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Abstract

We tackle the problem of high-dimensional nonparametric density estimation by

taking the class of log-concave densities on Rp and incorporating within it a symmetry

assumption, which both mitigates the curse of dimensionality and admits a scalable

estimation algorithm. The case of spherical symmetry is studied in detail through the

notion of spherically symmetric log-concave projection. In the setting of independent

and identically distributed data in Rp, we prove that the spherically symmetric log-

concave maximum likelihood estimator has a worst case risk bound with respect to,

e.g., squared Hellinger loss, of O(n−4/5), independent of p. Moreover, we show that the

estimator is adaptive in the sense that if the data generating density admits a special

form, then a nearly parametric rate may be attained. Our estimation algorithm is fast

even when n and p are on the order of hundreds of thousands, and we illustrate its

strong performance on simulated data.

1 Introduction

Density estimation emerged as one of the fundamental challenges in Statistics very soon

after its inception as a field. Up until halfway through the last century, approaches

based on parametric (often Gaussian) assumptions or histograms/contingency tables

were dominant (Fisher, 1922, 1925). However, the restrictions of these techniques
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has led, since the 1950s, to an enormous research effort devoted to exploring non-

parametric methods, primarily based on smoothness assumptions, but also on shape

constraints. These include kernel density estimation (Rosenblatt, 1956; Wand and

Jones, 1995), wavelets (Donoho et al., 1996) and other orthogonal series methods,

splines (Gu and Qiu, 1993), as well as techniques based on monotonicity (Grenander,

1956), log-concavity (Cule et al., 2010) and others. Although highly successful for low-

dimensional data, these approaches all encounter two serious difficulties in moderate-

or high-dimensional regimes: first, theoretical performance is limited by minimax lower

bounds that characterise the ‘curse of dimensionality’ (e.g. Ibragimov and Khasminskii,

1983); and second, computational issues may become a bottleneck, often exacerbated

by the need to choose (multiple) smoothing parameters.

In parallel to these developments, modern technology now allows the routine collec-

tion of extremely high-dimensional data sets, leading to a great demand for reliable and

scalable density estimation algorithms. To emphasise the challenge here, let Fp denote

the class of upper semi-continuous, log-concave densities on Rp, and let X1, . . . , Xn be

independent and identically distributed random vectors with density f0 ∈ Fp. Kim

and Samworth (2016) proved that for each p ∈ N, there exists cp > 0 such that

inf
f̃n

sup
f0∈Fp

Ed2
H(f̃n, f0) ≥

{
c1n
−4/5 if p = 1

cpn
−2/(p+1) if p ≥ 2,

where d2
H(f, g) :=

∫
Rp(f

1/2 − g1/2)2 denotes the squared Hellinger distance between

densities f and g on Rp, and where the infimum is taken over all estimators f̃n of f0

based on X1, . . . , Xn. This suggests that very large sample sizes would be required for

an adequate approximation to the true density, even for p = 5. In view of these funda-

mental theoretical limitations, it is natural to consider imposing additional structure

on the problem, while simultaneously seeking to retain the desirable flexibility of the

nonparametric paradigm.

In this paper, we propose a new method for high-dimensional, nonparametric den-

sity estimation by incorporating symmetry constraints into the shape-constrained class.

We demonstrate that this approach facilitates an efficient algorithm that can evade the

curse of dimensionality in terms of its rate of convergence. In this preliminary work,

we focus on perhaps the simplest symmetry constraint, and consider the class of up-

per semi-continuous, spherically symmetric log-concave densities FSS
p . In particular,

we study the maximum likelihood estimator (MLE) f̂n of f0 over the class FSS
p . An

attractive feature of this estimator is that, despite the potentially high-dimensional

nature of the problem, it does not require the choice of any tuning parameters.

Writing Φ for the class of upper semi-continuous, concave and decreasing functions

on [0,∞), it turns out (cf. Proposition 1 below) that the density f0 belongs to FSS
p
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if and only if f0(x) = eφ0(‖x‖) for some φ0 ∈ Φ. We further note that the univariate

random variables Zi := ‖Xi‖ for i = 1, . . . , n each have (log-concave) density h0(r) :=

cpr
p−1eφ0(r), where cp := 2πp/2/Γ(p/2). These observations enable us to reduce the

problem of computing f̂n to obtaining the MLE φ̂n of φ0 based on Z1, . . . , Zn, over the

subclass of φ ∈ Φ such that r 7→ cpr
p−1eφ(r) is a density.

