SUPPLEMENTARY MATERIAL TO ‘ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION’

BY ARLENE K. H. KIM*,§, ADITYANAND GUNTUBOYINA†,¶ and RICHARD J. SAMWORTH‡,∥

University of Cambridge and Sungshin Women’s University§
University of California, Berkeley¶
University of Cambridge∥

This is the supplementary material to Kim, Guntuboyina and Samworth (2017), hereafter referred to as the main text.

1. Auxiliary result from Section 2 of the main text.

Lemma 1. Let $g : [a, b] \to (-\infty, \infty]$ be convex with $g(r) = 0$ for some $r \in [a, b]$. For $\alpha, \beta, c \in \mathbb{R}$, define

$$G(x) := c + \int_{a}^{x} \exp(\alpha t + \beta) g(t) \, dt \quad \text{for } x \in [a, b].$$

Assume $\alpha \neq 0$. If $r \in (a, b]$, then

$$\inf_{x \in [a, r]} \frac{G(x) - G(r)}{1 - e^{-\alpha (r-x)} \{\alpha (r-x) + 1\}} = \frac{G(a) - G(r)}{1 - e^{-\alpha (r-a)} \{\alpha (r-a) + 1\}}$$

and if $r \in [a, b)$

$$\sup_{x \in (r, b]} \frac{G(x) - G(r)}{1 + e^{\alpha (x-r)} \{\alpha (x-r) - 1\}} = \frac{G(b) - G(r)}{1 + e^{\alpha (b-r)} \{\alpha (b-r) - 1\}}.$$

Now assume $\alpha = 0$. If $r \in (a, b]$, then

$$\inf_{x \in [a, r]} \frac{G(x) - G(r)}{(r-x)^2} = \frac{G(a) - G(r)}{(r-a)^2}$$

and if $r \in [a, b)$, then

$$\sup_{x \in [r, b]} \frac{G(x) - G(r)}{(x-r)^2} = \frac{G(b) - G(r)}{(b-r)^2}.$$
Proof. Assume \(\alpha \neq 0 \) and \(r \in (a, b) \) and consider the linear function
\[
\bar{g}(x) := \frac{\alpha^2 \{G(r) - G(a)\}}{e^{\alpha r + \beta} - e^{\alpha a + \beta} \{\alpha (r - a) + 1\}} (r - x).
\]
Note here that the denominator does not vanish, because \(1 - e^{-y}(1 + y) > 0 \) for \(y \neq 0 \). Thus
\[
(5) \quad \bar{g}(r) = 0 = g(r) \quad \text{and} \quad \int_a^r \exp(\alpha x + \beta) \bar{g}(x) \, dx = \int_a^r \exp(\alpha x + \beta) g(x) \, dx.
\]
Now the function \(x \mapsto g(x) - \bar{g}(x) \), which is convex on \([a, r]\) and 0 at \(x = r \), can change sign at most once in the interval \([a, r]\). But we deduce from the second part of (5) that either this function is zero for all \(x \in (a, r) \) or it changes sign exactly once in \((a, r)\). In particular, there exists \(x_0 \in (a, r) \) such that \(g(x) \geq \bar{g}(x) \) for \(x \in [a, x_0] \) and \(g(x) \leq \bar{g}(x) \) for \(x \in [x_0, r] \). This further implies that
\[
\int_a^x \exp(\alpha t + \beta) \{g(t) - \bar{g}(t)\} \, dt = -\int_x^r \exp(\alpha t + \beta) \{g(t) - \bar{g}(t)\} \, dt \geq 0
\]
for every \(x \in [a, r] \). Consequently, for \(x \in [a, r] \),
\[
G(x) = G(r) - \int_x^r \exp(\alpha t + \beta) g(t) \, dt \\
\geq G(r) - \int_x^r \exp(\alpha t + \beta) \bar{g}(t) \, dt \\
= G(r) - \frac{1 - e^{-\alpha (r-x)}}{1 - e^{-\alpha (r-a)}} \left\{ \frac{\alpha (r-x) + 1}{\alpha (r-a) + 1} \right\} \{G(r) - G(a)\}.
\]
This yields (1), and the proof of (2) is very similar. The proofs of (3) and (4) then follow by taking limits as \(\alpha \to 0 \) and using the fact that
\[
\lim_{\alpha \to 0} \frac{1 - e^{-\alpha y}(\alpha y + 1)}{\alpha^2} = \frac{y^2}{2} \quad \text{for every} \ y \in \mathbb{R}.
\]

