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Shrinkage Estimators



1 Introduction

In his celebrated 1956 paper, Stein [28] considered the problem of estimating the mean vector 6 of a
p-variate normal distribution with identity covariance under quadratic loss, based on one observation.
In other words, with X|8 ~ Np(6,I), the problem is to estimate 6 under the loss function

/4

L£(9,8) = 15— 6l = S7(6; — 6:)”.

i=1

The admissibility of the estimator do(X) = X for p =1 had already been proved by, e.g., Blyth [6],
and Stein’s aim had been to demonstrate admissibility for p > 2. Instead he found that X was
admissible for p = 2 and inadmissible for p > 3. In particular, Stein showed that ’shrinkage’
estimators of the form

a
Oop(X)=(1—- —+—= | X
() ( b+||X||2)

dominate X for a > 0 sufficiently small and b sufficiently large. Five years later, James and Stein [25]
observed that 0 < a < 2(p — 2) and b = 0 suffice, i.e. that estimators of the form

5.(X) = (1 - ﬁ) X

dominate X for 0 < a < 2(p — 2). Furthemore, they were able to show that d,_» had the uniformly
smallest risk of any estimator in this class.

From a mathematical viewpoint, one of the disturbing features of this result concerns the notions of
invariance and equivariance. The problem of estimating 6 on the basis of X does not depend on a
choice of origin; formally, it is location invariant, in the sense that the loss function L satisfies

L6+ a,6+a)=L(0,0) for all a € RP.
One might therefore expect a location equivariant estimator, that is, one satisfying
0(X +a)=06(X)+aforalacRP,

to be preferable to one depending on a choice of origin. It is clear, however, that while X is
equivariant, the James-Stein estimators d, are not.

Since Stein’s paper was published, much work has been done to try to generalise the result to the
estimation of the mean vector 8 of a p-variate location parameter family. Through many small steps,
much progress has been made, and these developments are outlined in Section 4. Before this, in
Section 2, we give an empirical Bayes argument to indicate that certain shrinkage estimators might
be expected to dominate X in greater generality than the multivariate normal case. In Section 3,
we give a detailed treatment of the problem mentioned above, where X has a p-variate normal
distribution. Apart from the obvious importance of this case in its own right, both the theorems
and techniques of proof are indicative of the more general results. In addition, we are able to exhibit
admissible estimators for this case. Section 5 discusses the paper of Evans and Stark [21], which
contains the most powerful result to date, and which uses the idea of representing the distribution
of X as that of a stopped Brownian motion.



2 An Empirical Bayes Argument

The following empirical Bayes argument is well-known (see Efron and Morris [19], Lehmann [26,
pp. 299-302], Brandwein and Strawderman [12]), and leads to the optimal James-Stein estimator of
Section 2.

Let X |0 ~ Np(0,I) with p > 2, and suppose the prior distribution on 6 is 8 ~ N,(0,bI), where b is
unknown. Suppose we wish to estimate # under quadratic loss. The posterior density of § given X
is easily calculated as follows:
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The Bayes estimate §,(X) of 0 is given by the posterior mean, i.e.

55(X) = (1 - b%) X.

Of course, d; is not a valid estimator of 8 as b is unknown, but we can estimate it from the data.
One way to do this (for another, see Efron and Morris [19] or Lehmann [26, pp. 299-302]) is to first
calculate the marginal distribution of X. This can either be done directly using the formula (with
obvious notation)

fx(z) = [ [f(z;0)m(6)db,
RP
or by noting that (X — 6)|6 ~ Np(0,I), independent of 6, so that X — 6 and 6 are independent.
Thus the marginal distribution of X = X — 6 + 0 is p-variate normal with mean 0 and covariance
matrix (b+ 1)1I.

If X were scalar, one observation would give no information about the variance b. However, when
X is a p-vector, we can use one observation to gain a meaningful estimate of b, based on the fact

that the components of X are independently normally distributed with mean 0 and variance b+ 1.
This means that ”b +”1 ~ X2, 80 E(ﬁ) = , since ]E(xl_g) = zﬁ‘ Thus we might reasonably

estimate b+1 by & ”X”2

1
b+1

This procedure yields the estimator (1 — “ & )X which is precisely the James-Stein estimator

0p—2 of Section 1.

Remark: Observing that E ( i XHQ) =T +1 and using ” XHQ as an estimate of == is particularly con-

b+1
venient, in that it leads to the optimal James-Stein estimator. However, it is also slightly contrived,

and one might equally well note that E ( W) b+ 1, whereupon estimating b + 1 by yields



the estimator J,. This estimator also dominates X for p > 5, and is close to the optimal estimator
if p is large.

Remark: It is reasonably clear that the assumption of normality for the prior distribution of 6
should not be crucial if p is large, since the effect of the data on the posterior distribution will
‘swamp’ that of the prior distribution.

3 The Normal Case

3.1 Location Parameter Family Preliminaries

Definition 3.1. Suppose f(X) is a p-variate density function. The family of densities f(x — ),
indexed by 6 € RP is called a location parameter family, and 0 is called the location parameter.

Remark: Note that whenever Ey (X) < oo, we may, by shifting the indexing parameter 6 if neces-
sary, assume without loss of generality that Fy(X) = 0.

Remark: If Py is the probability measure corresponding to the density f(x—8), then the distribution
of X under Py is the same as the distribution of X + 6 under Pq. In particular, Eg(X) = 6.

Recall that the general problem is to estimate the mean vector  of a p-variate location parameter
family under the quadratic loss function

L(6,8) = |5 - 6] = Y (6 — 6:)*. 1)

i=1

When X |0 ~ N, (0, I), the risk function of the estimator §o(X) = X is given by
P
R(6,80) =By [|X - 6]]> = > Var(X;) = p,
i=1

a constant, independent of . In fact, this result holds more generally:

Lemma 3.2. Suppose the density of X is from a location parameter family. Then the risk of any
equivariant estimator 6(X) is constant.

Proof. We have

R(0,6) = Eg[|6(X) — 0]|* = Eo [|6(X +6) — 6] = Eo|6(X)|I%,
a constant, independent of 6. O
Thus if we can find a location equivariant estimator with smallest (constant) risk, it makes sense to

speak of a best equivariant estimator.

When X is an observation from a location parameter family with mean vector #, the estimator
00 (X) = X is the best equivariant estimator (see Berger [4, pp. 247-248] for a proof). Furthermore,



it follows from Kiefer [24] that X is minimax. Brown [14] extended Stein’s original result, showing
that the best equivariant estimator of a location parameter is inadmissible for quadratic loss (1)
when p > 3.

It is clear that if we can find an estimator §(X) which dominates X, then it too will be minimax,
so in particular any admissible estimator is minimax. Conversely, any minimax estimator must be
at least as good as X, in that

R(6,6) > R(6,X) for all 0 € RP.

