algorithm 1, Step 1 takes O(np2) floating point operations; Step 3
takes O(p3) operations in the worst case, though other methods such as the
Lanczos method (Lanczos, 1950; Golub and Van Loan, 1996) require only
O(p2) operations under certain conditions. Our particular implementation

(Algorithm 2) for Step 2 requires O(λ
2p2+1
ǫ ) iterations in the worst case,

though this number may often be considerably reduced by terminating the
for loop if the primal-dual gap

λ1(Ût + Σ̂)− {tr(M̂tΣ̂)− λ‖M̂t‖1}

falls below ǫ, where Ût := t−1
∑t

s=1 U
′
s and M̂t := t−1

∑t
s=1M

′
s. The most

costly step within the for loop is the eigendecomposition used to compute

the projection ΠM1 , which takes O(p3) operations. Taking λ := 4
√

log p
n

and ǫ := log p
4n as in Theorem 5 below, we find an overall complexity for the

algorithm of O
(

max(p5, np3

log p)
)

operations in the worst case.

We now turn to the theoretical properties of the estimator v̂SDP computed
using Algorithm 1. Lemma 4 below is stated in a general, deterministic
fashion, but will be used in Theorem 5 below to bound the loss incurred
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COMPUTATIONAL BOUNDS IN SPARSE PCA 11

by the estimator on the event that the sample and population covariance
matrices are close in ℓ∞-norm. See also Vu et al. (2013, Theorem 3.1) for
a closely related result in the context of a projection matrix estimation
problem. Recall that M denotes the class of p×p non-negative definite real,
symmetric matrices.

Lemma 4. Let Σ ∈ M be such that θ := λ1(Σ) − λ2(Σ) > 0. Let X ∈
R
n×p and Σ̂ := n−1X⊤X. For arbitrary λ > 0 and ǫ > 0, if ‖Σ̂−Σ‖∞ ≤ λ,

then the semidefinite relaxation estimator v̂SDP in Algorithm 1 with inputs
X, λ, ǫ satisfies

L
(

v̂SDP, v1(Σ)
)

≤ 4
√
2λk

θ
+ 2

√

ǫ

θ
.

Theorem 5 below describes the statistical properties of the estimator v̂SDP

over Pp(n, k, θ) classes. It reveals in particular that we incur a loss of statis-
tical efficiency of a factor of

√
k compared with the minimax upper bound

in Theorem 2 in Section 2 above. As well as applying Lemma 4 on the event
{‖Σ̂ − Σ‖∞ ≤ λ}, the proof relies on Lemma 5 in the online supplemen-
tary material Wang, Berthet and Samworth (2015), which relates the event
{‖Σ̂ − Σ‖∞ > λ} to the RCCp(n, 2, 1) condition. Indeed, this explains why
we incorporated this condition into the definition of the Pp(n, k, θ) classes.

Theorem 5. For an arbitrary P ∈ Pp(n, k, θ) and X1, . . . ,Xn
iid∼ P , we

write v̂SDP(X) for the output of Algorithm 1 with input X := (X1, . . . ,Xn)
⊤,

λ := 4
√

log p
n and ǫ := log p

4n . If 4 log p ≤ n ≤ k2p2θ−2 log p and θ ∈ (0, k],

then

(6) sup
P∈Pp(n,k,θ)

EPL
(

v̂SDP(X), v1(P )
)

≤ min

{

(16
√
2 + 2)

√

k2 log p

nθ2
, 1

}

.

We remark that v̂SDP has the attractive property of being fully adaptive
in the sense that it can be computed without knowledge of the sparsity level
k. On the other hand, v̂SDP is not necessarily k-sparse. If a specific sparsity
level is desired in a particular application, Algorithm 1 can be modified to
obtain a (non-adaptive) k-sparse estimator having similar estimation risk.
Specifically, we can find

v̂SDP
0 ∈ argmin

u∈B0(k)
L(v̂SDP, u).

Since L(v̂SDP, u)2 = 1−
(

u⊤v̂SDP
)2
, we can compute v̂SDP

0 by setting all but
the top k coordinates of v̂SDP in absolute value to zero and renormalising
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12 T. WANG, Q. BERTHET AND R. J. SAMWORTH

the vector. In particular, v̂SDP
0 is computable in polynomial time. We deduce

that under the same conditions as in Theorem 5, for any P ∈ Pp(n, k, θ),

EL
(

v̂SDP
0 , v1

)

≤ E
[{

L
(

v̂SDP
0 , v̂SDP

)

+ L
(

v̂SDP, v1
)}

1{‖Σ̂−Σ‖∞≤λ}
]

+ P
(

‖Σ̂ − Σ‖∞ > λ
)

≤ 2E
{

L
(

v̂SDP
0 , v1

)

1{‖Σ̂−Σ‖∞≤λ}
}

+ P
(

‖Σ̂ − Σ‖∞ > λ
)

≤ (32
√
2 + 3)

√

k2 log p

nθ2
,

where the final inequality follows from the proof of Theorem 5.

4. Computational lower bounds in sparse principal component
estimation. Theorems 5 and 2 reveal a gap between the provable per-
formance of our semidefinite relaxation estimator v̂SDP and the minimax
optimal rate. It is natural to ask whether there exists a computationally ef-
ficient algorithm that achieves the statistically optimal rate of convergence.
In fact, as we will see in Theorem 6 below, the effective sample size region
over which v̂SDP is consistent is essentially tight among the class of all ran-
domised polynomial time algorithms4. Indeed, any randomised polynomial
time algorithm with a faster rate of convergence could otherwise be adapted
to solve instances of the Planted Clique problem that are believed to be
hard; see Section 4.1 below for formal definitions and discussion. In this
sense, the extra factor of

√
k is an intrinsic price in statistical efficiency that

we have to pay for computational efficiency, and the estimator v̂SDP stud-
ied in Section 3 has essentially the best possible rate of convergence among
computable estimators.

4.1. The Planted Clique problem. A graph G := (V (G), E(G)) is an
ordered pair in which V (G) is a countable set, and E(G) is a subset of
{

{x, y} : x, y ∈ V (G), x 6= y
}

. For x, y ∈ V (G), we say x and y are adjacent,
and write x ∼ y, if {x, y} ∈ E(G). A clique C is a subset of V (G) such that
{x, y} ∈ E(G) for all distinct x, y ∈ C. The problem of finding a clique of
maximum size in a given graph G is known to be NP-complete (Karp, 1972).
It is therefore natural to consider randomly generated input graphs with a
clique ‘planted’ in, where the signal is much less confounded by the noise.
Such problems were first suggested by Jerrum (1992) and Kučera (1995) as
a potentially easier variant of the classical Clique problem.

4In this section, terms from computational complexity theory defined Section 2 of the
online supplementary material in Wang, Berthet and Samworth (2015) are written in
italics at their first occurrence.
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Let Gm denote the collection of all graphs with m vertices. Define Gm

to be the distribution on Gm associated with the standard Erdős–Rényi
random graph. In other words, under Gm, each pair of vertices is adjacent
independently with probability 1/2. For any κ ∈ {1, . . . ,m}, let Gm,κ be a
distribution on Gm constructed by first picking κ distinct vertices uniformly
at random and connecting all edges (the ‘planted clique’), then joining each
remaining pair of distinct vertices by an edge independently with probability
1/2. The Planted Clique problem has input graphs randomly sampled from
the distribution Gm,κ. Due to the random nature of the problem, the goal
of the Planted Clique problem is to find (possibly randomised) algorithms
that can locate a maximum clique Km with high probability.

It is well known that, for a standard Erdős–Rényi graph, |Km|
2 log2 m

a.s.→ 1

(e.g. Grimmett and McDiarmid, 1975). In fact, if κ = κm is such that
lim infm→∞ κ

2 log2 m
> 1, it can be shown that the planted clique is asymptot-

ically almost surely also the unique maximum clique in the input graph. As
observed in Kučera (1995), there exists C > 0 such that, if κ > C

√
m logm,

then asymptotically almost surely, vertices in the planted clique have larger
degrees than all other vertices, in which case they can be located in O(m2)
operations. Alon, Krivelevich and Sudakov (1998) improved the above re-
sult by exhibiting a spectral method that, given any c > 0, identifies planted
cliques of size κ ≥ c

√
m asymptotically almost surely.

