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1. Auxiliary result from Section 2 of the main text.

Lemma 1. Let g : [a, b] → (−∞,∞] be convex with g(r) = 0 for some
r ∈ [a, b]. For α, β, c ∈ R, define

G(x) := c+

∫ x

a
exp(αt+ β)g(t) dt for x ∈ [a, b].

Assume α 6= 0. If r ∈ (a, b], then

(1) inf
x∈[a,r)

G(x)−G(r)

1− e−α(r−x){α(r − x) + 1}
=

G(a)−G(r)

1− e−α(r−a){α(r − a) + 1}

and if r ∈ [a, b)

(2) sup
x∈(r,b]

G(x)−G(r)

1 + eα(x−r){α(x− r)− 1}
=

G(b)−G(r)

1 + eα(b−r){α(b− r)− 1}
.

Now assume α = 0. If r ∈ (a, b], then

(3) inf
x∈[a,r)

G(x)−G(r)

(r − x)2
=
G(a)−G(r)

(r − a)2

and if r ∈ [a, b), then

(4) sup
x∈(r,b]

G(x)−G(r)

(x− r)2
=
G(b)−G(r)

(b− r)2
.
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Proof. Assume α 6= 0 and r ∈ (a, b] and consider the linear function

ḡ(x) :=
α2{G(r)−G(a)}

eαr+β − eαa+β{α(r − a) + 1}
(r − x).

Note here that the denominator does not vanish, because 1− e−y(1 +y) > 0
for y 6= 0. Thus
(5)

ḡ(r) = 0 = g(r) and

∫ r

a
exp(αx+ β)ḡ(x) dx =

∫ r

a
exp(αx+ β)g(x) dx.

Now the function x 7→ g(x)− ḡ(x), which is convex on [a, r] and 0 at x = r,
can change sign at most once in the interval [a, r). But we deduce from the
second part of (5) that either this function is zero for all x ∈ (a, r] or it
changes sign exactly once in (a, r). In particular, there exists x0 ∈ (a, r)
such that g(x) ≥ ḡ(x) for x ∈ [a, x0] and g(x) ≤ ḡ(x) for x ∈ [x0, r]. This
further implies that∫ x

a
exp(αt+ β){g(t)− ḡ(t)} dt = −

∫ r

x
exp(αt+ β){g(t)− ḡ(t)} dt ≥ 0

for every x ∈ [a, r]. Consequently, for x ∈ [a, r),

G(x) = G(r)−
∫ r

x
exp(αt+ β)g(t) dt

≥ G(r)−
∫ r

x
exp(αt+ β)ḡ(t) dt

= G(r)− 1− e−α(r−x){α(r − x) + 1}
1− e−α(r−a){α(r − a) + 1}

{G(r)−G(a)}.

This yields (1), and the proof of (2) is very similar. The proofs of (3) and (4)
then follow by taking limits as α→ 0 and using the fact that

lim
α→0

1− e−αy(αy + 1)

α2
=
y2

2
for every y ∈ R.

2. Auxiliary results from Section 3 of the main text.

2.1. Auxiliary results for the proof of Theorem 3 in the main text.

Lemma 2. There exists a universal constant C > 0 such that for every
n ≥ 2, we have

(6) sup
f0∈F

Ef0
{

sup
x∈R

log f̂n(x) + sup
x∈[X(1),X(n)]

log
1

f0(x)

}
≤ C log n.
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Proof. For µ ∈ R, σ > 0 and i = 1, . . . , n, let Yi := σXi + µ, so Yi has
density g0(y) := σ−1f0

(
(y − µ)/σ

)
. By affine equivariance, the log-concave

maximum likelihood estimator based on Y1, . . . , Yn is ĝn(y) := σ−1f̂n
(
(y −

µ)/σ
)
. Moreover, writing X(1) := miniXi and X(n) := maxiXi, we have

Y(1) := mini Yi = σX(1) + µ and Y(n) := maxi Yi = σX(n) + µ. Thus

sup
y∈R

log ĝn(y) = sup
x∈R

log f̂n(x)− log σ

and

sup
y∈[Y(1),Y(n)]

log
1

g0(y)
= sup

x∈[X(1),X(n)]
log

1

f0(x)
+ log σ.

