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1. Auxiliary result from Section 2 of the main text.

LEMMA 1. Let g : [a,b] — (—00,00] be convex with g(r) = 0 for some
r € [a,b]. For a, fB,c € R, define

G(z):=c+ /x exp(at + B)g(t) dt for x € [a,b].

Assume o # 0. If r € (a,b], then

: G(z) - G(r) _ G(a) — G(r)
(1) xelﬁf,r) 1—e = {a(r—z)+1} 1—e = {a(r—a)+1}
and if r € [a,b)

G(z) — G(r) _ G(b) - G(r)
B T et {a(e—r)— 1} T+e 0 {alb—r)—1}
Now assume oo = 0. If r € (a,b], then
Lo Gx) —G(r) _ G(a) = G(r)
@ N R 0

and if r € [a,b), then
(4) G(z) —G(r) _ G(b) — G(r)
z€(r,b] (l’ - T)Q (b - 7“)2 .
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PROOF. Assume « # 0 and r € (a,b] and consider the linear function

o*{G(r) - G(a)}
e B — eaatB{a(r —a) + 1}

g(x) == (r—uz).

Note here that the denominator does not vanish, because 1 —e ¥(1+y) > 0
for y # 0. Thus

(5)
g(r)=0=g(r) and / exp(azx + f)g(x) de = / exp(az + B)g(x) dzx.

Now the function x — g(x) — g(x), which is convex on [a,r| and 0 at x = r,
can change sign at most once in the interval [a, ). But we deduce from the
second part of (5) that either this function is zero for all x € (a,r] or it
changes sign exactly once in (a,r). In particular, there exists xg € (a,r)
such that g(z) > g(z) for x € [a,z¢] and g(z) < g(x) for = € [xg,r]. This
further implies that

/ “explat + B){g(t) — g(t)} dt = / "explat + B){g(t) — g(t)} dt > 0

for every x € [a,r]. Consequently, for = € [a,r),
G(x)=G(r) — / exp(at + B)g(t) dt
T

> G(r) — /T exp(at + B)g(t) dt

1—e o= a(r —z)+ 1}
T 1 eotr—9{a(r —a)+ 1} {G(r) = G(a)}.

This yields (1), and the proof of (2) is very similar. The proofs of (3) and (4)
then follow by taking limits as & — 0 and using the fact that
l—e (ay+1) y?

g‘igb o2 =3 for every y € R.

=G(r)

2. Auxiliary results from Section 3 of the main text.
2.1. Auziliary results for the proof of Theorem 8 in the main text.

LEMMA 2. There exists a universal constant C > 0 such that for every
n > 2, we have

(6) sup Efo{sup log fn(x) + sup  log } < Clogn.
R

foE]—' TE xG[X(l),X(n)] fo(x)
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ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION 3

PROOF. For p e R, o >0and ¢ =1,...,n,let Y; := 0X; + i, so Y; has
density go(y) := o~} fg((y —u)/ 0). By affine equivariance, the log-concave
maximum likelihood estimator based on Yy,...,Y, is g,(y) := a_lfn((y —
u)/a). Moreover, writing Xy := min; X; and X(,) := max; X;, we have
Yo) =min; ¥; = 0 X(y) + p and Y(,,) := max; Y; = 0 X,y + p. Thus

sup log gn(y) = suplog fn(z) — logo

y€R zeR
and
1 1
sup log = sup log + logo.
yG[Y(l),Y(n)] gO(y) $€[X(1),X(n)] fo(ﬁﬂ)

The left-hand side of (6) is therefore affine invariant, and there is no loss of
generality in assuming that pz = 0 and afco = 1. Let P denote the class of
probability distributions P on R for which [*_|z|dP(z) < co and P is not
a Dirac point mass. We recall from Diimbgen, Samworth and Schuhmacher
(2011, Theorem 2.2) that there is a well-defined projection * : P — F
given by
o0
Y*(P) = argmax/ log f dP.

feF —o0
Now, for ¢ > 0, let P=° denote the subset of P consisting distributions P
on the real line with [%_(z — pp)*dP(x) > 02, where pp := [0z dP(z).
By a very similar argument to that given in the proof of Lemma 6 of Kim
and Samworth (2016),