Our results on the theoretical performance of f̂n are presented in terms of the

divergence measure

d2
X(f̂n, f0) :=

1

n

n∑
i=1

log
f̂n(Xi)

f0(Xi)
.

We show in Proposition 3(iv) below that d2
X(f̂n, f0) ≥

∫
Rp f̂n log(f̂n/f0) =: d2

KL(f̂n, f0),

so that our upper bounds on Ed2
X(f̂n, f0) immediately yield the same upper bounds

on the expected Kullback–Leibler divergence (as well as the risks in the squared to-

tal variation and squared Hellinger distances, for instance). One of our main results

(Theorem 8) is that there exists a universal constant C > 0 such that

sup
f0∈FSS

p

Ed2
X(f̂n, f0) ≤ Cn−4/5.

Thus, there is no dependence on p in this worst case risk bound, and we can expect

good performance even in high dimensions. See Section 6 for empirical verification.

We also elucidate the adaptation behaviour of f̂n. More precisely, for k ∈ N, we let

Φ(k) denote the set of φ ∈ Φ that are piecewise linear on dom(φ) := {r : φ(r) > −∞},
with at most k linear pieces. We also let H(k) denote the class of densities h of form

h(r) = rp−1eφ(r) for φ ∈ Φ(k) and let h0(r) := rp−1eφ0(r). In Theorem 9, we derive

an oracle inequality: writing ν2
k := 2 ∧ infh∈H(k) d2

KL(h0, h), there exists a universal

constant C > 0 such that for every f0 ∈ FSS
p ,

Ed2
X(f̂n, f0) ≤ C min

k=1,...,n

{
k4/5ν

2/5
k

n4/5
log
( en
kνk

)
+
k

n
log5/4

(en
k

)}
.

This result reveals that f̂n adapts to densities f0 that are close to being of the form

eφ for some φ ∈ Φ(k) with k not too large; in particular, an almost parametric rate

of k
n log5/4

(
en
k

)
can be attained. In fact, this result is stronger than what is typically

referred to as a sharp oracle inequality; see the remark after Theorem 9.

We remark that an alternative to our proposal, which relies only on existing meth-

ods, would be to compute the estimator f̃n given by

f̃n(x) :=

{
h̃n(‖x‖)/(cp‖x‖p−1) if x 6= 0

0 if x = 0,
(1)

where h̃n is the ordinary log-concave MLE of h0 based on Z1, . . . , Zn. This estimator

f̃n ignores the special structure of h0, but is similarly straightforward to compute
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and attains the same worst case rate of convergence as f̂n (Kim and Samworth, 2016,

Theorem 5)1; this is in fact the minimax rate of convergence over the class of log-

concave densities (Kim and Samworth, 2016, Theorem 1). We argue, however, that

f̂n has several advantages over f̃n in this context, and list these in roughly decreasing

order of importance:

1. The estimator f̃n is inconsistent at x = 0. Indeed h̃n(x) = 0 whenever ‖x‖ <
mini Zi, and the division by ‖x‖p−1 in (1) means that the estimator behaves poorly

for small ‖x‖; see Figure 1. By contrast, f̂n is uniformly consistent over closed

Euclidean balls contained in the interior of the support of f0 (Proposition 4);

2. As mentioned in our discussion above, the estimator f̂n attains faster rates of

convergence when the true density has a simple structure;

3. The estimator f̂n takes values in the relevant class FSS
p , whereas f̃n does not;

4. The estimator f̂n exists in slightly greater generality than f̃n (cf. the remark

following Proposition 2(iv)).

The differences between f̂n and f̃n are illustrated in Figure 1.

Central to our approach is the notion of spherically symmetric log-concave pro-

jection, whose existence, uniqueness and properties we study in detail in Section 2.