2. Auxiliary results from Section 3 of the main text.

2.1. Auxiliary results for the proof of Theorem 3 in the main text.

Lemma 2. There exists a universal constant \(C > 0 \) such that for every \(n \geq 2 \), we have
\[
(6) \quad \sup_{f_0 \in F} \mathbb{E}_{f_0} \left\{ \sup_{x \in \mathbb{R}} \log \hat{f}_n(x) + \sup_{x \in [X_{(1)}, X_{(n)}]} \log \frac{1}{f_0(x)} \right\} \leq C \log n.
\]
Proof. For $\mu \in \mathbb{R}$, $\sigma > 0$ and $i = 1, \ldots, n$, let $Y_i := \sigma X_i + \mu$, so Y_i has density $g_0(y) := \sigma^{-1} f_0((y - \mu)/\sigma)$. By affine equivariance, the log-concave maximum likelihood estimator based on Y_1, \ldots, Y_n is $\hat{g}_n(y) := \sigma^{-1} \hat{f}_n((y - \mu)/\sigma)$. Moreover, writing $X_{(1)} := \min_i X_i$ and $X_{(n)} := \max_i X_i$, we have

$$Y_{(1)} := \min_i Y_i = \sigma X_{(1)} + \mu \quad \text{and} \quad Y_{(n)} := \max_i Y_i = \sigma X_{(n)} + \mu.$$

Thus

$$\sup_{y \in \mathbb{R}} \log \hat{g}_n(y) = \sup_{x \in \mathbb{R}} \log \hat{f}_n(x) - \log \sigma$$

and

$$\sup_{y \in [Y_{(1)}, Y_{(n)}]} \log \frac{g_0(y)}{\sigma} = \sup_{x \in [X_{(1)}, X_{(n)}]} \log \frac{1}{f_0(x)} + \log \sigma.$$

The left-hand side of (6) is therefore affine invariant, and there is no loss of generality in assuming that $\mu f_0 = 0$ and $\sigma^2 f_0 = 1$. Let \mathcal{P} denote the class of probability distributions P on \mathbb{R} for which $\int_{-\infty}^{\infty} |x| dP(x) < \infty$ and P is not a Dirac point mass. We recall from Dümbgen, Samworth and Schuhmacher (2011, Theorem 2.2) that there is a well-defined projection $\psi^* : \mathcal{P} \to \mathcal{F}$ given by

$$\psi^*(P) := \arg\max_{f \in \mathcal{F}} \int_{-\infty}^{\infty} \log f dP.$$

Now, for $\sigma > 0$, let $\mathcal{P}_{\geq \sigma}$ denote the subset of \mathcal{P} consisting distributions P on the real line with $\int_{-\infty}^{\infty} (x - \mu_P)^2 dP(x) \geq \sigma^2$, where $\mu_P := \int_{-\infty}^{\infty} x dP(x)$. By a very similar argument to that given in the proof of Lemma 6 of Kim and Samworth (2016),

$$\sup_{P \in \mathcal{P}_{\geq \sigma}} \sup_{x \in \mathbb{R}} \psi^*(P)(x) \leq \frac{C}{\sigma}.$$

As $\hat{f}_n = \psi^*(\mathbb{P}_n)$, where \mathbb{P}_n denotes the empirical distribution of X_1, \ldots, X_n, we have for $t > 0$

$$\mathbb{P} \left(\sup_{x \in \mathbb{R}} \log \hat{f}_n(x) > \frac{t}{2} \log n \right) \leq \mathbb{P} \left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 < \frac{C}{n^{1/2}} \right)$$

$$\leq \mathbb{P} \left(|X_1 - \bar{X}| < \frac{C^{1/2}}{n^{1/4-1/2}} \right),$$

where $\bar{X} := n^{-1} \sum_{i=1}^{n} X_i$. But $X_1 - \bar{X}$ has mean 0, variance $1 - 1/n$ and has a log-concave density (which is therefore bounded by a universal constant). Hence

$$\sup_{x \in \mathbb{R}} \log \hat{f}_n(x) > \frac{t}{2} \log n \leq \frac{C}{n^{1/4-1/2}}.$$