Therefore, if it is more convenient, we might say that a class of estimators is minimax rather than
that it dominates X, although typically it is only at the endpoints of a range of minimax estimators
that we might have equality of the risk function for all values of 6.

3.2 James-Stein Estimators

As previously noted, Stein [28] proved that when X6 ~ N,(6,I), estimators of the form

a
Opp(X)=(1—- ———= | X
#(X) ( b+||X||2)

dominate X for a > 0 sufficiently small and b sufficiently large. His proof involved an information
inequality argument. James and Stein [25] improved the result, giving an explicit class of dominating
estimators

52(X) = (1 - ﬁ) X

fo 0 < a < 2(p —2). Their new proof used the fact that a non-central chi-squared random vari-
able with p degrees of freedom and non-centrality parameter [|6]|* (written x7(||6]|*)) has the same

distribution as a random variable W, where W is obtained by taking K ~ Pm(”g|| ) and letting
WK ~ X2,k Both this proof and the earlier one are relatively long and are omitted here.
However in 1981, Stein [30] published his ‘unbiased estimation of risk’ technique, which had been

known to him since 1974, and which simplifies the proof of the James-Stein result substantially. It
depends upon a simple integration by parts identity, which has become known as Stein’s Lemma.

Lemma 3.3 (Stein’s Lemma). Let X have a univariate normal distribution with mean 6 and
variance 1, and let g be a real-valued differentiable function satisfying Ey|g'(X)| < co. Then

Eg (9(X)(X —6)) = B (¢'(X)).

Proof. We have

5 - ﬁ\
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since the condition on ¢’ is sufficient to ensure the integrated term is zero. O

Remark: This lemma can be used to simplify calculations of higher order moments. For instance,
if X|0 ~N(0,I), then

Eo (X?) = Eg (X*(X — 6 +0)) = 2Eg (X)) + 0E(X?) = 20 + 6(6* + 1) = 30 + 6°.

We use this lemma to obtain an unbiased estimate of the risk of d,(X), and hence the required
result.

Theorem 3.4. The estimator 6,(X) dominates X for 0 < a < 2(p — 2) when p > 3. Furthermore,
the estimator

8, 2(X) = (1 - %) X

dominates every other estimator in this class.

Proof.

2

R(6,6.(X))

E”H( ||X||2) X0

)
X2
Applying Stein’s lemma, to each component X;, we obtain
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= p+(a® —2a(p—2))Ey (ﬁ) :

We note that the quadratic a — 2a(p — 2) is negative for 0 < a < 2(p— 2), and attains its minimum
at a = p — 2. This proves the theorem. O

It is both interesting and instructive to compare the risk functions of d,_» and &y, and this means
calculating Ey (W) explicitly. Observe that ||X |6 ~ x2(||f]|*), and we have already noted



2
that we can rewrite this distribution in terms of a random variable K, where K ~ Poi(”g|| ), and

2
IX]*|K ~ X127+2K' Thus
1 1
_ E{ —— | K
IE”(||X||2> Eﬂ( (||X||2 ))

1
a IE9(;0+2K—2)
&1 e
- e Zp+2k—2 o fL
k=0
Hence the risk of §,_» is given by
o0
gt O
R(8,8p-2(X)) =p = (p—2)%¢ 2 ;p+2k_22kk!-

Although we cannot write this sum in a closed form, by approximating it with a large but finite
number of terms, I have obtained an accurate representation of the graph R(6,d,—2(X)) against ||6]|
(see Figure 1). Note particularly that at the origin, the risk of d,_» is 2 for all values of p > 3.

Observe that d,_» is still inadmissible: it is dominated by the ‘positive-part’ James-Stein estimator

5t (X)) = (max (0, 1-— %)) X

due to the fact that the shrinkage factor becomes negative for small || X||%. If Pp(||X||? <p—2) =
q(]|0]]), say, then a very similar calculation to the one above gives

a2 2 2k
R(6,5;_5(X)) = a(IONIOI + (1 = a(léID) <p— -2 Y e )

This facilitates a numerical approximation to the risk function of 5;

in Figure 1.

o, which I have also included

Remarkably, even 5;’_2 is inadmissible; we return to the question of admissibility in Section 3.4.

3.3 Choice of Attractor

The estimators d, in Section 3.2 shrink X towards the origin, and this is where it is observed (see
Figure 1) that the improvement in risk over the usual estimator is greatest. If 8y € RP, estimators
of the form

a
6a X)=60y+|1— ——"— X — 0
700( ) 0 ( ||): 60”2) || 0”

shrink X towards 6y and it is clear that d, ¢, dominates X provided 0 < a < 2(p — 2), with the
greatest improvement in risk being at §y. We are therefore interested in the problem of choosing the
best ‘attractor’ §y. The Bayesian answer, of course, is that we should select 6 such that 6 is close to
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Figure 1: Risks of X, the optimal James-Stein estimator d,_» and its positive-part counterpart 6;_2
forp=5



0o with high prior probability. In fact, shrinkage estimation is only of practical benefit when there
is some reason to believe that 0 is likely to lie in a fairly small region. In the absence of such prior
information, however, we may be able to select a resonable value of 6y from the data.

For instance, in the important special case where our prior belief is that the components of € are
equal, we can carry out a similar analysis to that of Section 2. Recall then that we had X|0 ~
N,(0,I), but now suppose firstly that p > 4, and secondly that the prior distribution on @ is
6 ~ N,(&bI). The marginal distribution of X is now Np(&, (b + 1)I). This suggests using X1 =

(% 1 Xi) 1 as an estimator of { (where 1 is a p-vector of ones). Further, since

14

Y X=X~ 0+

i=1

we might, by the same reasoning as in Section 2, estimate 317 by

__p=3
P (X —X)?
In this way, we obtain the estimator
— p—3 _
X1+(1——_>(X—X1). (2)
i1 (Xi — X)?

This estimator used was first proposed in 1962 by Lindley in a discussion of a paper by Stein [29].
An excellent informal example and discussion of its utility in a practical situation is given in Efron
and Morris [20].

As is to be expected, we pay a price in terms of risk for our estimate of 8y; the minimum risk for the es-
timator in Equation (2) is 3 for all values of p > 4, and is attained on the set
{GERP :012922...261)}.

3.4 Finding Admissible Estimators

We return to the problem of finding admissible estimators when X |6 ~ N,(8,I) and p > 3. Recall
from Section 3.2 that both the optimal James-Stein estimator d,_» and its positive-part counterpart
6;72 were inadmissible. The following theorem, whose proof is straightforward and deferred to the
Appendix (Theorem 6.1), shows that the search for an admissible estimator reduces to finding a
prior distribution with an analytically tractable Bayes estimator. Note that a proper prior measure
is one with finite total mass (so by scaling, we may assume its total mass to be 1).