Although several other polynomial time algorithms have subsequently
been discovered for the κ ≥ c

√
m case (e.g. Feige and Krauthgamer, 2000;

Feige and Ron, 2010; Ames and Vavasis, 2011), there is no known randomised
polynomial time algorithm that can detect below this threshold. Jerrum
(1992) hinted at the hardness of this problem by showing that a specific
Markov chain approach fails to work when κ = O(m1/2−δ) for some δ > 0.
Feige and Krauthgamer (2003) showed that Lovàcz–Schrijiver semidefinite
programming relaxation methods also fail in this regime. Feldman et al.
(2013) recently presented further evidence of the hardness of this problem
by showing that a broad class of algorithms, which they refer to as ‘statistical
algorithms’, cannot solve the Planted Clique problem with κ = O(m1/2−δ)
in randomised polynomial time, for any δ > 0. It is now widely accepted
in theoretical computer science that the Planted Clique problem is hard, in
the sense that the following assumption holds with τ = 0:

(A1)(τ) For any sequence κ = κm such that κ ≤ mβ for some 0 < β <
1/2 − τ , there is no randomised polynomial time algorithm that can
correctly identify the planted clique with probability tending to 1 as
m→ ∞.
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14 T. WANG, Q. BERTHET AND R. J. SAMWORTH

We state the assumption in terms of a general parameter τ ∈ [0, 1/2),
because it will turn out below that even if only (A1)(τ) holds for some
τ ∈ (0, 1/6), there are still regimes of (n, p, k, θ) in which no randomised
polynomial time algorithm can attain the minimax optimal rate.

Researchers have used the hardness of the planted clique problem as an as-
sumption to prove various impossibility results in other problems. Examples
include cryptographic applications (Juels and Peinado, 2000; Applebaum,
Barak and Wigderson, 2010), testing k-wise independence (Alon et al., 2007)
and approximating Nash equilibria (Hazan and Krauthgamer, 2011). Recent
works by Berthet and Rigollet (2013a,b) and Ma and Wu (2015) used a
stronger hypothesis on the hardness of detecting the presence of a planted
clique to establish computational lower bounds in sparse principal compo-
nent detection and sparse submatrix detection problems respectively. Our
Assumption (A1)(0) assumes only the computational intractability of iden-
tifying the entire planted clique, so in particular, is implied by Hypothesis
APC of Berthet and Rigollet (2013b) and Hypothesis 1 of Ma and Wu (2015).

4.2. Computational lower bounds. In this section, we use a reduction ar-
gument to show that, under Assumption (A1)(τ), it is impossible to achieve
the statistically optimal rate of sparse principal component estimation using
randomised polynomial time algorithms. For ρ ∈ N, and for x ∈ R, we let [x]ρ
denote x in its binary representation, rounded to ρ significant figures. Let
[R]ρ := {[x]ρ : x ∈ R}. We say (v̂(n)) is a sequence of randomised polynomial
time estimators of v1 ∈ R

pn if v̂(n) is a measurable function from R
n×pn to

R
pn and if, for every ρ ∈ N, there exists a randomised polynomial time algo-

rithm Mpr such that for any x ∈ ([R]ρ)
n×pn we have [v̂(n)(x)]ρ = [Mpr(x)]ρ.

The sequence of semidefinite programming estimators (v̂SDP) defined in Sec-
tion 3 is an example of a sequence of randomised polynomial time estimators
of v1(P ).

Theorem 6. Fix τ ∈ [0, 1/6), assume (A1)(τ), and let α ∈ (0, 1−6τ
1−2τ ).

For any n ∈ N, let (p, k, θ) = (pn, kn, θn) be parameters indexed by n such
that k = O(p1/2−τ−δ) for some δ ∈ (0, 1/2 − τ), n = o(p log p) and θ ≤
k2/(1000p). Suppose further that

k1+α log p

nθ2
→ 0

as n → ∞. Let X be an n × p matrix with independent rows, each having
distribution P . Then every sequence (v̂(n)) of randomised polynomial time
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estimators of v1(P ) satisfies

√

nθ2

k1+α log p
sup

P∈Pp(n,k,θ)
EPL

(

v̂(n)(X), v1(P )
)

→ ∞

as n→ ∞.

We note that the choices of parameters in the theorem imply that

(7) lim inf
n→∞

k2 log p

nθ2
≥ lim inf

n→∞
p

k2
= ∞.

As remarked in Section 4.1 above, the main interest in this theorem comes
from the case τ = 0. Here, our result reveals not only that no randomised
polynomial time algorithm can attain the minimax optimal rate, but also
that in the effective sample size regime described by (7), and provided the
other side conditions of Theorem 6 hold, there is in general no consistent
sequence of randomised polynomial time estimators. This is in contrast to
Theorem 2, where we saw that consistent estimation with a computation-
ally inefficient procedure is possible in the asymptotic regime (7). A further
consequence of Theorem 6 is that, since any sequence (p, k, θ) = (pn, kn, θn)
satisfying the conditions of Theorem 6 also satisfies the conditions of Theo-
rem 5 for large n, the conclusion of Theorem 5 cannot be improved in terms
of the exponent of k (at least, not uniformly over the parameter range given
there). As mentioned in the introduction, for a sufficiently large effective
sample size, where even randomised polynomial time estimators can be con-
sistent, the statistical and computational trade-off revealed by Theorems 2
and 6 may disappear. See Section 4.4 below for further details, and Gao, Ma
and Zhou (2014) for recent extensions of these results to different classes of
distributions.

Even though Assumption (A1)(0) is widely believed, we also present re-
sults under the weaker family of conditions (A1)(τ) for τ ∈ (0, 1/6) to show
that a statistical and computational trade-off still remains for certain pa-
rameter regimes even in these settings. The reason for assuming τ < 1/6 is
to guarantee that there is a regime of parameters (n, p, k, θ) satisfying the
conditions of the theorem. Indeed, if τ ∈ [0, 1/6) and α ∈ (0, 1−6τ

1−2τ ), we can

set p = n, k = n1/2−τ−δ for some δ ∈
(

0, 12 − τ − 1
3−α

)

, θ = k2/(1000n), and
in that case,

k1+α log p

nθ2
=

106n log n

k3−α
→ 0,

as required.
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4.3. Sketch of the proof of Theorem 6. The proof of Theorem 6 relies
on a randomised polynomial time reduction from the Planted Clique prob-
lem to the sparse principal component estimation problem. The reduction
is adapted from the ‘bottom-left transformation’ of Berthet and Rigollet
(2013b), and requires a rather different and delicate analysis.

In greater detail, suppose for a contradiction that we were given a ran-
domised polynomial time algorithm v̂ for the Sparse PCA problem with a

rate supP∈Pp(n,k,θ) EPL(v̂, v1) ≤
√

k1+α log p
nθ2

for some α < 1. Set m ≈ p log p

and κ ≈ k log p, so we are in the regime where (A1)(τ) holds. Given any
graph G ∼ Gm,κ with planted clique K ⊆ V (G), we draw n + p vertices
u1, . . . , un, w1, . . . , wp uniformly at random without replacement from V (G).
On average there are about κ/ log κ clique vertices in {w1, . . . , wp}, and our
initial aim is to identify a large fraction of these vertices. To do this, we
form an n × p matrix A := (1ui∼wj)i,j , which is an off-diagonal block of
the adjacency matrix of G. We then replace each 0 in A with −1 and flip
the signs of each row independently with probability 1/2 to obtain a new
matrix X. Each component of the ith row of X has a marginal Rademacher
distribution, but if ui is a clique vertex, then the components {j : wj ∈ K}
are perfectly correlated. Writing γ′ := (1{wj∈K})j=1,...,p, the leading eigen-

vector of E{X⊤X/n|γ′} is proportional to γ′, which suggests that a spectral
method might be able to find {w1, . . . , wp} ∩K with high probability. Un-
fortunately, the joint distribution of the rows of X is difficult to deal with
directly, but since n and p are small relative to m, we can approximate γ′

by a random vector γ having independent Bern(κ/m) components. We can
then approximate X by a matrix Y, whose rows are independent conditional
on γ and have the same marginal distribution conditional on γ = g as the
rows of X conditional on γ′ = g.

