

SUPPLEMENTARY MATERIAL TO ‘ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION’

BY ARLENE K. H. KIM^{*}[§], ADITYANAND GUNTUBOYINA^{†,¶}
AND RICHARD J. SAMWORTH^{‡,||}

University of Cambridge and Sungshin Women’s University[§]
University of California, Berkeley[¶]
University of Cambridge^{||}

This is the supplementary material to [Kim, Guntuboyina and Samworth \(2017\)](#), hereafter referred to as the main text.

1. Auxiliary result from Section 2 of the main text.

LEMMA 1. *Let $g : [a, b] \rightarrow (-\infty, \infty]$ be convex with $g(r) = 0$ for some $r \in [a, b]$. For $\alpha, \beta, c \in \mathbb{R}$, define*

$$G(x) := c + \int_a^x \exp(\alpha t + \beta) g(t) dt \quad \text{for } x \in [a, b].$$

Assume $\alpha \neq 0$. If $r \in (a, b]$, then

$$(1) \quad \inf_{x \in [a, r)} \frac{G(x) - G(r)}{1 - e^{-\alpha(r-x)} \{ \alpha(r-x) + 1 \}} = \frac{G(a) - G(r)}{1 - e^{-\alpha(r-a)} \{ \alpha(r-a) + 1 \}}$$

and if $r \in [a, b)$

$$(2) \quad \sup_{x \in (r, b]} \frac{G(x) - G(r)}{1 + e^{\alpha(x-r)} \{ \alpha(x-r) - 1 \}} = \frac{G(b) - G(r)}{1 + e^{\alpha(b-r)} \{ \alpha(b-r) - 1 \}}.$$

Now assume $\alpha = 0$. If $r \in (a, b]$, then

$$(3) \quad \inf_{x \in [a, r)} \frac{G(x) - G(r)}{(r-x)^2} = \frac{G(a) - G(r)}{(r-a)^2}$$

and if $r \in [a, b)$, then

$$(4) \quad \sup_{x \in (r, b]} \frac{G(x) - G(r)}{(x-r)^2} = \frac{G(b) - G(r)}{(b-r)^2}.$$

^{*}Research supported by National Research Foundation of Korea (NRF) grant 2017R1C1B5017344.

[†]Research supported by NSF Grant DMS-1309356.

[‡]Research supported by an EPSRC Early Career Fellowship and a grant from the Leverhulme Trust.

PROOF. Assume $\alpha \neq 0$ and $r \in (a, b]$ and consider the linear function

$$\bar{g}(x) := \frac{\alpha^2 \{G(r) - G(a)\}}{e^{\alpha r + \beta} - e^{\alpha a + \beta} \{\alpha(r - a) + 1\}} (r - x).$$

Note here that the denominator does not vanish, because $1 - e^{-y}(1 + y) > 0$ for $y \neq 0$. Thus

$$(5) \quad \bar{g}(r) = 0 = g(r) \quad \text{and} \quad \int_a^r \exp(\alpha x + \beta) \bar{g}(x) dx = \int_a^r \exp(\alpha x + \beta) g(x) dx.$$

Now the function $x \mapsto g(x) - \bar{g}(x)$, which is convex on $[a, r]$ and 0 at $x = r$, can change sign at most once in the interval $[a, r)$. But we deduce from the second part of (5) that either this function is zero for all $x \in (a, r]$ or it changes sign exactly once in (a, r) . In particular, there exists $x_0 \in (a, r)$ such that $g(x) \geq \bar{g}(x)$ for $x \in [a, x_0]$ and $g(x) \leq \bar{g}(x)$ for $x \in [x_0, r]$. This further implies that

$$\int_a^x \exp(\alpha t + \beta) \{g(t) - \bar{g}(t)\} dt = - \int_x^r \exp(\alpha t + \beta) \{g(t) - \bar{g}(t)\} dt \geq 0$$

for every $x \in [a, r]$. Consequently, for $x \in [a, r)$,

$$\begin{aligned} G(x) &= G(r) - \int_x^r \exp(\alpha t + \beta) g(t) dt \\ &\geq G(r) - \int_x^r \exp(\alpha t + \beta) \bar{g}(t) dt \\ &= G(r) - \frac{1 - e^{-\alpha(r-x)} \{\alpha(r-x) + 1\}}{1 - e^{-\alpha(r-a)} \{\alpha(r-a) + 1\}} \{G(r) - G(a)\}. \end{aligned}$$

This yields (1), and the proof of (2) is very similar. The proofs of (3) and (4) then follow by taking limits as $\alpha \rightarrow 0$ and using the fact that

$$\lim_{\alpha \rightarrow 0} \frac{1 - e^{-\alpha y} (\alpha y + 1)}{\alpha^2} = \frac{y^2}{2} \quad \text{for every } y \in \mathbb{R}.$$