Theorem 3.5. Suppose the distribution of X given 0 is such that the risk functions R(0,d) under
quadratic loss are continuous in 6 for all decision rules §. Suppose further that the proper prior
measure I1 gives positive probability to any subset of RP of positive Lebesgue measure. Then a Bayes
rule with respect to 11 is admissible.

Remark: When X |6 ~ N,(8,I), the risk functions are continuous in 6 for all decision rules § (for
a proof, see Ferguson [22, pp. 139-140]).



Before we can find any Bayes estimators, we will need the following extension to the James-Stein
class of minimax estimators, due to Baranchik [1] and Strawderman [31].

Lemma 3.6. Estimators of the form

AR
‘”””‘(1 ||X||2)X

are minimaz for 0 < (|| X||?) < 2(p — 2), provided r(-) is increasing.
Proof. For any spherically symmetric estimator, i.e. one of the form h(||X]|?)X, the difference in
risk between itself and X is given by

Eo[|h(IX (%)X — 611 —Eo|X — 6]1* = Eo (I X|I*h*(I1X11*)) — 267 g (A(IX ) X) + [16]]* — p.

Consider the first term on the right-hand side. Using the same repesentation of a non-central chi-
squared random variable as was mentioned in Section 3.2, we have

o0

nen?

2>
k=

0

(||0 2

12k
Eo (IX[1”h*(1X 1)) = e~ Z!) Eo (Xpt2kh” (Xpran)) - 3)

To compute 207Eg(h(]|X||*)X), we make an orthogonal transformation such that
0 = (]|9]|,0,0,...,0). Note that because of spherical symmetry, this does not affect the expec-
tations. A simple calculation (see the Appendix, Sublemma 6.2), shows that

a2 <2 2\ k
207 (X1P)) = =43 (155) GRG0 (@

where g denotes the expected value when 6 = (]|0][,0,0,...,0). Finally, observe that

oo W k o 2 W et c© 2k W k
o = toiee 3 % > % > % ®)

since the £ = 0 term in the final expression does not contribute to the sum.

Putting Equations (3),(4) and (5) together, we end up with

oy k
1612 ( 62 )
R(0,h(||X||2)X) —R(,X)=¢€" 2 Z TRl (]E(Xzza+2kh2(xz2;+2k)) - 4kE(h(X;27+2k)) —-p+ Zk)

k=0

To show the above difference is negative, it suffices to show that for every integer k,

E(X?)Jrzkhz (X?;-}-Zk)) - 4k]E(h(X12)+2k)) -p+2k<0.
We are interested in estimators of the form

_ rdIX1P?)

RIX|?) =1 - ===
(1x 1) IXIP



and with the stated assumptions on r(-), we can compute as follows:

E(X +2kh Xp+2k)) 4kE(h(X;2;+2k)) —-p+2k

2
= K2 ( Xf’”")) —4k<1 L”“’“)) —p+2k}
P2k Xo ok X542k

r?(x; r(Xp2k)
= IE{ p+2k — 2r(xp+2k) + 4kp7+2k} using IE(Xf,Hk) =p+ 2k
Xp+2k (Xp+2k)
(X5 4ok) 4k
= ]E{T Xp+2k ( P 2 -2
Xp+2k Xp+2k
. 2(p—2) + 4k .
< B (DTN gy <252
Xp+2k
2p — 4 + 4k 2p—4+4k
ot P ) (A )
Xp+2k Xp+2k
< 0
since the covariance between an increasing function and a decreasing function is non-positive, and
E 2’;_2474'4’“ — 2> = 0. This completes the proof of the lemma. O
p+2k

Remark: This lemma shows that the class of minimax estimators is considerably richer for p > 3
than it is for p =1 or p = 2, when X is the unique minimax estimator.

The challenge is now to find prior distributions on 8 such that the resulting Bayes estimators satisfy
the conditions of Lemma 3.6. Baranchik [1] claimed (as a result of private communication with
Charles Stein) to have found at least one admissible estimator using such a technique, but we prefer
to follow the approach of Strawderman [31].

We consider two- stage priors for 6, where at the first stage 8|A ~ Np(0, 1_’\), and at the second
stage, A ~ (1 —b)A7% on 0 < A < 1. Note that the prior distribution on A is proper if and only if
—00 < b < 1. The posterior distribution of 8 given X and A is N,((1 — A)X,1 — A), and the Bayes
estimator of 4 is given by

E@|X) = E(E@6X,)) |X)
= E((1-2X|X)
= (1-EQX))X. (6)

We can therefore prove the following theorem:
Theorem 3.7. For p > 5, the Bayes estimator giwen in Equation (6) is minimaz, provided

L6—p) <b< 1.

Remark: The condition that p > 5 is necessary and sufficient to ensure that the marginal prior
distribution on 6 is proper.

10



Proof. By computing the joint posterior distribution of # and A given X, integrating out 6 and then
taking the expected value of the marginal posterior distribution of A given X, we obtain

1 2
EAX) = —— [p+2-2b— ——
| Jo AFP exp(152 | X [[2)dA

e "

(For the details of this calculation, see the Appendix, Lemma 6.3). Defining (|| X||?) to be the term
inside the square brackets on the right-hand side of Equation (7), we see that the Bayes estimator of
Equation (6) is precisely of the form studied in Lemma 3.6. It therefore remains to show that r(-)
is increasing and 0 < r(-) < 2(p — 2). The first requirement follows since fol AEb exp(152(|X|%)dA
is increasing in || X ||?; to show the second, we note first that

r(0) =p+2—-2b— —p+2-2-2¢-b+1)=0.

Joy AB=bdx
Thus the conditions of Lemma 3.6 will be satisfied provided p + 2 — 2b < 2(p — 2), or equivalently
1

—(6—p) <b.

5(6-p) <

It is clear that for p > 5 we can choose b in the required range. This completes the proof of the
theorem. 0

The cases p = 3 and p = 4 remain. We will need the notion of a generalised Bayes estimator:

Definition 3.8. If the random variable X has density f(x;6) and I is an improper prior measure,
then a generalised Bayes estimator §(X) with respect to the loss function (1) is one which minimises

/ 16 — 6112 £ (; 6) dTI(6).
RP

Remark: In the case where X |0 ~ N,(8,1), it is clear that the generalised Bayes estimator is given
by

e i ()

" oo T dI(g)

6(X)

In other words, we simply treat the improper prior distribution IT as if it were proper, and compute
the posterior mean as usual to find the generalised Bayes estimator.

Corollary 3.9. For p > 3, the estimator (6) is generalised Bayes and minimaz, provided
%(6—;0) <b< %(p+2).