It turns out that the distribution of an appropriately scaled version of an
arbitrary row of Y, conditional on γ = g, belongs to Pp(n, k, θ) for g belong-
ing to a set of high probability. We could therefore apply our hypothetical
randomised polynomial time Sparse PCA algorithm to the scaled version of
the matrix Y to find a good estimate of γ, and since γ is close to γ′, this
accomplishes our initial goal. With high probability, the remaining vertices
in the planted clique are those having high connectivity to the identified
clique vertices in {w1, . . . , wp}, which contradicts the hypothesis (A1)(τ).

4.4. Computationally efficient optimal estimation on subparameter spaces
in the high effective sample size regime. Theorems 2, 3, 5 and 6 enable us
to summarise, in Table 1 below, our knowledge of the best possible rate
of estimation in different asymptotic regimes, both for arbitrary statistical
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Table 1

Rate of convergence of best estimator in different asymptotic regimes

n≪ k log p

θ2
k log p

θ2
≪ n≪ k2 log p

θ2
n≫ k2 log p

θ2

All estimators ≍ 1 ≍
√

k log p

nθ2
≍

√

k log p

nθ2

Polynomial time estimators ≍ 1 ≍ 1 .

√

k2 log p

nθ2

procedures and for those that are computable in randomised polynomial
time. (For ease of exposition, we omit here the additional, relatively mild,
side constraints required for the above theorems to hold.) The fact that

Theorem 6 is primarily concerned with the setting in which k2 log p
nθ2 → ∞

raises the question of whether computationally efficient procedures could
attain a faster rate of convergence in the high effective sample size regime

where n≫ k2 log p
θ2

.
The purpose of this section is to extend the ideas of Amini andWainwright

(2009) to show that, indeed, a variant of the estimator v̂SDP introduced in
Section 3 attains the minimax optimal rate of convergence in this asymptotic
regime, at least over a subclass of the distributions in Pp(n, k, θ). Ma (2013)
and Yuan and Zhang (2013) show similar results for an iterative thresholding
algorithm for other subclasses of Pp(n, k, θ) under an extra upper bound
condition on λ2(P )/λ1(P ); see also Wang, Lu and Liu (2014) and Deshpande
and Montanari (2014).

Let T denote the set of non-negative definite matrices Σ ∈ R
p×p of the

form

Σ = θv1v
⊤
1 +

(

Ik 0
0 Γp−k

)

,

where v1 ∈ R
p is a unit vector such that S := supp(v1) has cardinality k and

where Γp−k ∈ R
(p−k)×(p−k) is non-negative definite and satisfies λ1(Γp−k) ≤

1. (Here, and in the proof of Theorem 7 below, the block matrix notation
refers to the (S, S), (S, Sc), (Sc, S) and (Sc, Sc) blocks.) We now define a
subclass of distributions

P̃p(n, k, θ) :=

{

P ∈ Pp(n, k, θ) : Σ(P ) ∈ T ,min
j∈S

|v1,j| ≥ 16

√

k log p

nθ2

}

.

We remark that P̃p(n, k, θ) is non-empty only if
√

k2 log p
nθ2 ≤ 1

16 , since

1 = ‖v1,S‖2 ≥ k1/2 min
j∈S

|v1,j | ≥ 16

√

k2 log p

nθ2
.
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This is one reason that the theorem below only holds in the high effective
sample size regime. Our variant of v̂SDP is described in Algorithm 3 below.
We remark that v̂MSDP, like v̂SDP, is computable in polynomial time.

Algorithm 3: Pseudo-code for computing the modified semidefinite re-
laxation estimator v̂MSDP

Input: X = (X1, . . . , Xn)
⊤ ∈ R

n×p, λ > 0, ǫ > 0, τ > 0.
begin

Step 1: Set Σ̂← n−1X⊤X.

Step 2: For f(M) := tr(Σ̂M)− λ‖M‖1, let M̂ ǫ be an ǫ-maximiser of f inM1.
Step 3: Let Ŝ ←

{

j ∈ {1, . . . , p} : M̂ ǫ
jj ≥ τ

}

and v̂MSDP ∈ R
p by v̂MSDP

Ŝc ← 0

and v̂MSDP
Ŝ

∈ argmax
u∈R|Ŝ| u

⊤Σ̂ŜŜu.

end

Output: v̂MSDP

Theorem 7. Assume that X1, . . . ,Xn
iid∼ P for some P ∈ P̃p(n, k, θ).

(a) Let λ := 4
√

log p
n . The function f in Step 2 of Algorithm 3 has a

maximiser M̂ ∈ M1,1(k
2) satisfying sgn(M̂ ) = sgn(v1v

⊤
1 ).

(b) Assume that log p ≤ n, θ2 ≤ Bk1/2 for some B ≥ 1 and p ≥ θ(n/k)1/2.
We write v̂MSDP for the output of Algorithm 3 with input parameters

X := (X1, . . . ,Xn)
⊤ ∈ R

n×p, λ := 4
√

log p
n , ǫ := ( log pBn )5/2 and τ :=

( log pBn )2. Then

sup
P∈P̃p(n,k,θ)

Ep

{

L(v̂MSDP, v1)
}

≤ 6

√

k log p

nθ2
.

Theorem 7 generalises Theorem 2 of Amini and Wainwright (2009) in two
ways: first, we relax a gaussianity assumption to an RCC condition; second,
the leading eigenvector of the population covariance matrix is not required
to have non-zero entries equal to ±k−1/2.

5. Numerical experiments. In this section we present the results of
numerical experiments to illustrate the results of Theorems 5, 6 and 7. We
generate v1 ∈ R

p by setting v1,j := k−1/2 for j = 1, . . . , k, and v1,j := 0

for j = k + 1, . . . , p. We then draw X1, . . . ,Xn
iid∼ Np(0,Σ), where Σ :=

Ip + θv1v
⊤
1 and θ = 1. We apply Algorithm 1 to the data matrix X :=

(X1, . . . ,Xn)
⊤ and report the average loss of the estimator v̂SDP over Nrep :=

100 repetitions. For p ∈ {50, 100, 150, 200} and k = ⌊p1/2⌋, we repeat the
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Fig 1. Average loss of the estimator v̂SDP over Nrep = 100 repetitions against effective
sample sizes νquad (top left) and νlin (top right). The tail behaviour under both scalings is
examined under logarithmic scales in the bottom left and bottom right panels.
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experiment for several choices of n to explore the three parameter regimes
described in Table 1. Since the boundaries of these regimes are n ≍ k log p

θ2

and n ≍ k2 log p
θ2 , we plot the average loss of the experiments against effective

samples sizes

νlin :=
nθ2

k log p
, and νquad :=

nθ2

k2 log p
.

The results are shown in Figure 1. The top left panel of Figure 1 shows
a sharp phase transition for the average loss, as predicted by Theorems 5
and 6. The right panels of Figure 1 suggest that in the high effective sample

size regime, v̂SDP converges at rate
√

k log p
nθ2 in this setting. This is the same

rate as was proved for the modified semidefinite relaxation estimator v̂MSDP

in Theorem 7.
It is worth noting that it is relatively time-consuming to carry out the

simulations for the settings in the right-hand tails of the plots in Figure 1.
These extreme settings were chosen, however, to illustrate that the linear
scaling is the correct one in this tail. For example, when νquad = 200 and
p = 200, we require n = 207694, and the pre-processing of the data matrix
to obtain the sample covariance matrix is the time-limiting step. In general,
in our experience, the semi-definite programming algorithm is certainly not
as fast as simpler methods such as diagonal thresholding, but is not pro-
hibitively slow.