□

2. Auxiliary results from Section 3 of the main text.

2.1. Auxiliary results for the proof of Theorem 3 in the main text.

LEMMA 2. *There exists a universal constant $C > 0$ such that for every $n \geq 2$, we have*

$$(6) \quad \sup_{f_0 \in \mathcal{F}} \mathbb{E}_{f_0} \left\{ \sup_{x \in \mathbb{R}} \log \hat{f}_n(x) + \sup_{x \in [X_{(1)}, X_{(n)}]} \log \frac{1}{f_0(x)} \right\} \leq C \log n.$$

PROOF. For $\mu \in \mathbb{R}$, $\sigma > 0$ and $i = 1, \dots, n$, let $Y_i := \sigma X_i + \mu$, so Y_i has density $g_0(y) := \sigma^{-1} f_0((y - \mu)/\sigma)$. By affine equivariance, the log-concave maximum likelihood estimator based on Y_1, \dots, Y_n is $\hat{g}_n(y) := \sigma^{-1} \hat{f}_n((y - \mu)/\sigma)$. Moreover, writing $X_{(1)} := \min_i X_i$ and $X_{(n)} := \max_i X_i$, we have $Y_{(1)} := \min_i Y_i = \sigma X_{(1)} + \mu$ and $Y_{(n)} := \max_i Y_i = \sigma X_{(n)} + \mu$. Thus

$$\sup_{y \in \mathbb{R}} \log \hat{g}_n(y) = \sup_{x \in \mathbb{R}} \log \hat{f}_n(x) - \log \sigma$$

and

$$\sup_{y \in [Y_{(1)}, Y_{(n)}]} \log \frac{1}{g_0(y)} = \sup_{x \in [X_{(1)}, X_{(n)}]} \log \frac{1}{f_0(x)} + \log \sigma.$$

The left-hand side of (6) is therefore affine invariant, and there is no loss of generality in assuming that $\mu_{f_0} = 0$ and $\sigma_{f_0}^2 = 1$. Let \mathcal{P} denote the class of probability distributions P on \mathbb{R} for which $\int_{-\infty}^{\infty} |x| dP(x) < \infty$ and P is not a Dirac point mass. We recall from [Dümbgen, Samworth and Schuhmacher \(2011, Theorem 2.2\)](#) that there is a well-defined projection $\psi^* : \mathcal{P} \rightarrow \mathcal{F}$ given by

$$\psi^*(P) := \operatorname{argmax}_{f \in \mathcal{F}} \int_{-\infty}^{\infty} \log f dP.$$

Now, for $\sigma > 0$, let $\mathcal{P}^{\geq \sigma}$ denote the subset of \mathcal{P} consisting distributions P on the real line with $\int_{-\infty}^{\infty} (x - \mu_P)^2 dP(x) \geq \sigma^2$, where $\mu_P := \int_{-\infty}^{\infty} x dP(x)$. By a very similar argument to that given in the proof of Lemma 6 of [Kim and Samworth \(2016\)](#),

$$\sup_{P \in \mathcal{P}^{\geq \sigma}} \sup_{x \in \mathbb{R}} \psi^*(P)(x) \leq \frac{C}{\sigma}.$$

As $\hat{f}_n = \psi^*(\mathbb{P}_n)$, where \mathbb{P}_n denotes the empirical distribution of X_1, \dots, X_n , we have for $t > 0$ that

$$\begin{aligned} \mathbb{P}\left(\sup_{x \in \mathbb{R}} \log \hat{f}_n(x) > \frac{t}{2} \log n\right) &\leq \mathbb{P}\left(\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 < \frac{C}{n^{t/2}}\right) \\ &\leq \mathbb{P}\left(|X_1 - \bar{X}| < \frac{C^{1/2}}{n^{t/4-1/2}}\right), \end{aligned}$$

where $\bar{X} := n^{-1} \sum_{i=1}^n X_i$. But $X_1 - \bar{X}$ has mean 0, variance $1 - 1/n$ and has a log-concave density (which is therefore bounded by a universal constant). Hence

$$(7) \quad \mathbb{P}\left(\sup_{x \in \mathbb{R}} \log \hat{f}_n(x) > \frac{t}{2} \log n\right) \leq \frac{C}{n^{t/4-1/2}}.$$