Proof. The generalised Bayes estimator (6) exists provided the integral in Equation (7) exists, for
which we require § —b > —1. This gives the right-hand inequality. The fact that (6) is minimax
follows in the same way as in Theorem 3.7, and the range of minimax values for b is non-empty for

p>3. O

Unfortunately, generalised Bayes estimators need not be admissible, and the verification of admis-
sibility can be difficult. However, in the multivariate spherically symmetric case, Brandwein and
Cohen [17] gave a simple condition which ensures that certain generalised Bayes estimators are
admissible. We state this condition without proof below.

11



Theorem 3.10. Suppose 6(X) is a bounded risk generalised Bayes estimator of the form 6(X) =

h(||X||*)X. If there exists an M such that h(y) <1 — ”sz for ally > M, then §(X) is admissible.

Remark: Since the generalised Bayes estimators (6) are minimax, their risk is bounded above by
p.

The work in the remainder of this subsection, although almost certainly known to Strawderman and
others, has not been published to the author’s knowledge. In order to find admissible generalised
Bayes estimators for p = 3 and p = 4 of the given form, it remains to find a b in the range
2(6—p) < b< 1(p+2) such that r(y) > p — 2, where

2

r =p+2—2b— .
= TN exp (L59)

Equivalently, we must find b in the given range such that

2
— >0 8
o N e () an ¥

4—2b
We note that, by monotone convergence, for any fixed b € [1(6 — p), 3(p + 2)),

L 2_p ﬂy
A27% 2 Yd\ = 00 as y = 00,
0

so any b < 2 will satisfy Equation (8).

By this discussion and Corallary 3.9, we have therefore proved the following theorem:

Theorem 3.11. Forp =3, if b € [3,2) then the generalised Bayes estimator (6) is admissible. For
p=4, if b€ [1,2), then (6) is admissible.

4 Extensions to other distributions

We now give a discussion of the developments that have been made towards generalising Stein’s ideas
for the multivariate normal case to other location parameter family distributions. We concentrate
on results which have shown new families of distributions to be amenable to shrinkage estimation,
rather than those which have extended the range of parameter values within such a family. For such
extensions, see, e.g. James and Stein [25], Berger[3] and Bock[8]. Also omitted in this discussion
is the work on finding estimators which dominate X for other loss functions, such as the general
quadratic loss

L(8,6) = (6 — )T D(6 — 6) where D is a given positive definite matrix,

and non-decreasing, concave functions of quadratic loss. See e.g., Bhattacharya [5], Bock [7] and
Brandwein and Strawderman[11, 13], for results of this nature. Instead, we merely note that in
general it is found that shrinkage estimators are relatively robust to such changes in loss function.

As was observed in Section 2, Stein [29] pointed out that the normality assumption should not
be essential to his argument. In fact, Brown [14] proved that the best equivariant estimator of a

12



location parameter was inadmissible for almost arbitrary loss, including the case of quadratic loss
(1), where X is the best equivariant estimator. In the light of this, Strawderman [32] considered
‘variance mixtures’ of multivariate normal distributions, that is, density functions of the form

fle =0 = [ e =21 dG(o), o)

where G(+) is a known cumulative distribution function (cdf) on (0, c0). The motivation for consid-
ering such distributions arises from the fact that a random variable X with such a density is, given
o, distributed as a p-variate normal with mean @ and covariance matrix ¢21, while the unconditioned
distribution of ¢ is G(-). Two important special cases are:

i) The p-variate normal distribution N,(6,02I), which has G(-) degenerate at o =1

2
ii) The type I p-variate t-distribution, which has ﬁ ~ %" This is the distribution of T', where
Ty =% for j=1,2,... ,p, with X|0 ~ N,(6,1), and §2 ~ X
Strawderman proved the following theorem:

Theorem 4.1. Let X be a single observation from the density (9). Then, for p > 3, estimators of
the form

5:(X) = (1 - %) X (10)

are minimax provided:

i)0<r() < W

i) r(|| X||?) is increasing in || X||?
i) ﬂlf%l@ is decreasing in || X||?
iv) o (1 X]?) < oo

v) Eo (| X[|7?) < o0.

Strawderman’s proof is very similar to Lemma 3.6 for the p-variate normal case and is omitted.

Remark: Conditions i) and ii) are the same as in Lemma 3.6; condition v) is relatively weak, and
will be satisfied if the density f is bounded in a neighbourhood of the origin.

Berger [3] gives a slight extension to Strawderman’s result. Special cases for which he finds classes
of minimax estimators are

i) A double exponential density of the form
e ll=—0ll
apI'(p)

(where aj, is the surface area of the unit sphere); and

fllz=0ll) =

13



ii) The Cauchy-like density

o 2T (a) r'(%)
flz = 8l) = 1+ ||x_9||2)aapl-w(a_ g)

He shows these densities are of the form given in Equation (9) by proving that if f is completely
monotonic on (0,00) (i.e. (—1)”(58—1 (s) > 0 for all n € Ny), then it is of the required form.

The next big steps forward were made by Brandwein and Strawderman [10] and Brandwein [9].
By means of lengthy explicit calculations, they together found minimax estimators of similar form
to those of Strawderman [32] for spherically symmetric unimodal (s.s.u.) distributions, and then
Brandwein extended the work to all spherically symmetric (s.s.) distributions. Both the conditions
and conclusions of the main theorem are very similar in the two cases, so we omit the statement and
proof of the earlier result. However, the essence of the proof was first to find minimax estimators
for p-dimensional spherical uniform distributions X6 ~ U{||X — || < R}. They were then able to
characterise s.s.u. distributions as ‘R-mixtures’ of spherical uniforms. That is, they showed that the
density of an s.s.u. distribution about € with respect to Lebesgue measure is of the form

Flllz - 0]) = / = Ts(w, B) dF(R)

where S = {z : ||z — 0|| < R}, F(-) is a cdf on (0,00), and ¢ is a positive constant. In this way, they
could prove that their class of minimax estimators was valid for all s.s.u. distributions.

Brandwein made use of the similarly intuitive result proved in, e.g., Dempster [18, pp.271-2], that if
X has a s.s. distribution about 6, then the conditional distribution of X given that || X — || = R is
uniform over the set {z : ||z — || = R}. Thus, having found minimax estimators for the case where
X|6 ~ U{||X —6]| = R}, she was able to extend her result to all s.s. distributions. Her result can
be stated as follows:

Theorem 4.2. Let X have a p-dimensional spherically symmetric distribution about 8. Then, for
p > 4, estimators 0, of Equation (10) are minimaz provided:

. 1
i) 0 <r() <222 sy

ii) 7(|| X|?) is increasing in || X||?