APPENDIX A: PROOFS FROM SECTION 2

Proof of Proposition 1. (i) Let P ∈ subgaussianp(σ
2), and assume

that X1, . . . ,Xn
iid∼ P . Then, for any u ∈ B0(ℓ) and t ≥ 0, we have

P(u⊤X1 ≥ t) ≤ e−t2/σ2
E(etu

⊤X1/σ2
) ≤ e−t2/(2σ2).

Similarly, P(−u⊤X1 ≥ t) ≤ e−t2/(2σ2). Write µu := E{(u⊤X1)
2}; since

1 +
1

2
µut

2 + o(t2) = E(etu
⊤X1) ≤ et

2σ2/2 = 1 +
1

2
σ2t2 + o(t2),

as t→ 0, we deduce that µu ≤ σ2. Now, for any integer m ≥ 2,

E
(
∣

∣(u⊤X1)
2 − µu

∣

∣

m) ≤
∫ ∞

0
P

{

(u⊤X1)
2 − µu ≥ t1/m

}

dt+ µmu

≤ 2

∫ ∞

0
e−

t1/m+µu
2σ2 dt+ µmu = m!(2σ2)m

{

2e−µu/(2σ2) +
1

m!

( µu
2σ2

)m
}

≤ 2m!(2σ2)m,
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where the final inequality follows because the function x 7→ 2e−x + xm/m!
is decreasing on [0, 1/2]. This calculation allows us to apply Bernstein’s
inequality (e.g. van de Geer, 2000, Lemma 5.7, taking K = 2σ2, R = 4σ2 in
her notation), to deduce that for any s ≥ 0,

P(|V̂ (u)− V (u)| ≥ s) ≤ 2 exp

(

− ns2

4σ2s+ 32σ4

)

.

It follows by Lemma 2 in Section 1 in the supplementary material Wang,
Berthet and Samworth (2015), taking ǫ = 1/4 in that result, that if η > 0
is such that ℓ log(p/η) ≤ n, then for C := 8σ2, we have

P

(

sup
u∈B0(ℓ)

|V̂ (u)− V (u)| ≥ 2C

√

ℓ log(p/η)

n

)

≤ 2πℓ1/2
(

p

ℓ

)

( 128√
255

)ℓ−1
exp

(

− C2ℓ log(p/η)

4Cσ2
√

ℓ log(p/η)
n + 32σ4

)

≤ 2πℓ1/2
(e

ℓ

)ℓ( 128√
255

)ℓ−1
ηℓ ≤ e9η,

Similarly, if ℓ log(p/η) > n, then

P

(

sup
u∈B0(ℓ)

|V̂ (u)− V (u)| ≥ 2C
ℓ log(p/η)

n

)

≤ 2πℓ1/2
(

p

ℓ

)

( 128√
255

)ℓ−1
exp

(

− C2ℓ2 log2(p/η)

4Cσ2ℓ log(p/η) + 32σ4n

)

≤ e9η.

Setting δ := e9η, we find (noting that we only need to consider the case
δ ∈ (0, 1]) that

P

{

sup
u∈B0(ℓ)

|V̂ (u)−V (u)| ≥ 16σ2
(

1+
9

log p

)

max

(

√

ℓ log(p/δ)

n
,
ℓ log(p/δ)

n

)}

≤ P

{

sup
u∈B0(ℓ)

|V̂ (u)−V (u)| ≥ 16σ2max

(

√

ℓ log(e9p/δ)

n
,
ℓ log(e9p/δ)

n

)}

≤ δ.

(ii) By Lemma 1 of Laurent and Massart (2000), if Y1, . . . , Yn are inde-
pendent χ2

1 random variables, then for all a > 0,

P

(

1

n

∣

∣

∣

∣

n
∑

i=1

Yi − n

∣

∣

∣

∣

≥ a

)

≤ 2e−
n
2
(1+a−√

1+2a) ≤ 2e−nmin(a
4
, a

2

16
).
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Setting η := e−nmin(a
4
, a

2

16
), we deduce that

P

{

1

n

∣

∣

∣

∣

n
∑

i=1

Yi − n

∣

∣

∣

∣

≥ 4max

(

√

log(1/η)

n
,
log(1/η)

n

)}

≤ 2η.

Hence, using Lemma 2 again, and by a similar calculation to Part (i),

P

{

sup
u∈B0(ℓ)

|V̂ (u)− V (u)| ≥ 8λ1(P )max

(

√

log(1/η)

n
,
log(1/η)

n

)}

≤ e9pℓη.

The result follows on setting δ := e9pℓη.

Proof of Theorem 2. Fix an arbitrary P ∈ Pp(n, k, θ). For notational
simplicity, we write v := v1(P ) and v̂ := v̂kmax(Σ̂) in this proof. We now
exploit the Curvature Lemma of Vu et al. (2013, Lemma 3.1), which is
closely related to the Davis–Kahan sin θ theorem (Davis and Kahan, 1970;
Yu, Wang and Samworth, 2015). This lemma gives that

‖v̂v̂⊤ − vv⊤‖22 ≤
2

θ
tr
(

Σ(vv⊤ − v̂v̂⊤)
)

≤ 2

θ
tr
(

(Σ− Σ̂)(vv⊤ − v̂v̂⊤)
)

.

When v̂v̂⊤ 6= vv⊤, we have that vv⊤−v̂v̂⊤

‖vv⊤−v̂v̂⊤‖2 has rank 2, trace 0 and has non-

zero entries in at most 2k rows and 2k columns. It follows that its non-zero
eigenvalues are ±1/

√
2, so it can be written as (xx⊤ − yy⊤)/

√
2 for some

x, y ∈ B0(2k). Thus

EL(v̂, v) = E
1√
2
‖v̂v̂⊤ − vv⊤‖2 ≤

1

θ
Etr
(

(Σ− Σ̂)(xx⊤ − yy⊤)
)

≤ 2

θ
E sup

u∈B0(2k)
|V̂ (u)− V (u)| ≤ 2

√
2

(

1 +
1

log p

)

√

k log p

nθ2
,

where we have used Proposition 1 in Section 1 in the online supplementary
material Wang, Berthet and Samworth (2015) to obtain the final inequality.

Proof of Theorem 3. Set σ2 := 1
8(1+ 9

log p
)
− θ. We have by Proposi-

tion 1(ii) that Np(0, σ
2Ip + θv1v

⊤
1 ) ∈ Pp(n, k, θ) for any unit vector v1 ∈

B0(k). Define k0 := k − 1 and p0 := p − 1. Applying the variant of the
Gilbert–Varshamov lemma given as Lemma 3 in Section 1 in the online sup-
plementary material Wang, Berthet and Samworth (2015) with α := 1/2
and β := 1/4, we can construct a set N0 of k0-sparse vectors in {0, 1}p0 with
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cardinality at least (p0/k0)
k0/8, such that the Hamming distance between

every pair of distinct points in N0 is at least k0. For ǫ ∈ (0, 1] to be chosen
later, define a set of k-sparse vectors in R

p by

N :=

{(√
1− ǫ2

k
−1/2
0 ǫu0

)

: u0 ∈ N0

}

.