C

sup sup " (P)(z) < —.
PeP>o zeR o
As f, = Y*(P,,), where IP,, denotes the empirical distribution of Xi,..., Xy,
we have for ¢t > 0 that

. t 1 « s C

n
zeR i—1

B Cc1/2
§P<|X1 - X[ < 7#/4—1/2)’

where X :=n~"13>"" | X;. But X1 — X has mean 0, variance 1 —1/n and has
a log-concave density (which is therefore bounded by a universal constant).
Hence

. t C
(7) P(iﬁ% log fn(z) > ; log n) S i
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4 A. K. H. KIM, A. GUNTUBOYINA AND R. J. SAMWORTH

Now let Fy denote the distribution function corresponding to fp and for
t > 2 let

Q= {Xa) > Fy ' (n 2 /a)} N {X() < Fyt (1 —n7"2/a)},

where a > 0 is taken from Lemma 3 below. Then by a union bound,

2
8 P (Q9) < ————.
( ) foilﬁ71 fO( t) = ant/Q_l

Moreover, on €,

1

sup log < sup log
T€[X(1),X(n)] fO(ZL‘) c€[Fy  (n=t/2/a),Fy t(1—n—t/2 /)] f()(l‘)

= max{lo 1 lo 1 }
- o (Fs (2 a)) 8 Fo(Fy T(1 — n12)a))

(9) < Liogn,

N | o+

where the equality holds because the minimum of a concave function on
a compact interval is attained at one of the endpoints of the interval, and
the second inequality holds due to Lemma 3 below. It follows from (7), (8)
and (9) that for ¢t > 2,

. 1
]P’(sup log fn(x) + sup  log > tlog n)
N t t
< P(sup log fn(z) > = log n> +IP’< sup log > —log n>

z€R 2 velX ) X Jo(x) 2

C 2
(10) < nt/4—1/2 T ant/2—1’
and the result follows. O

The following result is a small generalisation of Proposition A.1(c) of
Bobkov (1996).

LEMMA 3. There ezists a > 0 such that for all p € (0,1) and all fy €
FOb with corresponding distribution function Fy,

fo(Fy X (p)) > amin(p,1 — p).
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ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION 5

PrOOF. Fix fy € F%! with associated distribution function Fy. Propo-
sition A.1(c) of Bobkov (1996) gives that p — fo(F, '(p)) is positive and
concave on (0, 1). But, by Theorem 2(b) of Kim and Samworth (2016), there
exists a > 0 (not depending on fj) such that

fo(0) > a.

Noting that F(0) € (0,1), we deduce by concavity that for p € (0, Fy(0)],

Fil(p)) > =2—a > ap > amin(p, 1 - p).

fo(Fg ' (p)) 2 Fo()® 2 00 2 amin(p, 1 - p)
A very similar argument handles the case p € (Fp(0),1), and this concludes
the proof. ]

2.2. Auziliary results for the proof of Theorem 4 in the main text. Recall
that we can write F! = {fo 5,5, : (@, 51,82) € T}.

LEMMA 4. If X ~ fos1,s0 € F1L, then there exist a # 0 and b € R such
that aX + b has a density fo € F' of one of the following three forms:

1. fo= foo01;
2. fo = f-ap01 for some o € (0,18);
3. fo= f-1,0,, for some sy € [18, c0].

PROOF. Let X ~ fo o5, € F! for some (a,s1,52) € T, and let a # 0
and b € R. Then

aX +b~ { fa/avasl+b,a52+b lf a>0
a/a,asa+basi+b i a <0.