(7)
Now let F_0 denote the distribution function corresponding to f_0 and for $t \geq 2$ let

$$
\Omega_t := \{X_{(1)} \geq F_0^{-1}(n^{-t/2}/\alpha)\} \cap \{X_{(n)} \leq F_0^{-1}(1 - n^{-t/2}/\alpha)\},
$$

where $\alpha > 0$ is taken from Lemma 3 below. Then by a union bound,

$$
\sup_{f_0 \in F_0} P_{f_0}(\Omega_t) \leq \frac{2}{\alpha n^{t/2-1}}.
$$

Moreover, on Ω_t,

$$
\sup_{x \in [X_{(1)}, X_{(n)}]} \log \frac{1}{f_0(x)} \leq \max\left\{ \log \frac{1}{f_0(F_0^{-1}(n^{-t/2}/\alpha))}, \log \frac{1}{f_0(F_0^{-1}(1 - n^{-t/2}/\alpha))} \right\}
= \frac{t}{2} \log n
$$

(9)

where the equality holds because the minimum of a concave function on a compact interval is attained at one of the endpoints of the interval, and the second inequality holds due to Lemma 3 below. It follows from (7), (8) and (9) that for $t \geq 2$,

$$
P\left(\sup_{x \in \mathbb{R}} \log \hat{f}_n(x) + \sup_{x \in [X_{(1)}, X_{(n)}]} \log \frac{1}{f_0(x)} > t \log n \right)
\leq P\left(\sup_{x \in \mathbb{R}} \log \hat{f}_n(x) > \frac{t}{2} \log n \right) + P\left(\sup_{x \in [X_{(1)}, X_{(n)}]} \log \frac{1}{f_0(x)} > \frac{t}{2} \log n \right)
\leq \frac{C}{n^{t/4-1/2}} + \frac{2}{\alpha n^{t/2-1}},
$$

(10)

and the result follows.

The following result is a small generalisation of Proposition A.1(c) of Bobkov (1996).

Lemma 3. There exists $\alpha > 0$ such that for all $p \in (0, 1)$ and all $f_0 \in \mathcal{F}_{0,1}$ with corresponding distribution function F_0,

$$
f_0(F_0^{-1}(p)) \geq \alpha \min(p, 1 - p).
$$
Proof. Fix \(f_0 \in \mathcal{F}^{0,1} \) with associated distribution function \(F_0 \). Proposition A.1(c) of Bobkov (1996) gives that \(p \mapsto f_0(F_0^{-1}(p)) \) is positive and concave on \((0,1)\). But, by Theorem 2(b) of Kim and Samworth (2016), there exists \(\alpha > 0 \) (not depending on \(f_0 \)) such that
\[
f_0(0) \geq \alpha.
\]
Noting that \(F_0(0) \in (0,1) \), we deduce by concavity that for \(p \in (0,F_0(0)) \),
\[
f_0(F_0^{-1}(p)) \geq \frac{p}{F_0(0)} \alpha \geq \alpha p \geq \alpha \min(p,1-p).
\]
A very similar argument handles the case \(p \in (F_0(0),1) \), and this concludes the proof.

2.2. Auxiliary results for the proof of Theorem 4 in the main text. Recall that we can write \(\mathcal{F}^1 = \{f_{\alpha,s_1,s_2} : (\alpha,s_1,s_2) \in \mathcal{T} \} \).

Lemma 4. If \(X \sim f_{\alpha,s_1,s_2} \in \mathcal{F}^1 \), then there exist \(\alpha \neq 0 \) and \(b \in \mathbb{R} \) such that \(aX + b \) has a density \(f_0 \in \mathcal{F}^1 \) of one of the following three forms:

1. \(f_0 = f_{0,0,1} \);
2. \(f_0 = f_{-\alpha_0,0,1} \) for some \(\alpha_0 \in (0,18) \);
3. \(f_0 = f_{-1,0,s_0} \) for some \(s_0 \in [18,\infty] \).