Observe that if u, v are distinct elements of N , then

L(u, v) = {1− (u⊤v)2}1/2 ≥ {1− (1− ǫ2/2)2}1/2 ≥
√
3ǫ

2
,

and similarly L(u, v) ≤ ǫ. For u ∈ N , let Pu denote the multivariate nor-
mal distribution Np(0, σ

2Ip + θuu⊤). For any estimator v̂ ∈ Vn,p, we de-

fine ψ̂v̂ := sargminu∈N L(v̂, u), where sargmin denotes the smallest ele-

ment of the argmin in the lexicographic ordering. Note that {ψ̂v̂ 6= u} ⊆
{L(v̂, u) ≥

√
3ǫ/4}. We now apply the generalised version of Fano’s lemma

given as Lemma 4 in Section 1 in the online supplementary material Wang,
Berthet and Samworth (2015). Writing D(P‖Q) for the Kullback–Leibler
divergence between two probability measures defined on the same space (a
formal definition is given just prior to Lemma 4), we have

inf
v̂∈Vn,p

sup
P∈Pp(n,k,θ)

EPL
(

v̂, v1(P )
)

≥ inf
v̂∈Vn,p

max
u∈N

EPuL(v̂, u)

≥
√
3ǫ

4
inf

v̂∈Vn,p

max
u∈N

P⊗n
u (ψ̂v̂ 6= u)

≥
√
3ǫ

4

(

1− maxu,v∈N ,u 6=vD(P⊗n
v ‖P⊗n

u ) + log 2

(k0/8) log(p0/k0)

)

.(8)

We can compute, for distinct points u, v ∈ N ,

D(P⊗n
v ‖P⊗n

u ) = nD(Pv‖Pu) =
n

2
tr
(

(σ2Ip + θuu⊤)−1(σ2Ip + θvv⊤)− Ip
)

=
n

2
tr
(

(σ2Ip + θuu⊤)−1θ(vv⊤ − uu⊤)
)

=
nθ

2
tr

(

( 1

σ2
Ip −

θ

σ2(σ2 + θ)
uu⊤

)

(vv⊤ − uu⊤)
)

=
nθ2

2σ2(σ2 + θ)
L2(u, v) ≤ nθ2ǫ2

2σ2(σ2 + θ)
.(9)

Let ǫ := min{
√

a/(3b), 1}, where

a := 1− 8 log 2

k0 log(p0/k0)
and b :=

4nθ2

σ2(σ2 + θ)k0 log(p0/k0)
.
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Then from (8) and (9), we find that

inf
v̂∈Vn,p

sup
P∈Pp(n,k,θ)

EPL
(

v̂, v1(P )
)

≥ min

{

1

1660

√

k log p

nθ2
,

5

18
√
3

}

,

as required.

APPENDIX B: PROOFS FROM SECTION 3

Proof of Lemma 4. For convenience, we write v := v1(Σ), v̂ for v̂SDP

and M̂ for M̂ ǫ in this proof. We first study vv⊤ − M̂ , where M̂ ∈ M1 is
computed in Step 2 of Algorithm 1. By the Curvature Lemma of Vu et al.
(2013, Lemma 3.1),

‖vv⊤ − M̂‖22 ≤
2

θ
tr
(

Σ(vv⊤ − M̂)
)

.

Moreover, since vv⊤ ∈ M1, we have the basic inequality

tr(Σ̂M̂)− λ‖M̂‖1 ≥ tr(Σ̂vv⊤)− λ‖vv⊤‖1 − ǫ.

Let S denote the set of indices corresponding to the non-zero components
of v, and recall that |S| ≤ k. Since by hypothesis ‖Σ̂ −Σ‖∞ ≤ λ, we have

‖vv⊤ − M̂‖22 ≤ 2

θ

{

tr
(

Σ̂(vv⊤ − M̂ )
)

+ tr
(

(Σ− Σ̂)(vv⊤ − M̂)
)}

≤ 2

θ

(

λ‖vv⊤‖1 − λ‖M̂‖1 + ǫ+ ‖Σ̂ − Σ‖∞‖vv⊤ − M̂‖1
)

≤ 2λ

θ

(

‖vSv⊤S ‖1 − ‖M̂S,S‖1 + ‖vSv⊤S − M̂S,S‖1
)

+
2ǫ

θ

≤ 4λ

θ
‖vSv⊤S − M̂S,S‖1 +

2ǫ

θ
≤ 4λk

θ
‖vv⊤ − M̂‖2 +

2ǫ

θ
.

We deduce that

‖vv⊤ − M̂‖2 ≤
4λk

θ
+

√

2ǫ

θ
.

On the other hand,

‖vv⊤ − M̂‖22 = tr
(

(vv⊤ − M̂)2
)

= 1− 2v⊤M̂v + tr(M̂2)

≥ 1− 2v̂⊤M̂v̂ + tr(M̂2) = ‖v̂v̂⊤ − M̂‖22.
We conclude that

L(v̂, v) =
1√
2
‖v̂v̂⊤ − vv⊤‖2 ≤

1√
2
(‖v̂v̂⊤ − M̂‖2 + ‖vv⊤ − M̂‖2)

≤
√
2‖vv⊤ − M̂‖2 ≤ 4

√
2λk

θ
+ 2

√

ǫ

θ
,

as required.
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Proof of Theorem 5. Fix P ∈ Pp(n, k, θ). By Lemma 4, and by Lemma 5
in Section 1 of the online supplementary material Wang, Berthet and Sam-
worth (2015),

EL
(

v̂SDP, v1(P )
)

= E
{

L
(

v̂SDP, v1(P )
)

1{‖Σ̂−Σ‖∞≤λ}
}

+ E
{

L
(

v̂SDP, v1(P )
)

1{‖Σ̂−Σ‖∞>λ}
}

≤ 4
√
2λk

θ
+ 2

√

ǫ

θ
+ P

(

sup
u∈B0(2)

∣

∣V̂ (u)− V (u)
∣

∣ > 2

√

log p

n

)

(10)

Since P ∈ RCCp(n, 2, 1), we have for each δ > 0 that

P

{

sup
u∈B0(2)

∣

∣V̂ (u)− V (u)
∣

∣ > max

(

√

2 log(p/δ)

n
,
2 log(p/δ)

n

)}

≤ δ.

Set δ :=
√

k2 log p
nθ2

. Since 4 log p ≤ n, which in particular implies n ≥ 3, we
have

2 log(p/δ)

n
≤ 1

2
+

1

n
log
( nθ2

k2 log p

)

≤ 1

2
+

log n

n
− 1

n
log log 2 ≤ 1.

Moreover, since n ≤ k2p2θ−2 log p,

2 log(p/δ) = 2 log p+ log
( nθ2

k2 log p

)

≤ 4 log p.

We deduce that

(11) P

(

sup
u∈B0(2)

∣

∣V̂ (u)− V (u)
∣

∣ > 2

√

log p

n

)

≤
√

k2 log p

nθ2
.

The desired risk bound follows from (10), the fact that θ ≤ k, and (11).

APPENDIX C: PROOFS FROM SECTION 4

Proof of Theorem 6. Suppose, for a contradiction, that there exist
an infinite subset N of N, K0 ∈ [0,∞) and a sequence (v̂(n)) of randomised
polynomial time estimators of v1(P ) satisfying

sup
P∈Pp(n,k,θ)

EPL
(

v̂(n)(X), v1(P )
)

≤ K0

√

k1+α log p

nθ2

for all n ∈ N . Let L := ⌈log pn⌉, letm = mn := ⌈10Lpn/9⌉ and let κ = κn :=
Lkn. We claim that Algorithm 4 below is a randomised polynomial time
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Algorithm 4: Pseudo-code for a planted clique algorithm based on a
hypothetical randomised polynomial time sparse principal component
estimation algorithm.
Input: m ∈ N, κ ∈ {1, . . . , m}, G ∈ Gm, L ∈ N

begin
Step 1: Let n← ⌊9m/(10L)⌋, p← pn, k ← ⌊κ/L⌋. Draw u1, . . . , un, w1, . . . , wp

uniformly at random without replacement from V (G). Form
A = (Aij)← (1{ui∼wj}) ∈ R

n×p and X← diag(ξ1, . . . , ξn)(2A− 1n×p), where
ξ1, . . . , ξn are independent Rademacher random variables (independent of
u1, . . . , un, w1, . . . , wp), and where every entry of 1n×p ∈ R

n×p is 1.

Step 2: Use the randomised estimator v̂(n) to compute v̂ = v̂(n)(X/
√
750).