Now let F_0 denote the distribution function corresponding to f_0 and for $t \geq 2$ let

$$\Omega_t := \{X_{(1)} \geq F_0^{-1}(n^{-t/2}/\alpha)\} \cap \{X_{(n)} \leq F_0^{-1}(1 - n^{-t/2}/\alpha)\},$$

where $\alpha > 0$ is taken from Lemma 3 below. Then by a union bound,

$$(8) \quad \sup_{f_0 \in \mathcal{F}^{0,1}} \mathbb{P}_{f_0}(\Omega_t^c) \leq \frac{2}{\alpha n^{t/2-1}}.$$

Moreover, on Ω_t ,

$$\begin{aligned} \sup_{x \in [X_{(1)}, X_{(n)}]} \log \frac{1}{f_0(x)} &\leq \sup_{x \in [F_0^{-1}(n^{-t/2}/\alpha), F_0^{-1}(1 - n^{-t/2}/\alpha)]} \log \frac{1}{f_0(x)} \\ &= \max \left\{ \log \frac{1}{f_0(F_0^{-1}(n^{-t/2}/\alpha))}, \log \frac{1}{f_0(F_0^{-1}(1 - n^{-t/2}/\alpha))} \right\} \\ (9) \quad &\leq \frac{t}{2} \log n, \end{aligned}$$

where the equality holds because the minimum of a concave function on a compact interval is attained at one of the endpoints of the interval, and the second inequality holds due to Lemma 3 below. It follows from (7), (8) and (9) that for $t \geq 2$,

$$\begin{aligned} &\mathbb{P} \left(\sup_{x \in \mathbb{R}} \log \hat{f}_n(x) + \sup_{x \in [X_{(1)}, X_{(n)}]} \log \frac{1}{f_0(x)} > t \log n \right) \\ &\leq \mathbb{P} \left(\sup_{x \in \mathbb{R}} \log \hat{f}_n(x) > \frac{t}{2} \log n \right) + \mathbb{P} \left(\sup_{x \in [X_{(1)}, X_{(n)}]} \log \frac{1}{f_0(x)} > \frac{t}{2} \log n \right) \\ (10) \quad &\leq \frac{C}{n^{t/4-1/2}} + \frac{2}{\alpha n^{t/2-1}}, \end{aligned}$$

and the result follows. \square

The following result is a small generalisation of Proposition A.1(c) of Bobkov (1996).

LEMMA 3. *There exists $\alpha > 0$ such that for all $p \in (0, 1)$ and all $f_0 \in \mathcal{F}^{0,1}$ with corresponding distribution function F_0 ,*

$$f_0(F_0^{-1}(p)) \geq \alpha \min(p, 1 - p).$$

PROOF. Fix $f_0 \in \mathcal{F}^{0,1}$ with associated distribution function F_0 . Proposition A.1(c) of Bobkov (1996) gives that $p \mapsto f_0(F_0^{-1}(p))$ is positive and concave on $(0, 1)$. But, by Theorem 2(b) of Kim and Samworth (2016), there exists $\alpha > 0$ (not depending on f_0) such that

$$f_0(0) \geq \alpha.$$

Noting that $F_0(0) \in (0, 1)$, we deduce by concavity that for $p \in (0, F_0(0)]$,

$$f_0(F_0^{-1}(p)) \geq \frac{p}{F_0(0)} \alpha \geq \alpha p \geq \alpha \min(p, 1-p).$$

A very similar argument handles the case $p \in (F_0(0), 1)$, and this concludes the proof. \square

2.2. *Auxiliary results for the proof of Theorem 4 in the main text.* Recall that we can write $\mathcal{F}^1 = \{f_{\alpha, s_1, s_2} : (\alpha, s_1, s_2) \in \mathcal{T}\}$.

LEMMA 4. *If $X \sim f_{\alpha, s_1, s_2} \in \mathcal{F}^1$, then there exist $a \neq 0$ and $b \in \mathbb{R}$ such that $aX + b$ has a density $f_0 \in \mathcal{F}^1$ of one of the following three forms:*

1. $f_0 = f_{0,0,1}$;
2. $f_0 = f_{-\alpha_0,0,1}$ for some $\alpha_0 \in (0, 18)$;
3. $f_0 = f_{-1,0,s_0}$ for some $s_0 \in [18, \infty]$.