The left-hand side of (6) is therefore affine invariant, and there is no loss of
generality in assuming that µf0 = 0 and σ2f0 = 1. Let P denote the class of

probability distributions P on R for which
∫∞
−∞ |x| dP (x) <∞ and P is not

a Dirac point mass. We recall from Dümbgen, Samworth and Schuhmacher
(2011, Theorem 2.2) that there is a well-defined projection ψ∗ : P → F
given by

ψ∗(P ) := argmax
f∈F

∫ ∞
−∞

log f dP.

Now, for σ > 0, let P≥σ denote the subset of P consisting distributions P
on the real line with

∫∞
−∞(x− µP )2 dP (x) ≥ σ2, where µP :=

∫∞
−∞ x dP (x).

By a very similar argument to that given in the proof of Lemma 6 of Kim
and Samworth (2016),

sup
P∈P≥σ

sup
x∈R

ψ∗(P )(x) ≤ C

σ
.

As f̂n = ψ∗(Pn), where Pn denotes the empirical distribution of X1, . . . , Xn,
we have for t > 0 that

P
(

sup
x∈R

log f̂n(x) >
t

2
log n

)
≤ P

(
1

n

n∑
i=1

(Xi − X̄)2 <
C

nt/2

)
≤ P

(
|X1 − X̄| <

C1/2

nt/4−1/2

)
,

where X̄ := n−1
∑n

i=1Xi. But X1− X̄ has mean 0, variance 1−1/n and has
a log-concave density (which is therefore bounded by a universal constant).
Hence

(7) P
(

sup
x∈R

log f̂n(x) >
t

2
log n

)
≤ C

nt/4−1/2
.
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Now let F0 denote the distribution function corresponding to f0 and for
t ≥ 2 let

Ωt := {X(1) ≥ F−10 (n−t/2/α)} ∩ {X(n) ≤ F−10 (1− n−t/2/α)},

where α > 0 is taken from Lemma 3 below. Then by a union bound,

(8) sup
f0∈F0,1

Pf0(Ωc
t) ≤

2

αnt/2−1
.

Moreover, on Ωt,

sup
x∈[X(1),X(n)]

log
1

f0(x)
≤ sup

x∈[F−1
0 (n−t/2/α),F−1

0 (1−n−t/2/α)]
log

1

f0(x)

= max

{
log

1

f0
(
F−10 (n−t/2/α)

) , log
1

f0
(
F−10 (1− n−t/2/α)

)}
≤ t

2
log n,(9)

where the equality holds because the minimum of a concave function on
a compact interval is attained at one of the endpoints of the interval, and
the second inequality holds due to Lemma 3 below. It follows from (7), (8)
and (9) that for t ≥ 2,

P
(

sup
x∈R

log f̂n(x) + sup
x∈[X(1),X(n)]

log
1

f0(x)
> t log n

)
≤ P

(
sup
x∈R

log f̂n(x) >
t

2
log n

)
+ P

(
sup

x∈[X(1),X(n)]
log

1

f0(x)
>
t

2
log n

)
≤ C

nt/4−1/2
+

2

αnt/2−1
,(10)

and the result follows.

The following result is a small generalisation of Proposition A.1(c) of
Bobkov (1996).

Lemma 3. There exists α > 0 such that for all p ∈ (0, 1) and all f0 ∈
F0,1 with corresponding distribution function F0,

f0
(
F−10 (p)

)
≥ αmin(p, 1− p).
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Proof. Fix f0 ∈ F0,1 with associated distribution function F0. Propo-
sition A.1(c) of Bobkov (1996) gives that p 7→ f0

(
F−10 (p)

)
is positive and

concave on (0, 1). But, by Theorem 2(b) of Kim and Samworth (2016), there
exists α > 0 (not depending on f0) such that

f0(0) ≥ α.

Noting that F0(0) ∈ (0, 1), we deduce by concavity that for p ∈ (0, F0(0)],

f0
(
F−10 (p)

)
≥ p

F0(0)
α ≥ αp ≥ αmin(p, 1− p).