Step 3: Let Ŝ = Ŝ(v̂) be the lexicographically smallest k-subset of {1, . . . , p}
such that (v̂j : j ∈ Ŝ) contains the k largest coordinates of v̂ in absolute value.
Step 4: For u ∈ V (G) and W ⊆ V (G), let
nb(u,W ) := 1{u∈W} +

∑

w∈W 1{u∼w}. Set

K̂ :=
{

u ∈ V (G) : nb(u, {wj : j ∈ Ŝ}) ≥ 3k/4
}

.

end

Output: K̂

algorithm that correctly identifies the Planted Clique problem onmn vertices
and a planted clique of size κn with probability tending to 1 as n→ ∞. Since

κn = O(m
1/2−τ−δ
n logmn), this contradicts Assumption (A1)(τ). We prove

the claim below.
Let G ∼ Gm,κ, and let K ⊆ V (G) denote the planted clique. Note that

the matrix A defined in Step 1 of Algorithm 4 is the off-diagonal block of the
adjacency matrix of G associated with the bipartite graph induced by the
two parts {ui : i = 1, . . . , n} and {wj : j = 1, . . . , p}. Let ǫ′ = (ǫ′1, . . . , ǫ

′
n)

⊤

and γ′ = (γ′1, . . . , γ
′
p)

⊤, where ǫ′i := 1{ui∈K}, γ′j := 1{wj∈K}, and set S′ :=
{j : γ′j = 1}.

It is convenient at this point to introduce the notion of a Graph Vector
distribution. We say Y has a p-variate Graph Vector distribution with pa-
rameters g = (g1, . . . , gp)

⊤ ∈ {0, 1}p and π0 ∈ [0, 1], and write Y ∼ GVg
p(π0),

if we can write
Y = ξ

{

(1− ǫ)R+ ǫ(g + R̃)
}

,

where ξ, ǫ and R are independent, where ξ is a Rademacher random vari-
able, where ǫ ∼ Bern(π0), where R = (R1, . . . , Rp)

⊤ ∈ R
p has indepen-

dent Rademacher components, and where R̃ = (R̃1, . . . , R̃p)
⊤ with R̃j :=

(1− gj)Rj .
Let (ǫ,γ)⊤ = (ǫ1, . . . , ǫn, γ1, . . . , γp)

⊤ be n + p independent Bern(κ/m)
random variables. For i = 1, . . . , n, let Yi := ξi

{

(1 − ǫi)Ri + ǫi(γ + R̃i)
}
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so that, conditional on γ, the random vectors Y1, . . . , Yn are independent,
each distributed as GVγ

p (κ/m). As shorthand, we denote this conditional
distribution as Qγ , and write S := {j : γj = 1}. Note that by Lemma 6 in
Section 1 of the online supplementary material Wang, Berthet and Samworth

(2015), Qγ ∈ ∩⌊20p/(9k)⌋
ℓ=1 RCCp(ℓ, 750).

Let Y := (Y1, . . . , Yn)
⊤. Recall that if P and Q are probability measures

on a measurable space (X ,B), the total variation distance between P and
Q is defined by

dTV(P,Q) := sup
B∈B

|P (B)−Q(B)|.

Writing L(Z) for the distribution (or law) of a generic random element
Z, and using elementary properties of the total variation distance given in
Lemma 9 in Section 1 in the online supplementary material Wang, Berthet
and Samworth (2015), we have

dTV

(

L(X),L(Y )
)

≤ dTV

(

L
(

ǫ′,γ′, (Rij), (ξi)
)

,L
(

ǫ,γ, (Rij), (ξi)
)

)

= dTV

(

L(ǫ′,γ′),L(ǫ,γ)
)

≤ 2(n+ p)

m
≤ 9(n+ p)

5p log p
.(12)

Here, the penultimate inequality follows from Diaconis and Freedman (1980,
Theorem 4). In view of (12), we initially analyse Steps 2, 3 and 4 in Algo-
rithm 4 with X replaced by Y . Observe that E(Yi|γ) = 0 and, writing
∆ := diag(γ) ∈ R

p×p, we have

Σγ := Cov(Yi|γ) = E
{

(1− ǫi)RiR
⊤
i + ǫi(γ + R̃i)(γ + R̃i)

⊤∣
∣γ
}

= Ip +
κ

m
(γγ⊤ −∆).

Writing Nγ :=
∑p

j=1 γj, it follows that the largest eigenvalue of Σγ is 1 +
κ
m (Nγ − 1), with corresponding eigenvector γ/N

1/2
γ ∈ B0(Nγ). The other

eigenvalues are 1, with multiplicity p − Nγ , and 1 − κ
m , with multiplicity

Nγ − 1. Hence λ1(Σγ)− λ2(Σγ) =
κ
m (Nγ − 1). Define

Γ0 :=

{

g ∈ {0, 1}p :

∣

∣

∣

∣

Ng −
pκ

m

∣

∣

∣

∣

≤ k

20

}

,

where Ng :=
∑p

j=1 gj . We note that by Bernstein’s inequality (e.g. Shorack
and Wellner, 1986, p. 855) that

(13) P(γ ∈ Γ0) ≥ 1− 2e−k/800.
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If g ∈ Γ0, the conditional distribution of Y1/
√
750 given γ = g belongs to

Pp(n, k, θ) for θ ≤ κ
750m (Ng − 1) and all large n ∈ N . By hypothesis, it

follows that for g ∈ Γ0,

E

{

L
(

v̂(n)(Y /
√
750), v1(Qγ)

)

∣

∣

∣
γ = g

}

≤ K0

√

k1+α log p

nθ2

for all large n ∈ N . Then by Lemma 7 in Section 1 in the online supple-
mentary material Wang, Berthet and Samworth (2015), for Ŝ(·) defined in
Step 3 of Algorithm 4, for g ∈ Γ0, and large n ∈ N ,

E

{

∣

∣S \ Ŝ
(

v̂(n)(Y /
√
750)

)
∣

∣

∣

∣

∣
γ = g

}

≤ 2NgE

{

L
(

v̂(n)(Y /
√
750), v1(Qγ)

)2
∣

∣

∣
γ = g

}

≤ 2NgK0

√

k1+α log p

nθ2

We deduce by Markov’s inequality that for g ∈ Γ0, and large n ∈ N ,

(14) P

{

∣

∣S ∩ Ŝ
(

v̂(n)(Y /
√
750)

)∣

∣ ≤ 16Nγ/17
∣

∣

∣
γ = g

}

≤ 34K0

√

k1+α log p

nθ2

Let

Ω0,n := {γ ∈ Γ0} ∩
{
∣

∣S ∩ Ŝ
(

v̂(n)(Y /
√
750)

)
∣

∣ > 16Nγ/17
}

Ω′
0,n := {γ ′ ∈ Γ0} ∩

{
∣

∣S ∩ Ŝ
(

v̂(n)(X/
√
750)

)
∣

∣ > 16Nγ ′/17
}

=: Ω′
1,n ∩ Ω′

2,n,

say, where Nγ′ :=
∑p

j=1 γ
′
j. When n ∈ N is sufficiently large, we have on

the event Ω′
0,n that

(15)
∣

∣

{

j ∈ Ŝ
(

v̂(n)(X/
√
750)

)

: wj ∈ K
}∣

∣ > 3k/4.

Now set

Ω′
3,n :=

{

nb(u, {wj : j ∈ S′}) ≤ k

2
for all u ∈ V (G) \K

}

.

Recall the definition of K̂ from Step 4 of Algorithm 4. We claim that for
sufficiently large n ∈ N ,

Ω′
0,n ∩ Ω′

3,n ⊆ {K̂ = K}.
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To see this, note that for n ∈ N sufficiently large, on Ω′
0,n we have K ⊆ K̂

by (15). For the reverse inclusion, note that if u ∈ V (G) \ K, then on
Ω′
0,n ∩ Ω′

3,n, we have for sufficiently large n ∈ N that

nb
(

u,
{

wj : j ∈ Ŝ
(

v̂(n)(X/
√
750)

)}

)

≤
∣

∣{wj : j ∈ Ŝ} \K
∣

∣+ nb
(

u, {wj : j ∈ Ŝ} ∩K
)

≤
∣

∣{wj : j ∈ Ŝ} \K
∣

∣+ nb
(

u, {wj : j ∈ S′}
)

<
k

4
+
k

2
=

3k

4
.