PROOF. Let $X \sim f_{\alpha, s_1, s_2} \in \mathcal{F}^1$ for some $(\alpha, s_1, s_2) \in \mathcal{T}$, and let $a \neq 0$ and $b \in \mathbb{R}$. Then

$$aX + b \sim \begin{cases} f_{\alpha/a, as_1+b, as_2+b} & \text{if } a > 0 \\ f_{\alpha/a, as_2+b, as_1+b} & \text{if } a < 0. \end{cases}$$

Thus, if $\alpha = 0$, we can set $a = (s_2 - s_1)^{-1}$, $b = -s_1(s_2 - s_1)^{-1}$ so that $aX + b \sim f_{0,0,1}$. If $\alpha > 0$ and $\alpha(s_2 - s_1) < 18$, then we can set $a = -(s_2 - s_1)^{-1}$, $b = s_2(s_2 - s_1)^{-1}$ while if $\alpha < 0$ and $|\alpha|(s_2 - s_1) < 18$ then we can set $a = (s_2 - s_1)^{-1}$, $b = -s_1(s_2 - s_1)^{-1}$; in either situation, $aX + b \sim f_{-\alpha_0,0,1}$, with $\alpha_0 := |\alpha|(s_2 - s_1) \in (0, 18)$. Finally, if $\alpha > 0$ and $\alpha(s_2 - s_1) \in [18, \infty]$, then we can set $a = -\alpha$, $b = \alpha s_2$ while if $\alpha < 0$ and $|\alpha|(s_2 - s_1) \in [18, \infty]$ then we can set $a = -\alpha$, $b = \alpha s_1$; in either situation, $aX + b \sim f_{-1,0,s_0}$ with $s_0 := |\alpha|(s_2 - s_1)$. \square

LEMMA 5. *Let $\phi : \mathbb{R} \rightarrow [-\infty, \infty)$ be a concave function whose domain is contained in $[0, 1]$ and which satisfies*

$$(11) \quad \int_0^1 (e^{\phi(u)/2} - 1)^2 du \leq \delta^2$$

for some $\delta \in (0, 2^{-5/2}]$. Then

$$(12) \quad \phi(x) \leq 2^{13/2}\delta \quad \text{for every } x \in [0, 1].$$

Moreover,

$$(13) \quad \phi(x) \geq \frac{-4\delta}{\{\min(x, 1-x)\}^{1/2}} \quad \text{when } \min(x, 1-x) \geq 4\delta^2.$$

PROOF. We first prove inequality (12). By symmetry, it suffices to prove that $\phi(x) \leq 2^{13/2}\delta$ for all $x \in [0, 1/2]$. Fix $x \in [0, 1/2]$ and assume that $\phi(x) > 0$, for otherwise there is nothing to prove. Let $x_* \in (x, 1]$ be such that $\phi(x_*) = 0$ if such an x_* exists; otherwise, set $x_* = 1$.

We first consider the case $x_* \geq 3/4$. Since $e^x \geq 1 + x$ and ϕ is a concave function with $\phi(x_*) \geq 0$,

$$\begin{aligned} \delta^2 &\geq \int_x^{x_*} (e^{\phi(u)/2} - 1)^2 du \geq \frac{1}{4} \int_x^{x_*} \phi^2(u) du \geq \frac{\phi^2(x)}{4} \int_x^{x_*} \left(\frac{x_* - u}{x_* - x} \right)^2 du \\ &= \frac{x_* - x}{12} \phi^2(x) \geq \frac{\phi^2(x)}{48}, \end{aligned}$$

so $\phi(x) \leq 4\sqrt{3}\delta$.

Now suppose instead that $x_* < 3/4$, so that $\phi(x_*) = 0$. Then for $u \in [7/8, 1]$,

$$\phi(u) \leq -\frac{u - x_*}{x_* - x} \phi(x) \leq -\frac{\phi(x)}{8}.$$

We deduce that

$$\delta^2 \geq \int_{7/8}^1 (1 - e^{\phi(u)/2})^2 du \geq \frac{1}{8} (1 - e^{-\phi(x)/16})^2,$$

so

$$\phi(x) \leq 16 \log \left(\frac{1}{1 - 2^{3/2}\delta} \right) \leq \frac{2^{11/2}\delta}{1 - 2^{3/2}\delta} \leq 2^{13/2}\delta,$$

since $\delta \in (0, 2^{-5/2}]$. This completes the proof of (12).

We now proceed to prove inequality (13), and by symmetry it suffices to consider a fixed $x \in [4\delta^2, 1/2]$. We assume that $\phi(x) < 0$, because otherwise there is nothing to prove. By concavity of ϕ , we have either $\phi(u) \leq \phi(x)$ for all $u \in [0, x]$ or $\phi(u) \leq \phi(x)$ for all $u \in [x, 1]$. In the former case,

$$\delta^2 \geq \int_0^x (1 - e^{\phi(u)/2})^2 du \geq x(1 - e^{\phi(x)/2})^2.$$

Thus

$$\phi(x) \geq 2 \log \left(1 - \frac{\delta}{x^{1/2}} \right) \geq \frac{-4\delta}{x^{1/2}}.$$