A very similar argument handles the case p ∈
(
F0(0), 1), and this concludes

the proof.

2.2. Auxiliary results for the proof of Theorem 4 in the main text. Recall
that we can write F1 = {fα,s1,s2 : (α, s1, s2) ∈ T }.

Lemma 4. If X ∼ fα,s1,s2 ∈ F1, then there exist a 6= 0 and b ∈ R such
that aX + b has a density f0 ∈ F1 of one of the following three forms:

1. f0 = f0,0,1;
2. f0 = f−α0,0,1 for some α0 ∈ (0, 18);
3. f0 = f−1,0,s0 for some s0 ∈ [18,∞].

Proof. Let X ∼ fα,s1,s2 ∈ F1 for some (α, s1, s2) ∈ T , and let a 6= 0
and b ∈ R. Then

aX + b ∼
{
fα/a,as1+b,as2+b if a > 0

fα/a,as2+b,as1+b if a < 0.

Thus, if α = 0, we can set a = (s2−s1)−1, b = −s1(s2−s1)−1 so that aX+b ∼
f0,0,1. If α > 0 and α(s2 − s1) < 18, then we can set a = −(s2 − s1)−1,
b = s2(s2 − s1)

−1 while if α < 0 and |α|(s2 − s1) < 18 then we can set
a = (s2 − s1)−1, b = −s1(s2 − s1)−1; in either situation, aX + b ∼ f−α0,0,1,
with α0 := |α|(s2 − s1) ∈ (0, 18). Finally, if α > 0 and α(s2 − s1) ∈ [18,∞],
then we can set a = −α, b = αs2 while if α < 0 and |α|(s2 − s1) ∈ [18,∞]
then we can set a = −α, b = αs1; in either situation, aX + b ∼ f−1,0,s0 with
s0 := |α|(s2 − s1).

Lemma 5. Let φ : R → [−∞,∞) be a concave function whose domain
is contained in [0, 1] and which satisfies

(11)

∫ 1

0
(eφ(u)/2 − 1)2 du ≤ δ2
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for some δ ∈ (0, 2−5/2]. Then

(12) φ(x) ≤ 213/2δ for every x ∈ [0, 1].

Moreover,

(13) φ(x) ≥ −4δ

{min(x, 1− x)}1/2
when min(x, 1− x) ≥ 4δ2.

Proof. We first prove inequality (12). By symmetry, it suffices to prove
that φ(x) ≤ 213/2δ for all x ∈ [0, 1/2]. Fix x ∈ [0, 1/2] and assume that
φ(x) > 0, for otherwise there is nothing to prove. Let x∗ ∈ (x, 1] be such
that φ(x∗) = 0 if such an x∗ exists; otherwise, set x∗ = 1.

We first consider the case x∗ ≥ 3/4. Since ex ≥ 1 + x and φ is a concave
function with φ(x∗) ≥ 0,

δ2 ≥
∫ x∗

x
(eφ(u)/2 − 1)2 du ≥ 1

4

∫ x∗

x
φ2(u) du ≥ φ2(x)

4

∫ x∗

x

(
x∗ − u
x∗ − x

)2

du

=
x∗ − x

12
φ2(x) ≥ φ2(x)

48
,

so φ(x) ≤ 4
√

3δ.
Now suppose instead that x∗ < 3/4, so that φ(x∗) = 0. Then for u ∈

[7/8, 1],

φ(u) ≤ −u− x∗
x∗ − x

φ(x) ≤ −φ(x)

8
.