Proof. Let \(X \sim f_{\alpha,s_1,s_2} \in \mathcal{F}^1 \) for some \((\alpha,s_1,s_2) \in \mathcal{T} \), and let \(\alpha \neq 0 \) and \(b \in \mathbb{R} \). Then
\[
aX + b \sim \begin{cases} f_{\alpha/a,as_1+b,as_2+b} & \text{if } a > 0 \\ f_{\alpha/a,as_2+b,as_1+b} & \text{if } a < 0. \end{cases}
\]
Thus, if \(\alpha = 0 \), we can set \(a = (s_2-s_1)^{-1}, b = -s_1(s_2-s_1)^{-1} \) so that \(aX + b \sim f_{0,0,1} \). If \(\alpha > 0 \) and \(\alpha(s_2-s_1) < 18 \), then we can set \(a = -(s_2-s_1)^{-1}, b = s_2(s_2-s_1)^{-1} \) while if \(\alpha < 0 \) and \(|\alpha|(s_2-s_1) < 18 \) then we can set \(a = (s_2-s_1)^{-1}, b = -s_1(s_2-s_1)^{-1} \); in either situation, \(aX + b \sim f_{-\alpha_0,0,1} \), with \(\alpha_0 := |\alpha|(s_2-s_1) \in (0,18) \). Finally, if \(\alpha > 0 \) and \(\alpha(s_2-s_1) \in [18,\infty] \), then we can set \(a = -\alpha, b = \alpha s_2 \) while if \(\alpha < 0 \) and \(|\alpha|(s_2-s_1) \in [18,\infty] \) then we can set \(a = -\alpha, b = \alpha s_1 \); in either situation, \(aX + b \sim f_{-1,0,s_0} \) with \(s_0 := |\alpha|(s_2-s_1) \).

Lemma 5. Let \(\phi : \mathbb{R} \to [-\infty,\infty) \) be a concave function whose domain is contained in \([0,1]\) and which satisfies
\[
(11) \quad \int_0^1 (e^{\phi(u)/2} - 1)^2 \, du \leq \delta^2
\]
for some \(\delta \in (0, 2^{-5/2}] \). Then

\[
\phi(x) \leq 2^{13/2}\delta \quad \text{for every } x \in [0, 1].
\]

Moreover,

\[
\phi(x) \geq \frac{-4\delta}{\{\min(x, 1-x)\}^{1/2}} \quad \text{when } \min(x, 1-x) \geq 4\delta^2.
\]

Proof. We first prove inequality (12). By symmetry, it suffices to prove that \(\phi(x) \leq 2^{13/2}\delta \) for all \(x \in [0, 1/2] \). Fix \(x \in [0, 1/2] \) and assume that \(\phi(x) > 0 \), for otherwise there is nothing to prove. Let \(x_\ast \in (x, 1] \) be such that \(\phi(x_\ast) = 0 \) if such an \(x_\ast \) exists; otherwise, set \(x_\ast = 1 \).

We first consider the case \(x_\ast \geq \frac{3}{4} \). Since \(e^x \geq 1 + x \) and \(\phi \) is a concave function with \(\phi(x_\ast) \geq 0 \),

\[
\delta^2 \geq \int_x^{x_\ast} \left(e^{\phi(u)/2} - 1 \right)^2 \, du \geq \frac{1}{4} \int_x^{x_\ast} \phi^2(u) \, du \geq \frac{\phi^2(x)}{4} \int_x^{x_\ast} \left(\frac{x_\ast - u}{x_\ast - x} \right)^2 \, du
\]

\[
= \frac{x_\ast - x}{12} \phi^2(x) \geq \frac{\phi^2(x)}{48},
\]

so \(\phi(x) \leq 4\sqrt{3}\delta \).

Now suppose instead that \(x_\ast < \frac{3}{4} \), so that \(\phi(x_\ast) = 0 \). Then for \(u \in [\frac{7}{8}, 1] \),

\[
\phi(u) \leq -\frac{u - x_\ast}{x_\ast - x} \phi(x) \leq -\frac{\phi(x)}{8}.
\]

We deduce that

\[
\delta^2 \geq \int_{\frac{7}{8}}^1 (1 - e^{\phi(u)/2})^2 \, du \geq \frac{1}{8} (1 - e^{-\phi(x)/16})^2,
\]

so

\[
\phi(x) \leq 16 \log \left(\frac{1}{1 - 2^{3/2}\delta} \right) \leq \frac{2^{11/2}\delta}{1 - 2^{3/2}\delta} \leq 2^{13/2}\delta,
\]

since \(\delta \in (0, 2^{-5/2}] \). This completes the proof of (12).