Significant additional technical challenges, relative to the study of the ordinary log-

concave MLE, are caused by the fact that this projection does not have the same

moment preservation properties. In Section 3, we therefore develop new arguments to

understand how moments of the underlying distribution change under projection; these

are crucial to prove that, with high probability, φ̂n belongs to a class with sufficiently

small global and local bracketing entropy bounds (Sections 8.2 and 8.3) for our risk

bounds to hold. Our algorithm for computing f̂n, presented in Section 5, is based on

an Active Set approach, and is a variant of that proposed by Dümbgen et al. (2007)

for computing the ordinary log-concave MLE in the univariate case. Its algorithmic

complexity only depends on p through the need to compute Z1, . . . , Zn at the outset,

and therefore scales extremely well to high-dimensional settings.

In addition to the work mentioned above on estimation over the class Fp of log-

concave densities on Rp, multivariate shape-constrained density estimation has also

been considered over other classes, including the set of block decreasing densities on

[0, 1]p (Polonik, 1995, 1998; Biau and Devroye, 2003; Gao and Wellner, 2007), and the

class of s-concave densities on Rp (Doss and Wellner, 2016; Han and Wellner, 2016). In

the former case, for uniformly bounded densities, Biau and Devroye (2003) established

1Although Theorem 5 of Kim and Samworth (2016) is stated for the squared Hellinger risk, it can easily

be extended to a bound for the d2X risk by appealing to Corollary 7.5 of van de Geer (2000).
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Figure 1: A comparison of the spherically-symmetric log-concave MLE f̂n (left) and the

ordinary log-concave MLE f̃n (right) based on a sample of size n = 1000 from a standard

bivariate normal distribution. The top plots give the bivariate density estimates, while the

bottom ones present the corresponding estimates eφ̂n and eφ̃n of eφ0 .

a minimax lower bound in total variation distance of order n−1/(p+2), revealing a similar

curse of dimensionality, while in the latter case, the main interest has been in the classes

with s < 0, which contain the class Fp, so the same minimax lower bounds apply as

for Fp. Various other simplifying structures and methods have also been considered

for nonparametric high-dimensional density estimation, including kernel approaches

for forest density estimation (Liu et al., 2011) and star-shaped density estimation

(Liebscher and Richter, 2016), as well as nonparametric maximum likelihood methods

for independent component analysis (Samworth and Yuan, 2012). Perhaps most closely

related to this work is the approach of Bhattacharya and Bickel (2012), who consider

a maximum likelihood approach (as well as spline approximations) to estimating the

generator of an elliptically symmetric distribution with decreasing generator.

We conclude the introduction with some notation used throughout the paper. We
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use ‖ · ‖ to denote the `2 norm of a vector and ‖ · ‖∞ for the supremum norm of a

function. For x ∈ R, we write x+ := max(x, 0) and x− := max(−x, 0). We use λ(·)
to denote Lebesgue measure on Euclidean space. Given a sample Z1, . . . , Zn, we write

Z(1) ≤ . . . ≤ Z(n) for the corresponding order statistics. If h and h′ are log-concave

functions defined on a subset of R, we write h � h′ if dom(log h) ⊆ dom(log h′). Let

S ⊆ R, and let G be a class of non-negative functions whose domains include S. For

ε > 0, let N[](ε,G, dH, S) denote the smallest M ∈ N for which there exist pairs of

functions {[gL,j , gU,j ] : j = 1, . . . ,M} such that∫
S

(g
1/2
U,j − g

1/2
L,j )2 ≤ ε2

for every j = 1, . . . ,M , and such that for every g ∈ G, there exists j∗ ∈ {1, . . . ,M} with

gL,j∗(x) ≤ g(x) ≤ gU,j∗(x) for every x ∈ S. We also define the ε-bracketing entropy of

G over S with respect to the Hellinger distance by H[](ε,G, dH, S) := logN[](ε,G, dH, S)

and write H[](ε,G, dH) := H[](ε,G, dH,R) when S = R.

2 Spherically symmetric log-concave densities

and projections

Recall from the introduction that FSS
p denotes the class of upper semi-continuous,

spherically symmetric log-concave densities on Rp and Φ denotes the class of upper

semi-continuous, decreasing and concave functions on [0,∞). The following basic char-

acterisation of FSS
p underpins our methodological and theoretical development.

Proposition 1. Let f be a density on Rp. Then f ∈ FSS
p if and only if we can write

f(x) = eφ(‖x‖) for some φ ∈ Φ.

For any fixed a ≥ 0, let Φa be the set of upper semi-continuous functions φ :

[a,∞) → [−∞,∞) such that φ is decreasing and concave, and set Ha :=
{
r 7→

rp−1eφ(r) : φ ∈ Φa,
∫∞
a rp−1eφ(r) dr = 1

}
. We continue to write Φ = Φ0 and also

write H = H0 as shorthand.