1) Tﬁ%f is decreasing in || X ||?

iv) Bo (|| X[|7%) < o0

Remark: The earlier s.s.u. result was shown to hold with marginally improved upper bounds on
r(-). Brandwein and Strawderman were able to replace the fraction ”p%z by 2 B for p > 4, and also
give a result for p = 3, with the same fraction replaced by 0.375.

Remark: This theorem was proved in a shorter and more elegant manner as a special case of a
more general class of dominating estimators §(X) = X + ag(X), given by Brandwein and Straw-
derman [13]. They applied the divergence theorem to the cross-product term in the expression for
the risk of such an estimator (calculated conditionally on || X —6|| = R) to generalise Stein’s lemma
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(Lemma 3.3). However, the hypotheses on g are slightly technical and are not discussed here. Cellier
and Fourdrinier [16] were able to somewhat weaken these hypotheses.

There are two appealing features of Theorem 4.2. Firstly, it demonstrates the applicability of
shrinkage estimators to all s.s. distributions generated by a one-dimensional cdf for F(-) for R on
(0,00) provided that

00 > By (|| X[|7*) = Er (Eo (|| X[ 7*|R)) = Er (R7?).

Secondly, the theorem shows that shrinkage estimators are robust with respect to distributional
assumptions. The upper bound Q%W of condition i) in Theorem 4.2 is the best which
holds uniformly for all s.s. distributions. Although better upper bounds are possible for specific
distributions, the improvement is usually not significant. Note in particular that if r(-) is constant,
then for any s.s. distribution, the risk of §, at 0 is smaller than that of X if and only if

2 ,r2
=T (‘2” ||X||2) '

In other words, we must have r < W, which is only larger than the upper bound of condition

o<usp—s | (- 5ig)
< E || X]|* - Eo X

i) by a factor of _£5.

Finally, we can now follow Brandwein [9] and give a discussion of the practically important situa-
tion of multiple observations. We start with a simple lemma characterising spherically symmetric
estimators, the proof of which is the author’s own.

Lemma 4.3. An estimator 6(X) is spherically symmetric, i.e. is of the form §(X) = h(||X||*)X
for some real-valued function h, if and only if it satisfies

0(XP) =6(X)P for all p x p orthogonal matrices P.

Proof. If § is spherically symmetric, then for any p x p orthogonal matrix P,
S(XP) = h(IXPI)XP = h(|X )X P = §(X)P.

Conversely, if the condition holds, then let §(X) = h(X)X, for some p X p matrix h(X), with entries
h;j, say. We have

h(X)XP =6(X)P =6(XP)=h(XP)XP for all orthogonal P.

Thus h(X) = h(X P) for all orthogonal P.

Suppose || X|| = ||Y]], so that there exists an orthogonal matrix @ such that ¥ = X@Q. Then
h(X) =h(XQ) = h(Y).
Thus h = k(|| X||?).

Finally, we must show that h is a scalar multiple of the identity matrix, so that in fact §(X) =
h(||X|?) X, for some real-valued function h. To this end, let P be the orthogonal matrix given by

0 10 ... O

0O o1 ... 0
P=| : e

0 00 1

-1 0 0 0



so that

0 0 0 -1 hi1 hi2 his ... hy 0O 1.0 ... O
1 0 ... 0 0 h21 h22 h23 h2p 0 01 ... 0
PThp = o1 ... 0 O h31 hsa hss ... hgp . - .
oo A 0 00 ... 1
00 ... 1 0 hpt hpa hps ... hyy -1 0 0 ... 0
hpp _hpl _hp2 cee _hp,p—l
—hip hi1 hio e hip-1
= _h2p h21 h22 e h27p71
—hp—1p hp-11 hp_1p .. Bp_1p
So if PThP = h, then
hpp = hll = h22 = ... = hpfl,pfl
—hpl = h12 = h23 =...= hp_l,p = hpl
—hp2 = h13 = h24 =...= hp,1,1 = hp2
—hp’p,1 = hlp =hyy=...= hp,pfl.

The top string of equalities shows that the diagonal entries of h are equal, while the the lower lines
show that every off-diagonal entry is zero. Hence h is a scalar multiple of the identity matrix, as
required. O

Similarly, a random variable X whose cdf is absolutely continuous with respect to Lebesgue measure
is spherically symmetric about 6, i.e. its density is a function of ||z — 8|, if and only if (X — )P has
the same distribution as (X — 6) for every p X p orthogonal matrix P.

Now suppose that we have n observations X, X® .. X® from a s.s. distribution about 6.
The best equivariant estimator with respect to quadratic loss (1) in such a situation is Pitman’s
estimator, given by

(5(X(1),X(2), o ,X(")) —x® _ ]EO(X(I)|X(2) - X0 xG _x® . x()_ X(l))_

Often, this is analytically intractable, and the sample mean X, or maximum likelihood estima-
tor (MLE) may be preferred. All these estimators are spherically symmetric location equivariant
estimators (provided for the MLE case, it is unique) . That is, the estimators satisfy

S((XDP+a, XPP+a,...,XWP4a)=6XD X . XP ta,
for all p x p orthogonal matrices P, and a € R?. We can now prove the following theorem:

Theorem 4.4. Suppose XV, X@ .. X gre i.i.d. from a p-dimensional spherically symmetric
distribution about 6, and that 5(XM, X2 . X™) is q spherically symmetric location equivariant
estimator. Then §(X(M, X . X)) glso has a spherically symmetric distribution about 6.
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Proof. For any (measurable) set S, we have

IF’(((S(X(”,X@)7 XMy g Pe S) P (6((X(1) —0)P,(X® - 0)P,... ,(X™ —9)P) € S)

because § is spherically symmetric
= ]P((S((X(l) —-0),(X® -9),...,(Xx™ -9)) € S)
since (X; — 6)P has the same distribution as (X; — 6)
_ u»(((s(;cm,xm, XY ) e s)
by location equivariance of 4.

Hence 6(XM, X® ..., X(™) has a spherically symmetric distribution about 6. O

This means that, provided p > 4, we can apply Brandwein’s result in Theorem 4.2 directly to any
one of the common estimators mentioned above to obtain new ones which dominate them in terms
of risk.

5 The paper of Evans and Stark

All the generalisations of Stein’s proof of the inadmissibility of the best equivariant estimator in the
normal case have thus far been confined to spherically symmetric distributions. Evans and Stark [21]
have recently proved that inadmissibility for p > 3 holds for a far wider class of distributions,
namely those location parameter families which have finite first and second moments, plus one
further condition which is discussed below. Their proof is rather different in flavour from the results
discussed in Section 4, relying more on probability theory and properties of Brownian motion. We
do not delve too deeply into the probabilistic foundations here (see, for example, Rost [27] for
relevant results), but as motivation do discuss a mathematical connection between admissibility and
Brownian motion noticed by Brown [15].