We now proceed to prove inequality (13), and by symmetry it suffices to consider a fixed \(x \in [4\delta^2, 1/2] \). We assume that \(\phi(x) < 0 \), because otherwise there is nothing to prove. By concavity of \(\phi \), we have either \(\phi(u) \leq \phi(x) \) for all \(u \in [0, x] \) or \(\phi(u) \leq \phi(x) \) for all \(u \in [x, 1] \). In the former case,

\[
\delta^2 \geq \int_0^x (1 - e^{\phi(u)/2})^2 \, du \geq x (1 - e^{\phi(x)/2})^2.
\]
Thus
\[
\phi(x) \geq 2 \log \left(1 - \frac{\delta}{x^{1/2}} \right) \geq \frac{-4\delta}{x^{1/2}}.
\]

In the latter case, where \(\phi(u) \leq \phi(x) \) for all \(u \in [x, 1] \), we find
\[
\delta^2 \geq \int_x^1 (1 - e^{\phi(u)/2})^2 \, du \geq (1 - x)(1 - e^{\phi(x)/2})^2 \geq x(1 - e^{\phi(x)/2})^2,
\]
and the conclusion follows as before.

Lemma 6. Let \(f_0 = f_{-1,0,a} \in \mathcal{F}^1 \) for some \(a \in [18, \infty) \), and let \(\phi : \mathbb{R} \to (-\infty, \infty) \) be a concave function whose domain is contained in \([0, a]\) and which satisfies
\[
\int_0^a \{ e^{\phi(u)/2} - f_0^{1/2}(u) \}^2 \, du \leq \delta^2
\]
for some \(\delta \in (0, e^{-9/8}) \). Let
\[
x_0 := \min \left\{ \log \frac{1}{2^6 e^{52}(1 - e^{-a})}, a - 1 \right\} \geq 17.
\]
Then with \(\tilde{\phi}_a \) defined as in (31) in the main text, we have
\[
-4 e^{x/2}(1 - e^{-a})^{1/2} \delta \leq \tilde{\phi}_a(x) \leq 2^{13/2} e^{x/2}(1 - e^{-a})^{1/2} \delta
\]
for every \(x \in [1, x_0] \), and
\[
\tilde{\phi}_a(x) \leq 8 \frac{x - x_0}{x_0 - 1} + 7
\]
for every \(x \in [x_0, a] \).

Proof. Fix \(f_0 = f_{-1,0,a} \) for some \(a \in [18, \infty) \), and fix \(\delta \in (0, e^{-9/8}) \) and \(\phi \) satisfying the conditions of the lemma. For ease of notation, let us denote \(\tilde{\phi}_a \) by \(\psi \). We first prove the lower bound for \(\psi \) in (16). Fix \(x \in [1, x_0] \) and assume that \(\psi(x) < 0 \) because otherwise there is nothing to prove. By concavity of \(\psi \), the inequality \(\psi(u) \leq \psi(x) \) is true either for all \(u \in [0, x] \) or for all \(u \in [x, a] \). In the former case,
\[
\delta^2 \geq \int_0^x \{ e^{\phi(u)/2} - f_0^{1/2}(u) \}^2 \, du = \int_0^x (1 - e^{\psi(u)/2})^2 \frac{e^{-u}}{1 - e^{-a}} \, du
\]
\[
\geq (1 - e^{\psi(x)/2})^2 \frac{e^{-x}}{1 - e^{-a}} \geq (1 - e^{\psi(x)/2})^2 \frac{e^{-x}(e - 1)}{1 - e^{-a}},
\]
where we used the fact that $x \geq 1$ in the final inequality. Similarly in the latter case, we can consider the integral from x to a instead to obtain

$$
\delta^2 \geq (1 - e^{\psi(x)/2})^2 \frac{e^{-x} - e^{-a}}{1 - e^{-a}} \geq (1 - e^{\psi(x)/2})^2 \frac{e^{-x}(1 - e^{-1})}{1 - e^{-a}},
$$

where we used the fact that $x \leq a - 1$ for the final inequality. Now

$$
\frac{e^{x/2}(1 - e^{-a})^{1/2}}{(1 - e^{-1})^{1/2}} \delta \leq \frac{e^{x_0/2}(1 - e^{-a})^{1/2}}{(1 - e^{-1})^{1/2}} \delta \leq \frac{1}{2},
$$

and we deduce from (18) and (19) that

$$
\psi(x) \geq 2 \log \left(1 - \frac{e^{x/2}(1 - e^{-a})^{1/2}}{(1 - e^{-1})^{1/2}} \delta \right) \geq -\frac{4e^{x/2}(1 - e^{-a})^{1/2}}{(1 - e^{-1})^{1/2}} \delta,
$$

as required.