In the latter case, where $\phi(u) \leq \phi(x)$ for all $u \in [x, 1]$, we find

$$\delta^2 \geq \int_x^1 (1 - e^{\phi(u)/2})^2 du \geq (1 - x)(1 - e^{\phi(x)/2})^2 \geq x(1 - e^{\phi(x)/2})^2,$$

and the conclusion follows as before. \square

LEMMA 6. *Let $f_0 = f_{-1,0,a} \in \mathcal{F}^1$ for some $a \in [18, \infty]$, and let $\phi : \mathbb{R} \rightarrow [-\infty, \infty)$ be a concave function whose domain is contained in $[0, a]$ and which satisfies*

$$(14) \quad \int_0^a \{e^{\phi(u)/2} - f_0^{1/2}(u)\}^2 du \leq \delta^2$$

for some $\delta \in (0, e^{-9}/8]$. Let

$$(15) \quad x_0 := \min \left\{ \log \frac{1}{2^6 e \delta^2 (1 - e^{-a})}, a - 1 \right\} \geq 17.$$

Then with $\tilde{\phi}_a$ defined as in (31) in the main text, we have

$$(16) \quad -4 \frac{e^{x/2} (1 - e^{-a})^{1/2}}{(1 - e^{-1})^{1/2}} \delta \leq \tilde{\phi}_a(x) \leq 2^{13/2} e^{x/2} (1 - e^{-a})^{1/2} \delta$$

for every $x \in [1, x_0]$, and

$$(17) \quad \tilde{\phi}_a(x) \leq 8 \frac{x - x_0}{x_0 - 1} + 7$$

for every $x \in [x_0, a]$.

PROOF. Fix $f_0 = f_{-1,0,a}$ for some $a \in [18, \infty]$, and fix $\delta \in (0, e^{-9}/8]$ and ϕ satisfying the conditions of the lemma. For ease of notation, let us denote $\tilde{\phi}_a$ by ψ . We first prove the lower bound for ψ in (16). Fix $x \in [1, x_0]$ and assume that $\psi(x) < 0$ because otherwise there is nothing to prove. By concavity of ψ , the inequality $\psi(u) \leq \psi(x)$ is true either for all $u \in [0, x]$ or for all $u \in [x, a]$. In the former case,

$$(18) \quad \begin{aligned} \delta^2 &\geq \int_0^x \{e^{\phi(u)/2} - f_0^{1/2}(u)\}^2 du = \int_0^x (1 - e^{\psi(u)/2})^2 \frac{e^{-u}}{1 - e^{-a}} du \\ &\geq (1 - e^{\psi(x)/2})^2 \frac{1 - e^{-x}}{1 - e^{-a}} \geq (1 - e^{\psi(x)/2})^2 \frac{e^{-x}(e-1)}{1 - e^{-a}}, \end{aligned}$$

where we used the fact that $x \geq 1$ in the final inequality. Similarly in the latter case, we can consider the integral from x to a instead to obtain

$$(19) \quad \delta^2 \geq (1 - e^{\psi(x)/2})^2 \frac{e^{-x} - e^{-a}}{1 - e^{-a}} \geq (1 - e^{\psi(x)/2})^2 \frac{e^{-x}(1 - e^{-1})}{1 - e^{-a}},$$

where we used the fact that $x \leq a - 1$ for the final inequality. Now

$$\frac{e^{x/2}(1 - e^{-a})^{1/2}}{(1 - e^{-1})^{1/2}} \delta \leq \frac{e^{x_0/2}(1 - e^{-a})^{1/2}}{(1 - e^{-1})^{1/2}} \delta \leq \frac{1}{2},$$

and we deduce from (18) and (19) that

$$\psi(x) \geq 2 \log \left(1 - \frac{e^{x/2}(1 - e^{-a})^{1/2}}{(1 - e^{-1})^{1/2}} \delta \right) \geq -\frac{4e^{x/2}(1 - e^{-a})^{1/2}}{(1 - e^{-1})^{1/2}} \delta,$$

as required.

We next prove the upper bound in (16). To this end, again fix $x \in [1, x_0]$ and note by very similar arguments to those above that

$$\delta^2 \geq \int_{x-1}^x (e^{\psi(u)/2} - 1)^2 \frac{e^{-u}}{1 - e^{-a}} du \geq \frac{e^{-x}}{1 - e^{-a}} \int_0^1 (e^{\psi(u+x-1)/2} - 1)^2 du.$$

Now

$$e^{x/2}(1 - e^{-a})^{1/2} \delta \leq e^{x_0/2}(1 - e^{-a})^{1/2} \delta \leq \frac{1}{8e^{1/2}} \leq 2^{-5/2},$$

so the result follows by (12) in Lemma 5.