The fact that the best equivariant estimator is admissible for p < 2 and inadmissible for p > 3 is
reminiscent of a dimension-dependent property of Brownian motion, namely that it is (neighbour-
hood) recurrent for p < 2 and transient for p > 3. Brown establishes, that to each estimator d, there
corresponds a diffusion on p-dimensional space, and that the estimator is admissible if and only if
the corresponding diffusion is recurrent. Furthermore, he shows that the diffusion related to the
best equivariant estimator is (essentially) Brownian motion.

The theorem which Evans and Stark prove is divided into three parts. In the first part, they show
that, subject to the conditions mentioned above, estimators of the form

§PS(X) = (1 - ﬁ) X (11)

dominate X for a > 0 sufficiently small. Although powerful, this part alone gives no indication of
how small a must be to lead to an improved estimator. So in the second and third parts, Evans and
Stark apply the first part of the theorem to give a range of values of a for which estimators of the
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form (11) dominate X in two special cases: firstly, where the distribution of X is contained in some
ball around 6, and secondly where it does not intersect such a ball.

The theorem and proof as stated here differ from the original in two major respects. Firstly, we
state and prove the theorem for a location parameter family rather than a single random variable

in order to be consistent with what has gone before; and secondly, we fill in many of the details
omitted by Evans and Stark in their rather condensed style, in the hope that this will aid clarity.

Theorem 5.1. Let X be an observation from a location parameter family indezed by 6 € R (p > 3)
such that

i) X s not almost surely equal to 6

1) By (X) =6 for all 0 € R?

ii1) Bg||X — 6||> < oo for all 6 € RP
iv) By || X[|>=P < ||0]|>7P for all 6 € RP.
Then

1) Estimators of the form

§ES(X) = 1-*)){
o (X) ( T+ X

dominate X for a > 0 sufficiently small.

2) If the support of the distribution of X given 6 is contained in the ball {x € RP : ||z — 0] < A},

then any
p—2 a* 6
0,2—— Ey || X —0|°
ae(, 2 () m ||>

suffices for 625 (X) to dominate X, where o* is the unique positive root of

(p—2)a8A%(1 + (2 + )?4%)” = p(2 + a)* = 0.

3) If the support of the distribution of X given 8 does not intersect the ball {x € RP : ||z — 6| < A},

then any
-2
a€ (0,2”—,42)
p
suffices for Z5(X) to dominate X .

Remark: Condition iv) may appear surprising, but as Evans and Stark state, Rost [27] demonstrates
in his solution of Skorokhod’s problem for transient Markov processes, this is precisely the condition
required on X for there to exist a stopping time T such that the distribution of By is that of X — 6.
Here, B = (By):>0 is a standard Brownian motion starting at 0 € R?, and Br is the stopped process,
defined by Br(w) = By(.)(w). Note that since we may assume Ey(X) = 0, we must have Br < oo
a.s., and hence T' <  a.s..
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Proof. 1) We have

2

R(8,X) - R(9,6,°(X))

By ||X — 0|2 — 1-*)){—0
dal EGH( T X

Since a > 0, the result will follow provided
X2 ) (XT(X - 9))
aly (7 < 2By | ————=~ ) for all a € RP.
1+ [1X]*)? 1+ (X

Now, by condition iv) and the remark following it, let T be a stopping time such that the distribution
of Bt is the same as that of X — §. The condition on a becomes

||.BT-|-0||2 BT.(BT+0)
E QE( ———————— | fi 11 RP. 12
a ((1+||BT+0||2)2 <E( T Brrop) fraltec (12)

Our first aim is find a lower bound for the right-hand side of (12) using a generalisation of Stein’s
lemma (Lemma 3.3). We would like to use Girsanov’s formula, but in order to do this directly we
would need both T and Bt to be bounded. We therefore let S,, = inf{s > 0 : || By|| = n}, and define
T, =T A S, An, in the hope that our result for T, will still hold when we let n tend to infinity.
Girsanov’s formula applied to T, states that, for any y € R?, ¢ € R and any bounded (measurable)
function F' : R? — R, we have

1
E(exp(ey.Br, — 562||y||2Tn)F(BTn)) =E(F(Br, + €Tny)).

If F, in addition to being bounded, is continuous, with bounded and continuous first partial deriva-
tives, we can differentiate both sides of this equation with respect to €, inside the expectation, and
evaluate the derivatives at e = 0. This gives

E(y.Br, F(Br,)) = E(T,y.VF(Br,)). (13)
This is the generalisation of Stein’s lemma which we were seeking. Now let

(Br,):i +6;
F(Bp,) = ——22"——
(Br,) 1+ Bz, + 0|2

and let y be the ith coordinate vector, where 1 < ¢ < p. Note that |F(Br, )| < 1, and F is continuous.
Furthermore, we have

OF 1+ |Br, +6|> —2((Br,)i +6:)° that ‘ OF .
O(Br,)i (1+ ||Br, +6]?)? O(Br,)i| =
and
oF —2((Br,)i + 6:)((Bz,); + ;) . OF
= » » f , S0 that |———| < 2.
3(Br,), L+ 1Br, + o) [ord#hsothat [z )<

As all these partial derivatives are also continuous, we may apply Equation (13) to obtain

. (Br)i((Br,)i +6:) _ g (7 Lt1IBz, +0)2=2((Br)i + 6:)°
1+||Br, +0>2 ) " (1+|Br, +9]]?)? '
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Summing these equations over i = 1,2,... ,p gives

o(ZnBns0)) _p (7 pt0-Bn o)
1+ [Br, + 0] "+ By, + 62

Now, applying the bounded convergence theorem (which is valid since the sequence of random
variables inside the expectation is uniformly bounded above by the constant 1), we have

lm ]E( BT,,-(BT" +0) ) . ]E( BT.(BT + 0) )
n—oo 1+ ||Br, +6|2) 1+ ||Br+96]2)"

We are therefore able to use Fatou’s lemma to obtain

Br.(Br +6) ) o (BT -(Br, +9)>
(1+HBT+mP neo -\ 1+ By, + 0]
. p+ (p—2)||Br, + 0]
= liminfE (T, n
novos ( (1+ |Br, +0]2)2

A%

g (72t 0= DB 01)
T+TBr+0P? )

We now have a lower bound for the right-hand side of (12), and the proof of part 1) will be complete
if we can find an a > 0 such that

|1Br +6]1* ) ( p+(p—2)IIBT+0||2)
E <2E(T :
¢ ((1+||BT+0||2)2 (1 +[|Br +0]*)?

To prove the existence of such an a, it suffices to show that:

) E 1Bz + 6] is bounded above on compact sets in RP
(1+ 1B + 6] ’

p+(p—2)IBr +6|?
(1+|Br +6]*)?
||0||22]E (T p+(p—2)||BT+9H2)

2\2
M) liminf (LH[Br+6]17)

. Br+60|2
o= | JolPE )

) E (T

) is bounded below, away from zero, on compact sets in R?