We next prove the upper bound in (16). To this end, again fix $x \in [1, x_0]$ and note by very similar arguments to those above that

$$
\delta^2 \geq \int_{x-1}^{x} \left(e^{\psi(u)/2} - 1 \right)^2 \frac{e^{-u}}{1 - e^{-a}} \, du \geq \frac{e^{-x}}{1 - e^{-a}} \int_{0}^{1} \left(e^{\psi(u+x-1)/2} - 1 \right)^2 \, du.
$$

Now

$$
e^{x/2}(1 - e^{-a})^{1/2} \delta \leq e^{x_0/2}(1 - e^{-a})^{1/2} \delta \leq \frac{1}{8e^{1/2}} \leq 2^{-5/2},$$

so the result follows by (12) in Lemma 5.

Finally, we prove (17). Fix $x \in [x_0, a]$. Inequality (16) gives

$$
\psi(x_0) \leq 2^{13/2} e^{x_0/2}(1 - e^{-a})^{1/2} \delta \leq 2^{7/2} e^{-1/2}
$$

and also that

$$
\psi(1) \geq -\frac{4e^{1/2}(1 - e^{-a})^{1/2}}{e^{1/2}} \delta \geq -\frac{e^{1/2}}{2e^{9}(1 - e^{-1})^{1/2}} \geq -\frac{1}{2}.
$$

It therefore follows by concavity of ψ that

$$
\psi(x) \leq \frac{x - x_0}{x_0 - 1} \psi(x_0) + \psi(1) \leq 8 \frac{x - x_0}{x_0 - 1} + 7,
$$

as required.

In order to prove Theorem 4 for these three cases, we need to prove two results on the bracketing numbers of log-concave functions on bounded subintervals of \mathbb{R}. For $a < b$ and $-\infty \leq B_1 \leq B_2 < \infty$, let $\mathcal{F}([a, b], B_1, B_2)$ denote the class of all non-negative functions f on $[a, b]$ such that $\log f$ is concave and such that $B_1 \leq \log f(x) \leq B_2$ for every $x \in [a, b]$.

Proposition 7. There exists a universal constant $C > 0$ such that

$$H(\epsilon, \mathcal{F}([a, b], B_1, B_2), d_H, [a, b]) \leq C(B_2 - B_1)^{1/2} \frac{e^{B_2/4}(b - a)^{1/4}}{\epsilon^{1/2}}
$$

for every $\epsilon > 0$, $a < b$ and $-\infty \leq B_1 \leq B_2 < \infty$.

Proof. Fix $\epsilon > 0$, $a < b$ and $B_1 \leq B_2$, and let $\delta := 2\epsilon e^{-B_2/2}$. By Kim and Samworth (2016b, Proposition 4) (see also Guntuboyina and Sen (2015); Doss and Wellner (2016)), there exists a bracketing set $\{[\phi_{L,j}, \phi_{U,j}] : j = 1, \ldots, M\}$ for the set of concave functions on $[a, b]$ that are bounded below by B_1 and above by B_2 with $\int_a^b (\phi_{U,j} - \phi_{L,j})^2 dx \leq \delta^2$ and

$$\log M \leq C \left\{ \frac{(b - a)^{1/2}(B_2 - B_1)}{\delta} \right\}^{1/2}.
$$

Now take $f_{L,j} := e^{\phi_{L,j}}$ and $f_{U,j} := e^{\phi_{U,j}}$ for $j = 1, \ldots, M$. Since there is no loss of generality in assuming $\phi_{U,j}(x) \leq B_2$ for every $j \in \{1, \ldots, M\}$ and $x \in [a, b]$, we have

$$\int_a^b (f_{U,j}^{1/2} - f_{L,j}^{1/2})^2 = \int_a^b e^{\phi_{U,j}} \left\{ 1 - e^{-(\phi_{U,j} - \phi_{L,j})/2} \right\}^2 \leq \frac{e^{B_2/4}}{4} \int_a^b (\phi_{U,j} - \phi_{L,j})^2
$$

$$\leq \frac{\delta^2}{4} e^{B_2} = \epsilon^2.
$$

The result follows.