Let P be a probability measure on Rp. We define

L̃(φ, P ) :=

∫
Rp
φ(‖x‖) dP (x)−

∫ ∞
0

rp−1eφ(r) dr + 1, (2)

and write φ̃∗(P ) := argmaxφ∈Φ L̃(φ, P ). Since L̃(·, P ) is strictly concave, any maximiser

of L̃(·, P ) over Φ is unique. If L̃(φ, P ) ∈ R, then

∂

∂c
L̃(φ+ c, P ) = 1− ec

∫ ∞
0

rp−1eφ(r) dr,
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so L̃(φ + c, P ) is maximised by choosing c = − log
(∫∞

0 rp−1eφ(r) dr
)
. It follows that

if φ̃∗(P ) exists, and L̃(φ̃∗, P ) ∈ R, then we can define the spherically symmetric log-

concave projection f∗(P ) ∈ FSS
p by f∗(P )(x) := eφ̃

∗(P )(‖x‖).

In fact, in order to study φ̃∗(P ), it will be convenient also to define a related

projection of a one-dimensional probability distribution. To this end, for a ≥ 0, a

probability measure Q on [a,∞) and φ ∈ Φa, let

L(φ,Q) :=

∫
[a,∞)

φdQ−
∫ ∞
a

rp−1eφ(r) dr + 1. (3)

Here, we incorporate the greater generality of the translation by a in order to facili-

tate our analysis of the adaptivity properties of the spherically symmetric log-concave

MLE in Section 4. Similarly to before, we let φ∗(Q) := argmaxφ∈Φa L(φ,Q), and set

h∗(Q)(r) := rp−1eφ
∗(Q)(r). Again, any maximiser of L(·, Q) over Φa is unique, and if

φ∗(Q) exists with L(φ∗, Q) ∈ R, then, writing h∗(r) := rp−1eφ
∗(Q)(r), we have that

h∗ ∈ Ha, so in particular, h∗ is a (log-concave) density.

The following proposition gives necessary and sufficient conditions for the spher-

ically symmetric log-concave projection to be well-defined. We write Pp for the set

of probability distributions on Rp with
∫
Rp ‖x‖ dP (x) < ∞ and P ({0}) < 1. We let

Qa denote the class of probability measures Q on [a,∞) with
∫∞
a r dQ(r) < ∞ and

Q({a}) < 1, and let Q := Q0.

Proposition 2. We have

(i) if
∫∞
a r dQ(r) =∞, then L(φ,Q) = −∞ for all φ ∈ Φa;

(ii) if Q({a}) = 1, then supφ∈Φa L(φ,Q) =∞;

(iii) if Q ∈ Qa, then supφ∈Φa L(φ,Q) ∈ R and φ∗a is a well-defined map from Qa to

Φa;

(iv) if P is a probability measure on Rp and we define a probability measure Q on

[0,∞) by Q
(
[0, r)

)
:= P ({x : ‖x‖ < r}), then L̃(φ, P ) = L(φ,Q) for every φ ∈ Φ.

In particular, if P ∈ Pp, then Q ∈ Q and φ̃∗(P ) = φ∗(Q).

Remark: From Proposition 2(iv), we see that the conditions on P required for the

spherically symmetric log-concave projection to exist, namely
∫
Rp ‖x‖ dP (x) <∞ and

P ({0}) < 1, are weaker than the corresponding conditions for the ordinary log-concave

projection to exist, namely
∫
Rp ‖x‖ dP (x) <∞ and P (H) < 1 for every hyperplane H;

cf. Dümbgen et al. (2011, Theorem 2.2).

The following constitute basic properties of φ∗a(Q).

Proposition 3. Let Q ∈ Qa, let φ∗ := φ∗a(Q) and let h∗(r) := rp−1eφ
∗(r).
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(i) The projection φ∗a is scale equivariant in the sense that if α > 0, and Qα ∈ Qαa
is defined by Qα([αa, r)) := Q([a, r/α)) for all r ∈ [αa,∞), then φ∗αa(Qα)(r) =

φ∗a(Q)(r/α)− p logα.