We prove I, IT and III in order. Let 6 € R”, and take a sequence (6,)n>1 € RP such that 8, — 6 as
n — oo. Let

W=
(1 + [|Br + 6,[1*)?
and
B 0|2
o UIBr+ol

(1+[IBr +6]*)*

Then |Y,| < 1 for each integer n, and Y,, — Y almost surely, as n — oo. So by the bounded
convergence theorem, E(Y,,) — E(Y) as n — co. In other words, the map

|1 Br + 6] )
(1 +1Br +6]*)?

0»—>]E<
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is continuous. This proves 1.

Suppose again that we have a sequence (6,,),>1 such that 6,, = 6§ as n — co. By Fatou’s lemma,

- P+ (p—2)||Br + |2 (o P+ (p—2)||Br + 6,
liminfE ( T > Eqliminf { T
s ( (1+ [|Br + 6,[])2 - e (+[|Br + Ba[%)"

p+(p—2)|Br +9||2)
E(T :
( (1 +1Br +6]*)?

Thus the map

_ 2
P (LR EL R

(1 +1Br +6]]?)?

is lower semi-continuous. Moreover, this function is strictly positive at each point. For,

p+ (0—2)|Br+ 0| T
E(T (0 +[Br + 677 )Z(p‘”E((HnBTwn?))’

and since Br is not almost surely 0 (by condition i)), it follows that T is not almost surely 0.

2
Hence E (T %) is bounded below, away from zero, on compact sets in RP. This proves
II.

We show III by demonstrating that the lim inf of the numerator is strictly positive, and that the
denominator tends to a finite positive limit.

Applying Fatou’s lemma to the numerator gives
o +(—2)||Br + 6| L p+(p—2)|Br +6|?
lim inf [|6]|>2E (Tp > 2 ( liminf ||§]2T
||a||+oo” | (1+ [|Br +0[]?) - |w||+oo” | (1+[|Br +6[]?)
> 2(p—2)E(T)
> 0.

Applying the bounded convergence theorem to the denominator gives

_ Br + 6| . |Br +6])°
lim [|@ 21E< ” =K lim ||6]|? =1.
18]l —c0 1ol (1+||Br +6]|?)? 116]|—o0 1l (1+(|Br +0]|?)

This proves IIT and hence completes the proof of part 1) of the theorem.

2) When the distribution of X given 6 is contained in the ball {z € RP : ||z — §|| < A}, we find an
explicit range of values for a for which the result holds by first finding a lower bound for

i +(p—2)||=+0]>
lanz—a”SA (p(lf_”x_i_;v||2)2 )

l|z+6]|>
SUP|z—p| <A ((1+||z+9||2>2

which holds for all # € R?. We do this by choosing an arbitrary a > 0, and considering separately
the cases ||0]] > (1 + a)A and ||0]] < (1 + a)A. We can then choose a to maximise this range of
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values for a. Next we find a lower bound for E(T"), and then put these together to give the required
result.

Thus, fix @ > 0. For ||0]| > (1 + a)A and ||z — 6|| < A, we have

1 2+ a
< — < <|{— = .
loll < o = 81+ ol < A+ 160 < (5 +1) 16 = T2l
Similarly,
lell > 1)~ 10— > 01— 4 > (1~ 1) 101 = =g
o= o= = 1+« C1+4a "

Thus, for [|0]] > (1 + a)A, we have

@

R -2 (35) IO
llz—19|5A(W) > ( 2 \?
v+ (35) o)
v

; 2e0) " g2
-2 (Zia) 21+"‘ 2 2
()" + (22) o)
o (22) o
( a > Tfa
T (e () o)

-2 (5 ) sup Al (14)

2+ a/ jegj<ca (1 +][2]?)?

Y
<
|
N

v

Now for ||0|| < (1 + a)A and ||z — 8|| < A, we have
0<lzll < llz =6l + 6]l < A+ I6]] < (2+)ll0]l.

Thus, for ||0]] < (1 +a)A,

0 (p+(p—2)llwll2) P
le—dii<a \ (1 +[|z[?)? T (14 (2+a)242)
p 9 2 42
> (2+a)2A2(1+(2+a)2A2)2( *e)
> b sp 2L ()

(2+@)24% (1 + (2 + )2 42)” Jo—sj<a (L + [|2]*)?”

Putting Equations (14) and (15) together, we see that, for all § € RP,

e (P =2l _ a \° P [zl
||w—oﬁ5A( (1 + l=(1*)? ) . <(p 2 (2+a) " (2+a)242(1 + (2+a)2A2)2> leosiea L+ T2l2)2”
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Note that since the function

fie) = -2 (52 )

24+«

increases monotonically from 0 to 1 as a ranges from 0 to oo, and the function

_ p
he) 2+ a)2A42(1 + (2 + 0)242)?

decreases monotonically from m to 0 as a ranges from 0 to oo, the maximum value of the
function

- (0) 2 (2+a> 4 (2+a)2A2(1+(2+a)2A2)2>

occurs at a = a*, say, where o* is the unique positive solution to the equation f;(a) = f2(a). This
is equivalent to saying a* solves

(p—2)abA%(1 + (2 + )?4%)” —p(2 +a*) = 0.

The corresponding value at the maximum is (p — 2) (ﬁ%) )

To compute a lower bound for E(T'), we use the fact that (||Bt||> — tp)e>0 is a martingale. Recall
that T, = T A S, An, where S, =inf{t > 0: ||B;|| = n}. Hence

ET) = nh_{r;g E(T,,) by monotone convergence

1
= = lim E(||Br, ||?) by the optional stopping theorem
p n—oo
1
= =liminf E(||Br, ||?)
p n—oo

1
> 1—)]E(||BT||2) by Fatou’s lemma

1
= BEa(IIX — 6.

Thus,

IE TP+(P—2)||BT'!;92”2 inf p+(p—2)|z+6]| . 6
llz—6]<A 72 —2
( A+TBr+0T?) ) > OR(T) ( (+Te+07) ) oP (21 ) B, (| X — 8|J2).
[0

B2 +6]” = le+6]2 ) =
E ( (1+|\BT+9|\2)2) SUPjjz—0)|<4 ((1+Hw+0ll2>2) g

This completes the proof of part 2) of the theorem.