For $B_1 = -\infty$, Proposition 7 unfortunately gives the trivial upper bound $H(\epsilon, \mathcal{F}([a, b], -\infty, B_2), d_H, [a, b]) \leq \infty$. It turns out however that this quantity is actually finite, as shown by the following result, essentially due to Doss and Wellner (2016, Theorem 4.1).

Proposition 8. There exists a universal constant $C > 0$ such that

$$H(\epsilon, \mathcal{F}([a, b], -\infty, B), d_H, [a, b]) \leq Ce^{B/4}(b - a)^{1/4}/\epsilon^{1/2}
$$

for every $\epsilon > 0$, $a < b$ and $B \in \mathbb{R}$.

*In fact, formally, only the case $B_1 = -B_2$ is covered by Kim and Samworth (2016b, Proposition 4), but the proof proceeds by first considering the case $B_1 = -1, B_2 = 1$, so a simple scaling argument can be used to obtain the claimed result.
Proof. First note that
\[\{ f^{1/2} : f \in \mathcal{F}([a, b], -\infty, B) \} \subseteq \mathcal{F}(\mathbb{R}, -\infty, B/2). \]
Thus
\begin{align*}
H_{[]} (\epsilon, \mathcal{F}([a, b], -\infty, B), d_{H}, [a, b]) &= H_{[]} (\epsilon, \{ f^{1/2} : f \in \mathcal{F}([a, b], -\infty, B) \}, L_2, [a, b]) \\
& \leq C \frac{e^{B/4} (b - a)^{1/4}}{\epsilon^{1/2}},
\end{align*}
where the final inequality follows from Theorem 4.1 of Doss and Wellner (2016).

The following lemma is also used in the proof of Theorem 4 in the main text.

Lemma 9. Let \(S, S_1, S_2, \ldots S_k \) denote measurable subsets of \(\mathbb{R} \) such that \(S \subseteq \bigcup_{j=1}^k S_j \). Let \(\mathcal{F}_0 \) denote an arbitrary class of non-negative functions on \(\bigcup_{j=1}^k S_j \) and let \(\mathcal{G} := \{ e^{\tilde{\phi}_a} : \tilde{\phi} \in \mathcal{F}_0 \} \), where \(\tilde{\phi}_a \) is defined in (31) of the main text. Let \(\alpha_j := \inf\{ x : x \in S_j \} \) and suppose that \(\epsilon, \epsilon_1, \ldots, \epsilon_k > 0 \) satisfy
\[\sum_{j=1}^k e^{-\alpha_j} \epsilon_j^2 \leq (1 - e^{-a}) \epsilon^2. \]
Then
\[H_{[]} (\epsilon, \mathcal{F}_0, d_{H}, S) \leq \sum_{j=1}^k H_{[]} (\epsilon_j, \mathcal{G}, d_{H}, S_j). \]