Thus, if & = 0, we can set a = (sg—s1) "', b = —s1(s3—s51) ! so that a X +b ~
foo1- If @ > 0 and sy — s1) < 18, then we can set a = —(s2 — s1)7 1,
b = so(sg — s1)~! while if & < 0 and |a|(sy — s1) < 18 then we can set

a=(s2—51)7', b= —s1(sy — 51)7}; in either situation, aX + b ~ f=a0,0,15
with ag := |o|(s2 — s1) € (0,18). Finally, if @ > 0 and «a(s2 — s1) € [18, 0],
then we can set a = —a, b = ase while if & < 0 and |a|(s2 — 1) € [18, 0]
then we can set a = —a, b = asy; in either situation, aX +b ~ f_1 s, with
so = |a|(s2 — s1). O

LEMMA 5. Let ¢ : R — [—00,00) be a concave function whose domain
is contained in [0,1] and which satisfies

1
(11) / (e?™/2 _ 1)2 qu < 52
0

imsart-aos ver. 2012/08/31 file: ALCFinalSupp_1.tex date: November 4, 2017



6 A. K. H. KIM, A. GUNTUBOYINA AND R. J. SAMWORTH

for some § € (0,27%/?]. Then

(12) p(x) <2325 for every x € [0,1].
Moreowver,

—46 . )
(13) o(x) > when min(z, 1 — x) > 45~

~ {min(z,1 — z)}1/2

PRrROOF. We first prove inequality (12). By symmetry, it suffices to prove
that ¢(x) < 21326 for all z € [0,1/2]. Fix = € [0,1/2] and assume that
¢(x) > 0, for otherwise there is nothing to prove. Let x, € (z,1] be such
that ¢(z,) = 0 if such an x, exists; otherwise, set x, = 1.

We first consider the case z, > 3/4. Since e > 1 + x and ¢ is a concave
function with ¢(z,) > 0,

T Ty 2 T _ 2

Ty — T
_Tx— X 9 ¢*(x)
=g Y@=

so ¢(z) < 4:/396.
Now suppose instead that z, < 3/4, so that ¢(z,) = 0. Then for u €

7/8,1),
o) < 22,

Ty — & 8

U — Ty

P(u) < —
We deduce that

1
6% > / (1- e¢(u>/2)2 du > l(l _ 6—¢(m)/16)2’
7/8 8
SO
oll/25

1 13/2
o(z) < 1610g<1_23/26> < Ty <277,

since & € (0,27°/2]. This completes the proof of (12).

We now proceed to prove inequality (13), and by symmetry it suffices to
consider a fixed z € [46%,1/2]. We assume that ¢(z) < 0, because otherwise
there is nothing to prove. By concavity of ¢, we have either ¢(u) < ¢(x) for
all u € [0, 2] or ¢(u) < ¢(z) for all u € [x,1]. In the former case,

52 > / (1-— g¢(u)/2)2 du > z(1 — e¢(z)/2)2‘
0
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ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION 7

Thus
o(x) > 210g<1 - w%) > ﬁ.
In the latter case, where ¢(u) < ¢(x) for all u € [z, 1], we find
5% > /1(1 — W20y > (1 — 2)(1 — e?@/2)2 > (1 — #@)/2)2,
and the conclusion follows as before. O]
LEMMA 6. Let fo = f-10a € F' for some a € [18,00], and let ¢ :

R — [—00,00) be a concave function whose domain is contained in [0, a]
and which satisfies

(14) / {202 — £ (W)} du < 6°
0
for some § € (0,e79/8]. Let
. 1
(15) o ‘= Imin log m , a4 — 1 Z 17

Then with ¢, defined as in (31) in the main text, we have

ex/2(1 _ efa)l/Z
(1—e 1)1/

(16) -4 0 < an(l‘) < 213/2€w/2(1 _ e—a)1/25

for every x € [1,x], and

(17) dulz) <8~
Zo

for every x € [z, a.

ProOOF. Fix fy = f_10, for some a € [18,c], and fix § € (0,e79/8]
and ¢ satisfying the conditions of the lemma. For ease of notation, let us
denote ¢, by 1. We first prove the lower bound for ¢ in (16). Fix z € [1, x|
and assume that ¥ (z) < 0 because otherwise there is nothing to prove. By
concavity of 1, the inequality ¥ (u) < 1(z) is true either for all u € [0, z] or
for all u € [z, a]. In the former case,

52 2/ {22 _ f&/Q(u)}2 du :/ (1= ewl)/2y2 e du
0 0

1—e@

(18) > (1 e#}(fﬂ)ﬂﬁﬂ > (1 ew@»myw

1—e o~ 1—ea’
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8 A. K. H. KIM, A. GUNTUBOYINA AND R. J. SAMWORTH

where we used the fact that x > 1 in the final inequality. Similarly in the
latter case, we can consider the integral from x to a instead to obtain