3) For this case, Evans and Stark exploit a result from a paper by Fitzsimmons [23]. According to
this work, they state that not only may we assume that there exists a stopping time 7" such that the
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distribution of By is the same as that of X — 6, but also that this stopping time is of a particular
form. This will enable us to obtain an explicit expression for E(T'|Br) (which is in fact a constant),
and hence when we compute

BT> )

this constant can be taken outside the expectation. In order to describe the form of the stopping
time, we make the following definitions:

(et (0~ 2)||Br + 0|1
(T + 1Br + 0P

Definition 5.2. A finely open set is one which a Brownian motion takes a strictly positive time to
exit, almost surely, when started at any point in the set. In other words,

P®(r4 >0) =1 for all x € A,

where T4 = inf{t > 0: B, & A} is the first exit time from A.

Definition 5.3. A finely closed set is the complement of a finely open set.

We may suppose that the stopping time T' = T vy, where {C(u) : 0 < u < 1} is a decreasing family
of finely closed sets such that C(u) C {z € RP : ||z — §|| > A}. Here, U ~ UJ0, 1], independently of

B, and Ty is the first entry time of C'(u), i.e. Te(,) = inf{t > 0: B; € C(u)}. The important
point is that each C'(u) does not intersect the ball of radius A around 6.

Now, let San =SaAn = (inf{t > 0:||B¢| = A}) An.
Then

E(T|Br) > E(Sa|Br) since B hits level A before any {C(u) : 0 <u <1}
E(S4) by the Strong Markov property and rotational invariance of B
= E(lm San)

n—oo

= lim E(S4,,) by bounded convergence
n—o0

A2
= ? by the optional stopping theorem applied to the martingale {||B;||* — tpte>o.

We can now compute the following:

. : pHp-2)|Br+0]?
2F (T e lensl) QE{E (T (LHTBr 0172

[Br+o|2 - [Br+0|2
E((1+||§T+on2)2) E((1+HBTT+9||2)2)

2F (mreralBo)

5r) |

(1+[|Br+0][?)*

>
= E( | Br+0]> )
(1+]|Br+6]]2)?
> 21);2 A2,
p
This completes the proof of the third and final part of the theorem. O
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Remark: It is natural to try to ascertain the restrictiveness of condtion iv) of the theorem, which
stated that the distribution of X given § must satisfy

Eo[|X[1*77 < |l6]1*~7.

Bass [2] (see equation I1.3.6) shows, in his discussion of potential theory, that if the distribution of
X is spherically symmetric about 8, and ¢, is normalised surface measure on the sphere of radius r
in RP, then

Eo || X|*77 = / ll& + 011*7P o (dz) = r*7F AJ|6]1*7P < [|6]*77.

Thus the theorem can be applied to all spherically symmetric distributions. In general, Evans and
Stark state that it follows from Fitzsimmons [23] that condition iv) of the theorem holds if and only if
X — 6 has the exit distribution of a standard Brownian motion from a finely open domain containing
0, or is a mixture of such distributions. As an extreme example to demonstrate the applicability
of the theorem, Evans and Stark point out that this class contains singular distributions supported
on fractal sets of non-integral dimension. Note, more importantly and intuitively, that spherically
symmetric distributions arise only when the domain is a ball centred at 6.

In conclusion, we have seen that shrinkage estimators dominate X in great generality, and can be
of considerable practical importance in certain situations. To the author’s knowledge, the problem
of finding admissible estimators for any distribution other than a multivariate normal distribution
remains an open question.

6 Appendix

Theorem 6.1. Suppose the distribution of X given 6 is such that the risk functions R(0,8) under
quadratic loss are continuous in 6 for all decision rules §. Suppose further that the proper prior
measure II gives positive probability to any subset of RP of positive Lebesgue measure. Then a Bayes
rule with respect to 11 is admissible.

Proof. Let § be a Bayes rule with respect to II, and suppose for a contradiction that ¢’ dominates
4, so that

R(,8") < R(9,6) for all 6 € RP
R(6y,8') < R(bo,0) for some y € RP.
Let € = R(6y,d) — R(6o,d'). By continuity of the risk functions, there exists 7 > 0 such that
R(0,8) — R(6,8") > % for all || — 6| < 7.

Thus, denoting the Bayes risk of § with respect to II by r(II,d), and writing
A={0€RP:|0—0| <n}, we have

r(L6)-r(Le) = [ (R6.6)-R.5)) )
RP

€
—TI(A
S ()
> 0.
This contradicts the fact that ¢ is a Bayes rule with respect to II. Hence ¢ is admissible. O
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Sublemma 6.2. Suppose X |0 ~ N,(0,1), and h(||X||*)X is a spherically symmetric estimator of
0. Then

207Ky (R(I1X11)X

||‘92||2 'E(h(Xp+2k))
k!

where g denotes the expected value when 6 = (||0]],0,0,...,0).

Proof.

20" By (R(I1X[I*)X)

_ 2||0|| / / ( >$1 exp< %(xl —1In? - _Zx ) dzy dzy . .. dz,

2||e|| s 2
- K N -5 > 2(16 drydz, ... d
@nE’ d||0|| I ;iﬂ exp | — 5 ;;v 1621 ) | doy das ... da,
20161 _uwen® d len2 /°° /°° 1 p ) ,
= 7 2 2 h T ) 0 0 d d d
et Caen\¢ L) ;ﬁi exp | = 5 ;ar 16llz, + 16117 | | de1 des ... dz,
new> d Lon2
= 2||flle” = e 2 E(h(x2(]|6]? }
ot g { " B e1)

ez d Ik . (116117
2(|0||e” =2 16 {e 2 ]E(h(xf,HK))} where K ~ Poi (%)

2\ k
9110 _ley? d > (”62” ) E(h(Xfﬂrzk))
l16]]e el > =

k=0

= 2flplle~"

Znon ("T)k_lE(h(xm))
S (””“2) B (0 (ten)-

k=0

O

Lemma 6.3. Suppose X|0 ~ N,(0,I) and we have a two-stage prior for 6. At the first stage
9)A ~ N, (0,152), and at the second stage, A ~ (1 —b)A~" on 0 < A < 1, where —oo < b < 1. Then

E(\X) =

2
p+2-20— —— A ]
Jo AP exp(A52(|X[[2)dA

1
[BYE

Proof. The joint posterior distribution of # and A is given by
P

1 o) AE TP A =
(6, \|X) x exp (—5 Z(X, -9, ) mexp <—m201> .

i=1 i=1
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Hence the marginal posterior of A is obtained by integrating out 6:

2
AB0 1 A £ X; Il ,, 1& X2
) e /Rp(l—/\)%exp _2<1+1—/\>2<H"_1+¢) _iin+§Z1+ A

i=1

X )\%_be_%”X”Z‘

Thus the marginal posterior mean can be calculated as follows:

JENETH LB IXI" g

E\X) =
(AX) f A5 —be— 21X g\
B [- XHZ,\%*bHe*%IIXIIZ] (g b+1) fol)\‘z’*b =31X1% g
fo ,\5* %II 12 g
1 2
IS
Jo AE P exp(L32|X|12)dA ]
as required. O
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