We deduce that

δ2 ≥
∫ 1

7/8
(1− eφ(u)/2)2 du ≥ 1

8
(1− e−φ(x)/16)2,

so

φ(x) ≤ 16 log

(
1

1− 23/2δ

)
≤ 211/2δ

1− 23/2δ
≤ 213/2δ,

since δ ∈ (0, 2−5/2]. This completes the proof of (12).
We now proceed to prove inequality (13), and by symmetry it suffices to

consider a fixed x ∈ [4δ2, 1/2]. We assume that φ(x) < 0, because otherwise
there is nothing to prove. By concavity of φ, we have either φ(u) ≤ φ(x) for
all u ∈ [0, x] or φ(u) ≤ φ(x) for all u ∈ [x, 1]. In the former case,

δ2 ≥
∫ x

0
(1− eφ(u)/2)2 du ≥ x(1− eφ(x)/2)2.
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ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION 7

Thus

φ(x) ≥ 2 log

(
1− δ

x1/2

)
≥ −4δ

x1/2
.

In the latter case, where φ(u) ≤ φ(x) for all u ∈ [x, 1], we find

δ2 ≥
∫ 1

x
(1− eφ(u)/2)2 du ≥ (1− x)(1− eφ(x)/2)2 ≥ x(1− eφ(x)/2)2,

and the conclusion follows as before.

Lemma 6. Let f0 = f−1,0,a ∈ F1 for some a ∈ [18,∞], and let φ :
R → [−∞,∞) be a concave function whose domain is contained in [0, a]
and which satisfies

(14)

∫ a

0
{eφ(u)/2 − f1/20 (u)}2 du ≤ δ2

for some δ ∈ (0, e−9/8]. Let

(15) x0 := min

{
log

1

26eδ2(1− e−a)
, a− 1

}
≥ 17.

Then with φ̃a defined as in (31) in the main text, we have

(16) − 4
ex/2(1− e−a)1/2

(1− e−1)1/2
δ ≤ φ̃a(x) ≤ 213/2ex/2(1− e−a)1/2δ

for every x ∈ [1, x0], and

(17) φ̃a(x) ≤ 8
x− x0
x0 − 1

+ 7

for every x ∈ [x0, a].

Proof. Fix f0 = f−1,0,a for some a ∈ [18,∞], and fix δ ∈ (0, e−9/8]
and φ satisfying the conditions of the lemma. For ease of notation, let us
denote φ̃a by ψ. We first prove the lower bound for ψ in (16). Fix x ∈ [1, x0]
and assume that ψ(x) < 0 because otherwise there is nothing to prove. By
concavity of ψ, the inequality ψ(u) ≤ ψ(x) is true either for all u ∈ [0, x] or
for all u ∈ [x, a]. In the former case,

δ2 ≥
∫ x

0
{eφ(u)/2 − f1/20 (u)}2 du =

∫ x

0
(1− eψ(u)/2)2 e−u

1− e−a
du

≥ (1− eψ(x)/2)2 1− e−x

1− e−a
≥ (1− eψ(x)/2)2 e

−x(e− 1)

1− e−a
,(18)
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where we used the fact that x ≥ 1 in the final inequality. Similarly in the
latter case, we can consider the integral from x to a instead to obtain

(19) δ2 ≥ (1− eψ(x)/2)2 e
−x − e−a

1− e−a
≥ (1− eψ(x)/2)2 e

−x(1− e−1)
1− e−a

,

where we used the fact that x ≤ a− 1 for the final inequality. Now

ex/2(1− e−a)1/2

(1− e−1)1/2
δ ≤ ex0/2(1− e−a)1/2

(1− e−1)1/2
δ ≤ 1

2
,

and we deduce from (18) and (19) that

ψ(x) ≥ 2 log

(
1− ex/2(1− e−a)1/2

(1− e−1)1/2
δ

)
≥ −4ex/2(1− e−a)1/2

(1− e−1)1/2
δ,

as required.
We next prove the upper bound in (16). To this end, again fix x ∈ [1, x0]

and note by very similar arguments to those above that

δ2 ≥
∫ x

x−1
(eψ(u)/2 − 1)2

e−u

1− e−a
du ≥ e−x

1− e−a

∫ 1

0
(eψ(u+x−1)/2 − 1)2 du.

Now

ex/2(1− e−a)1/2δ ≤ ex0/2(1− e−a)1/2δ ≤ 1

8e1/2
≤ 2−5/2,

so the result follows by (12) in Lemma 5.
Finally, we prove (17). Fix x ∈ [x0, a]. Inequality (16) gives

ψ(x0) ≤ 213/2ex0/2(1− e−a)1/2δ ≤ 27/2e−1/2

and also that

ψ(1) ≥ −4
e1/2(1− e−a)1/2

(1− e−1)1/2
δ ≥ − e1/2

2e9(1− e−1)1/2
≥ −1

2
.