Proof. We may assume that \(S_1, \ldots, S_k \) are pairwise disjoint, because otherwise we can work with the sets \(S'_1 := S_1 \) and \(S'_j := S_j \setminus \bigcup_{\ell=1}^{j-1} S_\ell \) for \(j = 2, \ldots, k \). For each \(j = 1, \ldots, k \), let \(\{ [f_{L,\ell}^{(j)}, f_{U,\ell}^{(j)}] : \ell = 1, \ldots, N_{[]} (\epsilon_j, \mathcal{G}, d_{H}, S_j) \} \) denote an \(\epsilon_j \)-Hellinger bracketing set for the class \(\mathcal{G} \) over \(S_j \). Now, for \(x \in S_j \) and
\[\ell = (\ell_1, \ldots, \ell_k) \in \{ 1, \ldots, N_{[]} (\epsilon_1, \mathcal{G}, d_{H}, S_1) \} \times \ldots \times \{ 1, \ldots, N_{[]} (\epsilon_k, \mathcal{G}, d_{H}, S_k) \}, \]
set
\[f_{L,\ell}(x) := \frac{e^{-x} f_{L,\ell}^{(j)}(x)}{1 - e^{-a}} \quad \text{and} \quad f_{U,\ell}(x) := \frac{e^{-x} f_{U,\ell}^{(j)}(x)}{1 - e^{-a}}. \]
Then for every $f \in \mathcal{F}_0$, there exists $\ell = (\ell_1, \ldots, \ell_k)$ such that $f_{L,\ell} \leq f \leq f_{U,\ell}$. Moreover,
\[
\int_S (f_{U,\ell}^{1/2} - f_{L,\ell}^{1/2})^2 \leq \sum_{j=1}^k \int_{S_j} \frac{e^{-x}}{1 - e^{-a}} \{f_{U,\ell_j}(x)^{1/2} - f_{L,\ell_j}(x)^{1/2}\}^2 \, dx \\
\leq \sum_{j=1}^k \frac{e^{-\alpha_j}}{1 - e^{-\alpha}} \alpha_j^2 \leq \epsilon^2,
\]
as required.

2.3. Auxiliary result for the proof of Theorem 5 in the main text. The following is the key empirical processes result used in the proof of Theorem 5.

Theorem 10 (van de Geer (2000), Corollary 7.5). Let $f_0 \in \mathcal{F}$ and let $\mathcal{F}(f_0, \delta) := \{f \in \mathcal{F} : f \ll f_0, d_H(f, f_0) \leq \delta\}$. Suppose $\Psi : (0, \infty) \rightarrow (0, \infty)$ is a function such that
\[
\Psi(\delta) \geq \max \left\{ \delta, \int_0^\delta H^{1/2}(2^{1/2} \epsilon, \mathcal{F}(f_0, 4\delta), d_H) \, d\epsilon \right\}
\]
for every $\delta > 0$ and such that $\delta \mapsto \delta^{-2}\Psi(\delta)$ is decreasing on $(0, \infty)$. Let \hat{f}_n denote the maximum likelihood estimator over \mathcal{F} based on $X_1, \ldots, X_n \iid f_0$. There exists a universal constant $C > 0$ such that if $\delta_* > 0$ is such that $n^{1/2}\delta_*^2 \geq C\Psi(\delta_*)$, then for every $\delta \geq \delta_*$,
\[
\mathbb{P}\{d_X^2(\hat{f}_n, f_0) > \delta^2\} \leq C \exp \left(\frac{-n\delta^2}{C^2} \right).
\]

In fact, van de Geer (2000, Corollary 7.5) relies on a bracketing entropy upper bound in Hellinger distance for $\bar{\mathcal{F}}(f_0, \delta) := \{\frac{f + f_0}{2} : f \in \mathcal{F}, f \ll f_0, d_H(\frac{f + f_0}{2}, f_0) \leq \delta\}$, where the restriction $f \ll f_0$ can be included because the support of \hat{f}_n is contained in the support of f_0. But for any non-negative functions f_0, f_L and f_U with $f_L \leq f_U$, we have
\[
\left(\frac{f_U + f_0}{2} \right)^{1/2} - \left(\frac{f_L + f_0}{2} \right)^{1/2} \leq \frac{1}{2^{1/2}} \left(f_U^{1/2} - f_L^{1/2} \right).
\]
Moreover, by the triangle inequality and the fact that the squared Hellinger distance is jointly convex in its arguments, if $d_H(\frac{f + f_0}{2}, f_0) \leq \delta$, then
\[
d_H(f, f_0) \leq \frac{2^{1/2}}{2^{1/2} - 1} \left\{ d_H\left(f, \frac{f + f_0}{2} \right) + d_H\left(\frac{f + f_0}{2}, f_0 \right) \right\} - \frac{d_H(f, f_0)}{2^{1/2} - 1} \leq 2^{1/2} \frac{d_H\left(\frac{f + f_0}{2}, f_0 \right)}{2^{1/2} - 1} \leq 4\delta,
\]
so $H\left(2^{1/2}\epsilon, \tilde{F}(f_0, \delta), d_H\right) \leq H\left(2^{1/2}\epsilon, F(f_0, 4\delta), d_H\right)$.

References.