Finally, we prove (17). Fix $x \in [x_0, a]$. Inequality (16) gives

$$\psi(x_0) \leq 2^{13/2} e^{x_0/2} (1 - e^{-a})^{1/2} \delta \leq 2^{7/2} e^{-1/2}$$

and also that

$$\psi(1) \geq -4 \frac{e^{1/2}(1 - e^{-a})^{1/2}}{(1 - e^{-1})^{1/2}} \delta \geq -\frac{e^{1/2}}{2e^9(1 - e^{-1})^{1/2}} \geq -\frac{1}{2}.$$

It therefore follows by concavity of ψ that

$$\psi(x) \leq \frac{x - x_0}{x_0 - 1} \{\psi(x_0) - \psi(1)\} + \psi(x_0) \leq 8 \frac{x - x_0}{x_0 - 1} + 7,$$

as required. \square

In order to prove Theorem 4 for these three cases, we need to prove two results on the bracketing numbers of log-concave functions on bounded subintervals of \mathbb{R} . For $a < b$ and $-\infty \leq B_1 \leq B_2 < \infty$, let $\mathcal{F}([a, b], B_1, B_2)$ denote the class of all non-negative functions f on $[a, b]$ such that $\log f$ is concave and such that $B_1 \leq \log f(x) \leq B_2$ for every $x \in [a, b]$.

PROPOSITION 7. *There exists a universal constant $C > 0$ such that*

$$(20) \quad H_{\mathbb{H}}(\epsilon, \mathcal{F}([a, b], B_1, B_2), d_{\text{H}}, [a, b]) \leq C(B_2 - B_1)^{1/2} \frac{e^{B_2/4}(b - a)^{1/4}}{\epsilon^{1/2}}$$

for every $\epsilon > 0$, $a < b$ and $-\infty \leq B_1 \leq B_2 < \infty$.

PROOF. Fix $\epsilon > 0$, $a < b$ and $B_1 \leq B_2$, and let $\delta := 2\epsilon e^{-B_2/2}$. By [Kim and Samworth \(2016b, Proposition 4\)](#) (see also [Guntuboyina and Sen \(2015\)](#); [Doss and Wellner \(2016\)](#)), there exists a bracketing set $\{[\phi_{L,j}, \phi_{U,j}] : j = 1, \dots, M\}$ for the set of concave functions on $[a, b]$ that are bounded below by B_1 and above by B_2 with $\int_a^b (\phi_{U,j} - \phi_{L,j})^2 dx \leq \delta^2$ and*

$$\log M \leq C \left\{ \frac{(b - a)^{1/2}(B_2 - B_1)}{\delta} \right\}^{1/2}.$$

Now take $f_{L,j} := e^{\phi_{L,j}}$ and $f_{U,j} := e^{\phi_{U,j}}$ for $j = 1, \dots, M$. Since there is no loss of generality in assuming $\phi_{U,j}(x) \leq B_2$ for every $j \in \{1, \dots, M\}$ and $x \in [a, b]$, we have

$$\begin{aligned} \int_a^b (f_{U,j}^{1/2} - f_{L,j}^{1/2})^2 &= \int_a^b e^{\phi_{U,j}} \{1 - e^{-(\phi_{U,j} - \phi_{L,j})/2}\}^2 \leq \frac{e^{B_2}}{4} \int_a^b (\phi_{U,j} - \phi_{L,j})^2 \\ &\leq \frac{\delta^2}{4} e^{B_2} = \epsilon^2. \end{aligned}$$

The result follows. \square

For $B_1 = -\infty$, Proposition 7 unfortunately gives the trivial upper bound $H_{\mathbb{H}}(\epsilon, \mathcal{F}([a, b], -\infty, B_2), d_{\text{H}}, [a, b]) \leq \infty$. It turns out however that this quantity is actually finite, as shown by the following result, essentially due to [Doss and Wellner \(2016, Theorem 4.1\)](#).

PROPOSITION 8. *There exists a universal constant $C > 0$ such that*

$$(21) \quad H_{\mathbb{H}}(\epsilon, \mathcal{F}([a, b], -\infty, B), d_{\text{H}}, [a, b]) \leq C \frac{e^{B/4}(b - a)^{1/4}}{\epsilon^{1/2}}$$

for every $\epsilon > 0$, $a < b$ and $B \in \mathbb{R}$.

*In fact, formally, only the case $B_1 = -B_2$ is covered by [Kim and Samworth \(2016b, Proposition 4\)](#), but the proof proceeds by first considering the case $B_1 = -1$, $B_2 = 1$, so a simple scaling argument can be used to obtain the claimed result.