It therefore follows by concavity of ψ that

ψ(x) ≤ x− x0
x0 − 1

{ψ(x0)− ψ(1)}+ ψ(x0) ≤ 8
x− x0
x0 − 1

+ 7,

as required.

In order to prove Theorem 4 for these three cases, we need to prove
two results on the bracketing numbers of log-concave functions on bounded
subintervals of R. For a < b and −∞ ≤ B1 ≤ B2 < ∞, let F([a, b], B1, B2)
denote the class of all non-negative functions f on [a, b] such that log f is
concave and such that B1 ≤ log f(x) ≤ B2 for every x ∈ [a, b].
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ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION 9

Proposition 7. There exists a universal constant C > 0 such that

(20) H[]

(
ε,F([a, b], B1, B2), dH, [a, b]

)
≤ C(B2 −B1)

1/2 e
B2/4(b− a)1/4

ε1/2

for every ε > 0, a < b and −∞ ≤ B1 ≤ B2 <∞.

Proof. Fix ε > 0, a < b and B1 ≤ B2, and let δ := 2εe−B2/2. By
Kim and Samworth (2016b, Proposition 4) (see also Guntuboyina and Sen
(2015); Doss and Wellner (2016)), there exists a bracketing set {[φL,j , φU,j ] :
j = 1, . . . ,M} for the set of concave functions on [a, b] that are bounded

below by B1 and above by B2 with
∫ b
a (φU,j − φL,j)2 dx ≤ δ2 and∗

logM ≤ C
{

(b− a)1/2(B2 −B1)

δ

}1/2

.

Now take fL,j := eφL,j and fU,j := eφU,j for j = 1, . . . ,M . Since there is no
loss of generality in assuming φU,j(x) ≤ B2 for every j ∈ {1, . . . ,M} and
x ∈ [a, b], we have∫ b

a
(f

1/2
U,j − f

1/2
L,j )2 =

∫ b

a
eφU,j

{
1− e−(φU,j−φL,j)/2

}2 ≤ eB2

4

∫ b

a
(φU,j − φL,j)2

≤ δ2

4
eB2 = ε2.

The result follows.

For B1 = −∞, Proposition 7 unfortunately gives the trivial upper bound
H[](ε,F([a, b],−∞, B2), dH, [a, b]) ≤ ∞. It turns out however that this quan-
tity is actually finite, as shown by the following result, essentially due to
Doss and Wellner (2016, Theorem 4.1).

Proposition 8. There exists a universal constant C > 0 such that

(21) H[]

(
ε,F([a, b],−∞, B), dH, [a, b]

)
≤ C e

B/4(b− a)1/4

ε1/2

for every ε > 0, a < b and B ∈ R.

∗In fact, formally, only the case B1 = −B2 is covered by Kim and Samworth (2016b,
Proposition 4), but the proof proceeds by first considering the case B1 = −1, B2 = 1, so
a simple scaling argument can be used to obtain the claimed result.
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Proof. First note that

{f1/2 : f ∈ F([a, b],−∞, B)} ⊆ F([a, b],−∞, B/2).

Thus

H[]

(
ε,F([a, b],−∞, B),dH, [a, b]

)
= H[]

(
ε, {f1/2 : f ∈ F([a, b],−∞, B)}, L2, [a, b]

)
≤ H[]

(
ε,F([a, b],−∞, B/2), L2, [a, b]

)
≤ C e

B/4(b− a)1/4

ε1/2
,

where the final inequality follows from Theorem 4.1 of Doss and Wellner
(2016).

The following lemma is also used in the proof of Theorem 4 in the main
text.