(ii) Let ∆ : [a,∞) → [−∞,∞) be a function satisfying the property that there exists

t > 0 such that r 7→ φ∗(r) + t∆(r) ∈ Φa. Then∫
[a,∞)

∆ dQ ≤
∫ ∞
a

∆(r)h∗(r) dr.

(iii)
∫∞
a rh∗(r) dr ≤

∫
[a,∞) r dQ(r).

(iv) For any h0 ∈ Ha, we have
∫∞
a h∗ log(h∗/h0) ≤

∫∞
a log(h∗/h0) dQ.

Remark: Let X1, . . . , Xn
iid∼ P ∈ Pp with empirical distribution Pn, and for a mea-

surable set A ⊆ R, let Q(A) := P ({x : ‖x‖ ∈ A}). Let Zi := ‖Xi‖ for i = 1, . . . , n and

let Qn denote the empirical distribution of Qn. Writing f̂n := f∗(Pn), f∗ := f∗(P ),

ĥn := h∗(Qn) and h∗ := h∗(Q), we have by Proposition 3(iv) that

d2
X(f̂n, f

∗) =

∫
Rp

log
f̂n
f∗

dPn =

∫ ∞
0

log
ĥn
h∗

dQn ≥
∫ ∞

0
ĥn log

ĥn
h∗

=

∫ ∞
0

f̂n log
f̂n
f∗

= d2
KL(f̂n, f

∗).

As a final basic property of our projections, we establish continuity with respect to

the Wasserstein distance. Recall that if P, P ′ are probability measures on a Euclidean

space with finite first moments, then the Wasserstein distance between P and P ′ is

defined as

dW(P, P ′) := inf
(X,X′)∼(P,P ′)

E‖X −X ′‖,

where the infimum is taken over all pairs of random vectors X,X ′, defined on the same

probability space, with X ∼ P and Y ∼ Q. We also recall that if P has a finite

first moment, then dW(Pn, P ) → 0 if and only if both Pn
d→ P and

∫
‖x‖ dPn(x) →∫

‖x‖ dP (x).

Proposition 4. Suppose that P ∈ Pp and dW(Pn, P ) → 0. Then supφ∈Φ L(φ, Pn) →
supφ∈Φ L(φ, P ), f∗(Pn) is well-defined for large n and∫

Rp
|f∗(Pn)(x)− f∗(P )(x)| dx→ 0. (4)

Moreover, given any compact set K contained in the interior of the support of P , we

have supx∈K |f∗(Pn)(x)− f∗(P )(x)| → 0.
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Remark: Proposition 4 immediately yields a consistency (and robustness to misspec-

ification) result for the spherically symmetric log-concave MLE. In particular, suppose

that X1, . . . , Xn
iid∼ P ∈ Pp with empirical distribution Pn, and let f̂n := f∗(Pn),

f∗ := f∗(P ). Then, by the strong law of large numbers and Varadarajan’s theorem

(e.g. Dudley, 2002, Theorem 11.4.1), we have dW(Pn, P )
a.s.→ 0, so∫

Rp
|f̂n − f∗|

a.s.→ 0.

Remark: In fact, the conclusion of Proposition 4 also holds for stronger norms than

the total variation norm. In particular, taking a0 > 0 and b0 ∈ R such that f∗(P )(x) ≤
e−a0‖x‖+b0 for all x ∈ Rp, we have by, e.g., Cule and Samworth (2010, Proposition 2)

that for every a < a0, ∫
Rp
ea‖x‖|f∗(Pn)(x)− f∗(P )(x)| dx→ 0.

3 Moment preservation properties

The aim of this section is to elucidate the way in which the first two moments of the

empirical distribution Qn of a set of n data points in [0,∞) change under the projection

h∗a. These results enable us to show that if the data are drawn independently from a

common distribution on [0,∞), then with high probability, the first two moments of

ĥn := h∗a(Qn) are close to their population analogues.

For f ∈ F1, define µf :=
∫∞
−∞ rf(r) dr and

σ2
f :=

∫ ∞
−∞

r2f(r) dr − µ2
f .