PROOF. First note that

$$\{f^{1/2} : f \in \mathcal{F}([a, b], -\infty, B)\} \subseteq \mathcal{F}([a, b], -\infty, B/2).$$

Thus

$$\begin{aligned} H_{\mathbb{H}}(\epsilon, \mathcal{F}([a, b], -\infty, B), d_H, [a, b]) \\ &= H_{\mathbb{H}}(\epsilon, \{f^{1/2} : f \in \mathcal{F}([a, b], -\infty, B)\}, L_2, [a, b]) \\ &\leq H_{\mathbb{H}}(\epsilon, \mathcal{F}([a, b], -\infty, B/2), L_2, [a, b]) \\ &\leq C \frac{e^{B/4}(b-a)^{1/4}}{\epsilon^{1/2}}, \end{aligned}$$

where the final inequality follows from Theorem 4.1 of [Doss and Wellner \(2016\)](#). \square

The following lemma is also used in the proof of Theorem 4 in the main text.

LEMMA 9. *Let S, S_1, S_2, \dots, S_k denote measurable subsets of \mathbb{R} such that $S \subseteq \bigcup_{j=1}^k S_j$. Let \mathcal{F}_0 denote an arbitrary class of non-negative functions on $\bigcup_{j=1}^k S_j$ and let $\mathcal{G} := \{e^{\tilde{\phi}_a} : e^{\phi} \in \mathcal{F}_0\}$, where $\tilde{\phi}_a$ is defined in (31) of the main text. Let $\alpha_j := \inf\{x : x \in S_j\}$ and suppose that $\epsilon, \epsilon_1, \dots, \epsilon_k > 0$ satisfy*

$$\sum_{j=1}^k e^{-\alpha_j} \epsilon_j^2 \leq (1 - e^{-a})\epsilon^2.$$

Then

$$(22) \quad H_{\mathbb{H}}(\epsilon, \mathcal{F}_0, d_H, S) \leq \sum_{j=1}^k H_{\mathbb{H}}(\epsilon_j, \mathcal{G}, d_H, S_j).$$

PROOF. We may assume that S_1, \dots, S_k are pairwise disjoint, because otherwise we can work with the sets $S'_1 := S_1$ and $S'_j := S_j \setminus \bigcup_{\ell=1}^{j-1} S_\ell$ for $j = 2, \dots, k$. For each $j = 1, \dots, k$, let $\{[f_{L,\ell}^{(j)}, f_{U,\ell}^{(j)}] : \ell = 1, \dots, N_{\mathbb{H}}(\epsilon_j, \mathcal{G}, d_H, S_j)\}$ denote an ϵ_j -Hellinger bracketing set for the class \mathcal{G} over S_j . Now, for $x \in S_j$ and

$$\ell = (\ell_1, \dots, \ell_k) \in \{1, \dots, N_{\mathbb{H}}(\epsilon_1, \mathcal{G}, d_H, S_1)\} \times \dots \times \{1, \dots, N_{\mathbb{H}}(\epsilon_k, \mathcal{G}, d_H, S_k)\},$$

set

$$f_{L,\ell}(x) := \frac{e^{-x} f_{L,\ell}^{(j)}(x)}{1 - e^{-a}} \quad \text{and} \quad f_{U,\ell}(x) := \frac{e^{-x} f_{U,\ell}^{(j)}(x)}{1 - e^{-a}}.$$

Then for every $f \in \mathcal{F}_0$, there exists $\ell = (\ell_1, \dots, \ell_k)$ such that $f_{L,\ell} \leq f \leq f_{U,\ell}$. Moreover,

$$\begin{aligned} \int_S (f_{U,\ell}^{1/2} - f_{L,\ell}^{1/2})^2 &\leq \sum_{j=1}^k \int_{S_j} \frac{e^{-x}}{1 - e^{-a}} \{f_{U,\ell_j}^{(j)}(x)^{1/2} - f_{L,\ell_j}^{(j)}(x)^{1/2}\}^2 dx \\ &\leq \sum_{j=1}^k \frac{e^{-\alpha_j}}{1 - e^{-a}} \epsilon_j^2 \leq \epsilon^2, \end{aligned}$$

as required. \square

2.3. Auxiliary result for the proof of Theorem 5 in the main text. The following is the key empirical processes result used in the proof of Theorem 5.