This establishes our claim. We conclude that for sufficiently large n ∈ N ,

(16) P(K̂ 6= K) ≤ P
(

(Ω′
0,n ∩ Ω′

3,n)
c
)

≤ P
(

(Ω′
0,n)

c
)

+ P
(

Ω′
1,n ∩ (Ω′

3,n)
c
)

.

Now, by Lemma 9, we have

(17) |P(Ω′
0,n)− P(Ω0,n)| ≤ dTV

(

L(X,γ ′),L(Y,γ)
)

≤ 9(n + p)

5p log p
.

Moreover, by a union bound and Hoeffding’s inequality, for large n ∈ N ,

(18) P
(

Ω′
1,n ∩ (Ω′

3,n)
c
)

≤
∑

g∈Γ0

P
(

(Ω′
3,n)

c|γ = g
)

P(γ = g) ≤ me−k/800.

We conclude by (16), (17), (13), (14) and (18) that for large n ∈ N ,

P(K̂ 6= K) ≤ 9(n + p)

5p log p
+ 2e−k/800 + 34K0

√

k1+α log p

nθ2
+me−k/800 → 0

as n → ∞. This contradicts Assumption (A1)(τ), and therefore completes
the proof.

Proof of Theorem 7. Setting δ := p−1 in (3), there exist events Ω1

and Ω2, each with probability at least 1− p−1, such that on Ω1 and Ω2, we
respectively have
(19)

sup
u∈B0(2k)

|V̂ (u)− V (u)| ≤ 2

√

k log p

n
and sup

u∈B0(2)
|V̂ (u)− V (u)| ≤ 2

√

log p

n
.

Let Ω0 := Ω1 ∩ Ω2. We work on Ω0 henceforth. The main ingredient for
proving both parts of the theorem is the following weak-duality inequality:

max
M∈M1

tr(Σ̂M)− λ‖M‖1 = max
M∈M1

min
U∈U

tr
(

(Σ̂ − U)M
)

≤ min
U∈U

max
M∈M1

tr
(

(Σ̂ − U)M
)

= min
U∈U

λ1(Σ̂− U).(20)
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It is convenient to denote γ :=
√

k2 log p
nθ2

, and note that

γ ≤
√
k

16
min
j∈S

|v1,j| ≤
1

16
‖v1,S‖2 =

1

16
.

Proof of (a). From (20), it suffices to exhibit a primal-dual pair (M̂, Û ) ∈
M1 × U , such that

(C1) M̂ = v̂v̂⊤ with sgn(v̂) = sgn(v1).
(C2) tr(Σ̂M̂)− λ‖M̂‖1 = λ1(Σ̂ − Û).

We construct the primal-dual pair as follows. Define

Û :=

(

λ sgn(v1,S)sgn(v1,S)
⊤ Σ̂SSc − ΣSSc

Σ̂ScS − ΣScS Σ̂ScSc − ΣScSc

)

.

By (19) and Lemma 5, we have that ‖Σ̂ − Σ‖∞ ≤ 4
√

log p
n ≤ λ, so U ∈ U .

Let w = (w1, . . . , wk) be a unit-length leading eigenvector of ΣSS− ÛSS such
that w⊤v1,S ≥ 0. Then, define v̂ componentwise by

v̂S ∈ argmax
u∈Rk,‖u‖2=1

u⊤w≥0

u⊤
(

Σ̂SS − ÛSS

)

u, v̂Sc = 0,

and set M̂ := v̂v̂⊤. Note that our choices above ensure that M̂ ∈ M1. To
verify (C1), we now show that sgn(v̂S) = sgn(w) = sgn(v1,S). By a variant
of the Davis–Kahan theorem (Yu, Wang and Samworth, 2015, Theorem 2),

‖w − v̂S‖∞ ≤ ‖w − v̂S‖2 ≤
√
2L(v̂S , w) ≤

2
√
2‖Σ̂SS − ΣSS‖op

θ

≤ 2
√
2

θ
sup

u∈B0(2k)
|V̂ (u)− V (u)| ≤ 4

√
2γk−1/2,(21)

where the final inequality uses (19). But w is also a leading eigenvector of

1

θ
(ΣSS − ÛSS − Ik) = v1,Sv

⊤
1,S − 4γss⊤,

where s :=
sgn(v1,S)

‖sgn(v1,S)‖ . Write s = αv1,S + βv⊥ for some α, β ∈ R with

α2 + β2 = 1, and a unit vector v⊥ ∈ R
k orthogonal to v1,S . Then

v1,Sv
⊤
1,S − γss⊤ =

(

v1,S v⊥
)

(

1− 4γα2 −4γαβ
−4γαβ −4γβ2

)(

v⊤1,S
v⊤⊥

)

=
(

v1,S v⊥
)

(

a1 b1
a2 b2

)(

d1 0
0 d2

)(

a1 a2
b1 b2

)(

v⊤1,S
v⊤⊥

)

,
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where d1 ≥ d2 and
(

a1 a2
)⊤

,
(

b1 b2
)⊤

are eigenvalues and corresponding
unit-length eigenvectors of the middle matrix on the right-hand side of the
first line. Direct computation yields that d1 ≥ 1/2 > 0 ≥ d2 and

(

a1
a2

)

∝
(

1− 4γα2 + 4γβ2 +
√

16γβ2 + (1− 4γ)2

−8γαβ

)

.

Consequently, w is a scalar multiple of

(22) a1v1,S + a2v⊥ =
{

1 + 4γ +
√

16γβ2 + (1− 4γ)2
}

v1,S − 8γαs.

Since
{

1 + 4γ +
√

16γβ2 + (1− 4γ)2
}

min
j∈S

|v1,j| ≥ 2min
j∈S

|v1,j | ≥ 32γk−1/2

> 8γα‖s‖∞,

we have sgn(w) = sgn(v1,S). Hence by (22),

min
j=1,...,k

|wj | ≥

{

1 + 4γ +
√

16γβ2 + (1− 4γ)2
}

minj∈S |v1,j| − 8γα‖s‖∞
‖a1v1,S + a2v⊥‖2

≥ (32 − 8α)γk−1/2

1 + 4γ +
√

16γβ2 + (1− 4γ)2
≥ 12γk−1/2

1 + 4γ
≥ 48

5
γk−1/2,(23)

By (21) and (23), we have minj |wj | > ‖w − v̂S‖∞. So sgn(v̂S) = sgn(w) =
sgn(v1,S) as desired.

It remains to check condition (C2). Since sgn(v̂S) = sgn(v1,S), we have

tr(Σ̂M̂)− λ‖M̂‖1 = tr(Σ̂SS v̂S v̂
⊤
S )− tr(ÛSS v̂S v̂

⊤
S )

= v̂⊤S (Σ̂SS − ÛSS)v̂S = λ1(Σ̂SS − ÛSS).

Moreover,

Σ̂− Û =

(

Σ̂SS − ÛSS 0
0 Γp−k

)

.

As λ1(Γp−k) ≤ 1 by assumption, it suffices to show that λ1(Σ̂SS − ÛSS) ≥ 1.
By Weyl’s inequality (see e.g. Horn and Johnson (2012, Theorem 4.3.1))

λ1(Σ̂SS − ÛSS) ≥ λ1(ΣSS − ÛSS)− ‖Σ̂SS − ΣSS‖op

≥ 1 + θλ1(v1,Sv
⊤
1,S − 4γss⊤)− 2

√

k log p

n
≥ 1 +

3θ

8
> 1,(24)
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as required.

Proof of (b). We claim first that Ŝ = S. Let φ∗ := f(M̂) be the optimal
value of the semidefinite programme (5). From (24), we have φ∗ ≥ 1+3θ/8.
The proof strategy here is to use dual matrices Û defined in part (a) and Û ′

to be defined below to respectively bound tr(M̂ ǫ
ScSc) from above and bound

tr(M̂ ǫ
rr) from below for each r ∈ S. We then check that for the choice of ǫ

we have in the theorem, the diagonal entries of M̂ ǫ are above the threshold
log p/(6n) precisely when they belong to the (S, S)-block of the matrix.