—x _ ,—a —x 1—6_1)
1 25 (1 — ¥(@)/2)2€ € S (1 _ ¥b@/2y28 (
(19) 0> (- @RE > (- et

where we used the fact that x < a — 1 for the final inequality. Now
z/2(1 _ ,—a\1/2 x0/2(1 _ ,—a\1/2
v (1 —e" ) <60(1 e ) 5<1’
(1 _ 6—1)1/2 - (1 _ 6—1)1/2 -9
and we deduce from (18) and (19) that
e.r/?(l _ e—a)l/2(S . _4633/2(1 _ e—a)1/2 5
(1—e1)1/2 (1—e 1)1/

V() > 210g<1 -

as required.
We next prove the upper bound in (16). To this end, again fix x € [1, x|
and note by very similar arguments to those above that

T —u —x 1
2 S $(u)/2 _ 1)2 s € / Ylutr=1)/2 _ 1)2 Ju..
5_/x_1(e )1_€_adu_1_€_a O(e ) du
Now ]
ex/?(l o e—a)1/25 < 6x0/2(1 o 6_a>1/25 < < 2—5/27
8el/2

so the result follows by (12) in Lemma 5.
Finally, we prove (17). Fix z € [z, a]. Inequality (16) gives

(o) < 2'3/2em0/2(1 — e79)1/26 < 27/271/2
and also that
el/2(1 — ema)1/2 o1/2 .

> _ > > ——.
P(1) > —4 (1—e1)1/2 T 291 —eHY/2 T 2

It therefore follows by concavity of v that

P(z) <

Tr — T0 Tr — X0

{¥(z0) —¥(1)} +9(x0) <8 +17,

SC()—l SC()—l

as required. ]

In order to prove Theorem 4 for these three cases, we need to prove
two results on the bracketing numbers of log-concave functions on bounded
subintervals of R. For a < b and —oo < By < By < o0, let F([a,b], By, B2)
denote the class of all non-negative functions f on [a,b] such that log f is
concave and such that By <log f(z) < By for every z € [a, b].

imsart-aos ver. 2012/08/31 file: ALCFinalSupp_1.tex date: November 4, 2017



ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION 9

PROPOSITION 7. There exists a universal constant C > 0 such that
e
(20)  Hp(e, F([a,b], By, Ba), du, [a,b]) < C(Bs — By)'/?

for every e >0, a <b and —oo < By < By < 00.

PROOF. Fix € > 0, a < b and By < B, and let § := 2ee 52/2. By
Kim and Samworth (2016b, Proposition 4) (see also Guntuboyina and Sen
(2015); Doss and Wellner (2016)), there exists a bracketing set {[¢r, ;, v ;] :
j =1,...,M} for the set of concave functions on [a,b] that are bounded

below by B; and above by By with ff(qu’j — ¢r,;)? dx < §% and*

(b—a)"/2(B, —Bﬂ}” }

log M <
og _C’{ 5

Now take fr ; := e®ri and fuj = e®vi for j =1,..., M. Since there is no
loss of generality in assuming ¢y j(x) < By for every j € {1,...,M} and
x € |a, b], we have

b 1/2 1/2\2 b . . /972 eB2 b 9
/ (G2 - 2 = / U {1 — e Gua—tL)/)2 < / (év; — b1.)
a ’ ’ a 4 a
52
S ZCBQ = 62.
The result follows. O
For B; = —o0, Proposition 7 unfortunately gives the trivial upper bound

Hy (e, F([a, ], =00, Ba), dn, [a,b]) < oco. It turns out however that this quan-
tity is actually finite, as shown by the following result, essentially due to
Doss and Wellner (2016, Theorem 4.1).

PROPOSITION 8. There exists a universal constant C > 0 such that

63/4(b _ a)1/4

(21) HH (e,}"([a, b],—oo,B),dH,[a, b]) < C 61/2

for every e >0, a <b and B € R.