THEOREM 10 (van de Geer (2000), Corollary 7.5). *Let $f_0 \in \mathcal{F}$ and let $\mathcal{F}(f_0, \delta) := \{f \in \mathcal{F} : f \ll f_0, d_H(f, f_0) \leq \delta\}$. Suppose $\Psi : (0, \infty) \rightarrow (0, \infty)$ is a function such that*

$$\Psi(\delta) \geq \max \left\{ \delta, \int_0^\delta H_{\mathbb{H}}^{1/2}(2^{1/2}\epsilon, \mathcal{F}(f_0, 4\delta), d_H) d\epsilon \right\} \quad \text{for every } \delta > 0$$

and such that $\delta \mapsto \delta^{-2}\Psi(\delta)$ is decreasing on $(0, \infty)$. Let \hat{f}_n denote the maximum likelihood estimator over \mathcal{F} based on $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} f_0$. There exists a universal constant $C > 0$ such that if $\delta_* > 0$ is such that $n^{1/2}\delta_*^2 \geq C\Psi(\delta_*)$, then for every $\delta \geq \delta_*$,

$$\mathbb{P}\{d_X^2(\hat{f}_n, f_0) > \delta^2\} \leq C \exp\left(\frac{-n\delta^2}{C^2}\right).$$

In fact, van de Geer (2000, Corollary 7.5) relies on a bracketing entropy upper bound in Hellinger distance for $\bar{\mathcal{F}}(f_0, \delta) := \left\{ \frac{f+f_0}{2} : f \in \mathcal{F}, f \ll f_0, d_H\left(\frac{f+f_0}{2}, f_0\right) \leq \delta \right\}$, where the restriction $f \ll f_0$ can be included because the support of \hat{f}_n is contained in the support of f_0 . But for any non-negative functions f_0, f_L and f_U with $f_L \leq f_U$, we have

$$\left(\frac{f_U + f_0}{2}\right)^{1/2} - \left(\frac{f_L + f_0}{2}\right)^{1/2} \leq \frac{1}{2^{1/2}}(f_U^{1/2} - f_L^{1/2}).$$

Moreover, by the triangle inequality and the fact that the squared Hellinger distance is jointly convex in its arguments, if $d_H\left(\frac{f+f_0}{2}, f_0\right) \leq \delta$, then

$$\begin{aligned} d_H(f, f_0) &\leq \frac{2^{1/2}}{2^{1/2} - 1} \left\{ d_H\left(f, \frac{f+f_0}{2}\right) + d_H\left(\frac{f+f_0}{2}, f_0\right) \right\} - \frac{d_H(f, f_0)}{2^{1/2} - 1} \\ &\leq \frac{2^{1/2}}{2^{1/2} - 1} d_H\left(\frac{f+f_0}{2}, f_0\right) \leq 4\delta, \end{aligned}$$

so $H_{\mathbb{H}}(2^{1/2}\epsilon, \bar{\mathcal{F}}(f_0, \delta), d_{\mathbb{H}}) \leq H_{\mathbb{H}}(2^{1/2}\epsilon, \mathcal{F}(f_0, 4\delta), d_{\mathbb{H}})$.

References.

Bobkov, S. G. (1996) Extremal properties of half-spaces for log-concave distributions. *Ann. Probab.*, **24**, 35–48.

Doss, C. and Wellner, J. A. (2016) Global rates of convergence of the MLEs of log-concave and s -concave densities. *Ann. Statist.*, **44**, 954–981.

Dümbgen, L., Samworth, R. and Schuhmacher, D. (2011) Approximation by log-concave distributions with applications to regression. *Ann. Statist.*, **39**, 702–730.

Guntuboyina, A. and Sen, B. (2015) Global risk bounds and adaptation in univariate convex regression. *Prob. Th. Rel. Field.*, **163**, 379–411.

Kim, A. K. H., Guntuboyina, A. and Samworth, R. J. (2017) Adaptation in log-concave density estimation. *Submitted*.

Kim, A. K. H. and Samworth, R. J. (2016) Global rates of convergence in log-concave density estimation. *Ann. Statist.*, **44**, 2756–2779.

Kim, A. K. H. and Samworth, R. J. (2016b) Online supplement to ‘Global rates of convergence in log-concave density estimation’. *Ann. Statist.*.

van de Geer, S. (2000) *Applications of Empirical Process Theory*. Cambridge University Press, Cambridge.

STATISTICAL LABORATORY
WILBERFORCE ROAD
CAMBRIDGE
CB3 0WB
UNITED KINGDOM
E-MAIL: r.samworth@statslab.cam.ac.uk
E-MAIL: a.kim@statslab.cam.ac.uk
URL: <http://www.statslab.cam.ac.uk/~rjs57>
URL: <http://sites.google.com/site/kyoungheearlene/home>

DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA, BERKELEY
423 EVANS HALL
BERKELEY, CA - 94720
UNITED STATES OF AMERICA
E-MAIL: aditya@stat.berkeley.edu
URL: <http://www.stat.berkeley.edu/~aditya/>

DEPARTMENT OF STATISTICS, SUNGSHIN WOMEN’S UNIVERSITY
34DA-GIL 2
BOMUN-RO
SEONGBUK-GU
SEOUL 02844
SOUTH KOREA
E-MAIL: arlenekim@sungshin.ac.kr