From (20), and using the fact that tr(AB) ≤ tr(A)λ1(B) for all symmetric
matrices A and B, we have

tr(Σ̂M̂ ǫ)− λ‖M̂ ǫ‖1 ≤ tr
(

(Σ̂− Û)M̂ ǫ
)

= tr
(

(Σ̂SS − ÛSS)M̂
ǫ
SS

)

+ tr
(

ΣScScM̂ ǫ
ScSc

)

≤ tr(M̂ ǫ
SS)φ

∗ + tr(M̂ ǫ
ScSc)λ1(Γp−k)

= φ∗ − tr(M̂ ǫ
ScSc)(φ∗ − 1) ≤ φ∗ − 3θ tr(M̂ ǫ

ScSc)/8.

On the other hand, tr(Σ̂M̂ ǫ)− λ‖M̂ ǫ‖1 ≥ φ∗ − ǫ. It follows that

(25) tr(M̂ ǫ
ScSc) ≤ 8ǫ

3θ
≤ 1

6

(

log p

Bn

)2

< τ.

Next, fix an arbitrary r ∈ S and define S0 := S \ {r}. Define Û ′ by

Û ′
ij :=

{

λ sgn(M̂ij) if i, j ∈ S0

Σ̂ij − Σij otherwise.

We note that on Ω0, we have Û ′ ∈ U . Again by (20),

tr(Σ̂M̂ ǫ)− λ‖M̂ ǫ‖1 ≤ tr
(

(Σ̂− Û ′)M̂ ǫ
)

= tr
(

(Σ̂S0S0 − ÛS0S0)M̂
ǫ
S0S0

)

+
∑

(i,j)∈S×S
i=r or j=r

ΣijM̂
ǫ
ji + tr

(

ΣScScM̂ ǫ
ScSc

)

≤ tr(M̂ ǫ
S0S0

)λ1
(

Σ̂S0S0 − ÛS0S0

)

+
∑

(i,j)∈S×S
i=r or j=r

ΣijM̂
ǫ
ji + tr(M̂ ǫ

ScSc)λ1(Γp−k).

(26)

We bound the three terms of (26) separately. By Lemma 8 in Section 1 in
the online supplementary material Wang, Berthet and Samworth (2015),

λ1(Σ̂S0S0−ÛS0S0)≤λ1(Σ̂SS−ÛSS)−
{

λ1(Σ̂SS−ÛSS)−λ2(Σ̂SS−ÛSS)
}

min
j∈S

v̂2j .
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From (21) and (23),

min
j

|v̂j | ≥ min
j

|wj | − ‖w − v̂S‖∞ ≥ 3.9γk−1/2.

Also, by Weyl’s inequality,

λ1(Σ̂SS − ÛSS)− λ2(Σ̂SS − ÛSS)

≥ λ1(ΣSS − ÛSS)− λ2(ΣSS − ÛSS)− 2‖Σ̂SS − ΣSS‖op

≥ θ
{

λ1(v1,Sv
⊤
1,S − γss⊤)− λ2(v1,Sv

⊤
1,S − γss⊤)

}

− 4

√

k log p

n

≥ θ(1/2− 4γk−1/2) ≥ θ/4.

It follows that

(27) λ1(Σ̂S0S0 − ÛS0S0) ≤ φ∗ − 3.8γ2k−1θ.

For the second term in (26), observe that
∑

(i,j)∈S×S
i=r or j=r

ΣijM̂
ǫ
ij ≤ (1 + θv21,r)M̂

ǫ
rr + 2

∑

i∈S,i 6=r

θv1,iv1,rM̂
ǫ
i,r

≤ M̂ ǫ
rr + 2θ|v1,r| · ‖v1‖1

√

M̂ ǫ
rr ≤ M̂ ǫ

rr + 2θ
√
k

√

M̂ ǫ
rr,(28)

where the penultimate inequality uses the fact that M̂ ǫ
ir ≤

√

M̂ ǫ
iiM̂

ǫ
rr ≤

√

M̂ ǫ
rr for a non-negative definite matrix M̂ ǫ. Substituting (27) and (28)

into (26),

tr(Σ̂M̂ ǫ)− λ‖M̂ ǫ‖1 ≤ tr(Σ̂ǫ
S0S0

)
(

φ∗− 3.8γ2θ
k

)

+ M̂ ǫ
rr + 2θ

√

kM̂ ǫ
rr + tr(M̂ ǫ

ScSc)

≤ φ∗ − 3.8γ2k−1θ tr(M̂ ǫ
S0S0

) + 2θ

√

kM̂ ǫ
rr

≤ φ∗ − 3.8γ2k−1θ
{

1− tr(M̂ ǫ
ScSc)

}

+ 2θ(
√
k + 1.9γ2)

√

M̂ ǫ
rr.

By definition, tr(Σ̂M̂ ǫ)− λ‖M̂ ǫ‖1 ≥ φ∗ − ǫ, so together with (25), we have

√

M̂ ǫ
rr ≥

3.8γ2k−1θ(1− 8ǫ
3θ )− ǫ

2θ(
√
k + 1.9γ2)

≥ 1.9γ2k−1(1− 8ǫ
3θ )

(
√
k + 1.9

256 )
− ǫ

2θ

≥ 1.8γ2k−3/2
(

1− 8ǫ

3θ

)

− ǫ

2θ

≥ 1.8k1/2 log p

nθ2

{

1− 1

6

(

log p

Bn

)2}

− 1

32

(

log p

Bn

)2

≥ 1.4 log p

Bn
> τ1/2.(29)
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From (25) and (29) we conclude that Ŝ = S, as claimed.
To conclude, by Yu, Wang and Samworth (2015, Theorem 2), on Ω0,

L(v̂MSDP, v1) = L(v̂MSDP
S , v1,S) ≤

2‖Σ̂SS −ΣSS‖op
λ1(ΣSS)− λ2(ΣSS)

≤ 4

√

k log p

nθ2
,

where we used (19) and Lemma 5 in the online supplementary material
Wang, Berthet and Samworth (2015) in the final bound.

For the final part of the theorem, when p ≥ θ
√

n/k,

sup
P∈P̃p(n,k,θ)

Ep

{

L(v̂MSDP, v1)
}

≤ 4

√

k log p

nθ2
+ P(Ωc

0)

≤ 4

√

k log p

nθ2
+ 2p−1 ≤ 6

√

k log p

nθ2
,

as desired.
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Chun, H. and Sündüz, K. (2009) Expression quantitative trait loci mapping with multi-
variate sparse partial least squares regression. Genetics, 182, 79–90.

d’Aspremont, A. El Ghaoui, L., Jordan, M. I. and Lanckriet, G. R. G. (2007) A direct
formulation for sparse PCA using semidefinite programming. SIAM Rev., 49, 434–448.

Davis, C. and Kahan, W. M. (1970). The rotation of eigenvectors by a pertubation. III.
SIAM J. Numer. Anal. 7, 1–46.

Deshpande, Y. and Montanari, A. (2014) Sparse PCA via covariance thresholding. Avail-
able at http://arxiv.org/abs/1311.5179.

Diaconis, P. and Freedman D. (1980) Finite exchangeable sequences. Ann. Probab., 8,
745–764.

Feldman, V., Grigorescu, E., Reyzin, L., Vempala, S. S. and Xiao, Y. (2013) Statistical
algorithms and a lower bound for detecting planted cliques. Proceedings of the forty-fifth
annual ACM Symposium on Theory of Computing, 655–664.

Feige, U. and Krauthgamer, R. (2000) Finding and certifying a large hidden clique in a
semirandom graph. Random Structures Algorithms, 16, 195–208.

Feige, U. and Krauthgamer, R. (2003) The probable value of the Lovàsz–Schrijver relax-
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