*In fact, formally, only the case By = —Bs is covered by Kim and Samworth (2016b,
Proposition 4), but the proof proceeds by first considering the case B1 = —1, B2 = 1, so
a simple scaling argument can be used to obtain the claimed result.
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10 A. K. H. KIM, A. GUNTUBOYINA AND R. J. SAMWORTH

PRrOOF. First note that
{f'/: f € F(la,b], 00, B)} C F([a,b], —00, B/2).
Thus

HH (6,}—([0,, b],—OO,B),dH, [a,b])
= Hy(e{f"*: f € F(la, ], =00, B)}, Ly, [a, D]
< H[] (Eaf([avb]a _0073/2)7142’ [(I, b])
eB/A(h — ) 1/4
< oMo

where the final inequality follows from Theorem 4.1 of Doss and Wellner
(2016). O

The following lemma is also used in the proof of Theorem 4 in the main
text.

LEMMA 9. Let S,S1,59,...5, denote measurable subsets of R such that
S C U;?:lSj. Let Fy denote an arbitrary class of non-negative functions on

U?lej and let G := {e‘z’a ce? € Fo}, where ¢q is defined in (31) of the main
text. Let o :=inf{z : x € S;} and suppose that €, €1, ... e, > 0 satisfy

k
Ze fg (1—e ).

Jj=1

Then

(22) H[](ea]:(]vdHaS < H[](EjagadH7Sj)'

Sl
-
i

PRrROOF. We may assume that Sq,.. Sk are pairwise d15301nt because
otherwise we can work with the sets S} := 51 and S := S; \Ué ng for j =

.,k.Foreach j=1,...,k, let {[fLZ’fUZ] l=1,...,Ny(€,G,du, Sj)}
denote an €;-Hellinger bracketing set for the class G over S;. Now, forx € S;
and

{= (fl,.. . ,fk) S {1,... 7N[](61,g,dH,Sl)}><...x{l,. . .,N[}(Gk,g,dH,Sk)},
set

—z () —z £(J)
e fra, (@) e g, (@)
ij(Z') = 1—761‘1 and fU’g(.T) = ﬁ
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ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION 11

Then for every f € Fo, there exists £ = ({1,...,4) such that fr, < f < fu.
Moreover,

/(fl/Q 1/2 2 o Z/ {féj}] 12 féy) 1/2} du

—ay

€ 2 2
Szl_eiae‘j SG 9
j=1

as required. ]

2.3. Auziliary result for the proof of Theorem 5 in the main text. The
following is the key empirical processes result used in the proof of Theorem 5.

THEOREM 10 (van de Geer (2000), Corollary 7.5). Let fo € F and let

F(fo,0) := {f e F: f< fo,du(f, fo) < 5}. Suppose ¥ : (0,00) — (0, 00)
s a function such that

9
U(§) > max{é,/ Hﬁﬂ (21/26,f(f0,4(5),dH) de} for every 6 >0
0

and such that § — 6~2W(8) is decreasing on (0,00). Let f, denote the maz-

imum likelihood estimator over F based on Xi,..., X, s fo. There exists a

unwversal constant C' > 0 such that if 0, > 0 is such that n*/262 > CW(6,),
then for every 6 > 0y,

2
]P’{dx fn,fo >(52}<Cexp( C;S )

In fact, van de Geer (2000, Corollary 7.5) relies on a bracketing entropy
upper bound in Hellinger distance for F(fo,8) = {@ fe Ffk
fo, dH(#, fo) <6 }, where the restriction f < fy can be included because
the support of f, is contained in the support of fo- But for any non-negative
functions fy, fr and fy with fr < fy, we have

Ju + fo\Y2  (fL+ fo\1/2 1 1/2 1/2
2 2 21/2
Moreover, by the triangle inequality and the fact that the squared Hellinger
distance is jointly convex in its arguments, if dH(er—QfO, fo) < 6, then

272 f+f f+f du(f, f
dH(f’fO)SW—l{dH<f’ 5 0)+dH<207f0>}_;/(2_01)

/
212 dH<f+f07f)§457

21/2 1
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12 A. K. H. KIM, A. GUNTUBOYINA AND R. J. SAMWORTH
S0 HH (21/267 ]:—(f07 5)7 dH) < HH (21/2€> ]:(f07 45)a dH) .
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