Lemma 9. Let S, S1, S2, . . . Sk denote measurable subsets of R such that
S ⊆ ∪kj=1Sj. Let F0 denote an arbitrary class of non-negative functions on

∪kj=1Sj and let G := {eφ̃a : eφ ∈ F0}, where φ̃a is defined in (31) of the main
text. Let αj := inf{x : x ∈ Sj} and suppose that ε, ε1, . . . , εk > 0 satisfy

k∑
j=1

e−αj ε2j ≤ (1− e−a)ε2.

Then

(22) H[](ε,F0, dH, S) ≤
k∑
j=1

H[](εj ,G, dH, Sj).

Proof. We may assume that S1, . . . , Sk are pairwise disjoint, because
otherwise we can work with the sets S′1 := S1 and S′j := Sj \ ∪j−1`=1S` for j =

2, . . . , k. For each j = 1, . . . , k, let {[f (j)L,`, f
(j)
U,`] : ` = 1, . . . , N[](εj ,G, dH, Sj)}

denote an εj-Hellinger bracketing set for the class G over Sj . Now, for x ∈ Sj
and

` = (`1, . . . , `k) ∈
{

1, . . . , N[](ε1,G, dH, S1)
}
×. . .×

{
1, . . . , N[](εk,G, dH, Sk)

}
,

set

fL,`(x) :=
e−xf

(j)
L,`j

(x)

1− e−a
and fU,`(x) :=

e−xf
(j)
U,`j

(x)

1− e−a
.
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ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION 11

Then for every f ∈ F0, there exists ` = (`1, . . . , `k) such that fL,` ≤ f ≤ fU,`.
Moreover,∫

S
(f

1/2
U,` − f

1/2
L,` )2 ≤

k∑
j=1

∫
Sj

e−x

1− e−a
{
f
(j)
U,`j

(x)1/2 − f (j)L,`j
(x)1/2

}2
dx

≤
k∑
j=1

e−αj

1− e−a
ε2j ≤ ε2,

as required.

2.3. Auxiliary result for the proof of Theorem 5 in the main text. The
following is the key empirical processes result used in the proof of Theorem 5.

Theorem 10 (van de Geer (2000), Corollary 7.5). Let f0 ∈ F and let
F(f0, δ) :=

{
f ∈ F : f � f0, dH(f, f0) ≤ δ

}
. Suppose Ψ : (0,∞) → (0,∞)

is a function such that

Ψ(δ) ≥ max

{
δ,

∫ δ

0
H

1/2
[]

(
21/2ε,F(f0, 4δ), dH

)
dε

}
for every δ > 0

and such that δ 7→ δ−2Ψ(δ) is decreasing on (0,∞). Let f̂n denote the max-

imum likelihood estimator over F based on X1, . . . , Xn
iid∼ f0. There exists a

universal constant C > 0 such that if δ∗ > 0 is such that n1/2δ2∗ ≥ CΨ(δ∗),
then for every δ ≥ δ∗,

P
{
d2X(f̂n, f0) > δ2

}
≤ C exp

(
−nδ2

C2

)
.

In fact, van de Geer (2000, Corollary 7.5) relies on a bracketing entropy
upper bound in Hellinger distance for F̄(f0, δ) :=

{f+f0
2 : f ∈ F , f �

f0, dH
(f+f0

2 , f0
)
≤ δ
}

, where the restriction f � f0 can be included because

the support of f̂n is contained in the support of f0. But for any non-negative
functions f0, fL and fU with fL ≤ fU , we have(fU + f0

2

)1/2
−
(fL + f0

2

)1/2
≤ 1

21/2
(f

1/2
U − f1/2L ).

Moreover, by the triangle inequality and the fact that the squared Hellinger
distance is jointly convex in its arguments, if dH

(f+f0
2 , f0

)
≤ δ, then

dH(f, f0) ≤
21/2

21/2 − 1

{
dH

(
f,
f + f0

2

)
+ dH

(
f + f0

2
, f0

)}
− dH(f, f0)

21/2 − 1

≤ 21/2

21/2 − 1
dH

(
f + f0

2
, f0

)
≤ 4δ,
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so H[]

(
21/2ε, F̄(f0, δ), dH

)
≤ H[]

(
21/2ε,F(f0, 4δ), dH

)
.
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