Our first proposition concerns bounds on µĥn :

Proposition 5. Fix a ≥ 0, and suppose that Z1, . . . , Zn are real numbers in the interval

[a,∞) that are not all equal to a. Let Qn be the empirical distribution corresponding to

Z1, . . . , Zn. Let ĥn := h∗a(Qn). Then, writing Z̄ := n−1
∑n

i=1 Zi, there exists s ∈ (0,∞)

such that

Z̄ −min

{
Z̄ − a
ρ(s)

,
s

ρ(s)

}
≤ µĥn ≤ Z̄.

We now study bounds for σĥn , and their consequences for supr≥a log ĥn(r).

Proposition 6. Let a ≥ 0 and let Qn be an empirical distribution of n points in [a,∞)

that are not all equal to a. Let δQn > 0 be such that Qn(A) ≤ 1/2 for every interval

A of length at most δQn. Writing ĥn := h∗a(Qn), let `ĥn ≤
∫∞
a log ĥn dQn. Then there

exists a universal constant Cσ > 0 such that

1

Cσ
min(δ2

Qn , e
`ĥn , 1) ≤ σĥn ≤ Cσe

−`ĥn .
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Moreover,

sup
r≥a

log ĥn(r) ≤ max

{
−2 log

(δQn
6

)
, −2`ĥn , 3

}
. (5)

We are now in a position to argue that, with high probability, ĥn belongs to a

subclass of Ha with restricted first two moments. These moment restrictions are im-

portant for enabling us to obtain the bracketing entropy bounds that drive the rates

of convergence of the spherically symmetric log-concave MLE. For Cµ, Cσ > 0, a0 ≥ 0

and h0 ∈ Ha0 with σh0 = 1, let

H(h0, Cµ, Cσ) :=

{
h ∈ Ha0 : |µh − µh0 | ≤ Cµ ,

1

Cσ
≤ σh ≤ Cσ

}
.

Proposition 7. Let a0 ≥ 0, fix a density h0 ∈ Ha0 with σh0 = 1, and suppose that

Z1, . . . , Zn
iid∼ h0, with empirical distribution Qn. Writing ĥn := h∗a0(Qn), there exist

universal constants Cµ, Cσ, C > 0 such that

P
(
ĥn /∈ H(h0, Cµ, Cσ)

)
≤ C

n
.

4 Worst case and adaptive risk bounds

Let f0 ∈ FSS
p , and suppose that X1, . . . , Xn

iid∼ f0 with empirical distribution Pn. Let

f̂n := f∗(Pn) be the spherically symmetric log-concave MLE. Our first main result

below provides a worst case risk bound for f̂n as an estimator of f0 in terms of the d2
X

measure defined in the introduction.

Theorem 8. Let X1, . . . , Xn
iid∼ f0 ∈ FSS

p with empirical distribution Pn. Let f̂n :=

f∗(Pn) be the spherically symmetric log-concave MLE. There exists a universal constant

C > 0 such that

sup
f0∈FSS

p

Ed2
X(f̂n, f0) ≤ C

n4/5
.

As mentioned in the introduction, the attractive aspect of this bound is that it

does not depend on p. The proof relies heavily on the special moment preservation

properties of the spherically symmetric log-concave MLE.

We now turn to the adaptation properties of f̂n. For k ∈ N and a > 0, we say

φ ∈ Φa is k-affine, and write φ ∈ Φ
(k)
a , if there exist r0 ∈ (a,∞] and a partition

I1, . . . , Ik of [a, r0) into intervals such that φ is affine on each Ij for j = 1, . . . , k, and

φ(r) = −∞ for r > r0. Define H(k)
a :=

{
h ∈ Ha : h(r) = rp−1eφ(r) for some φ ∈ Φ

(k)
a

}
.

Again, we write Φ(k) := Φ
(k)
0 and H(k) := H(k)

0 .
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Theorem 9. Let f0 ∈ FSS
p be given by f0(x) = eφ0(‖x‖) and let X1, . . . , Xn

iid∼ f0

with empirical distribution Pn. Let f̂n := f∗(Pn) be the spherically symmetric log-

concave MLE. Define h0 ∈ H by h0(r) := rp−1eφ0(r). Then, writing ν2
k := 2 ∧

infh∈H(k) d2
KL(h0, h), there exists a universal constant C > 0 such that

Ed2
X(f̂n, f0) ≤ C min

k=1,...,n

(
k4/5ν

2/5
k

n4/5
log

en

kνk
+
k

n
log5/4 en

k

)
.

Remark: Taking the universal constant C > 0 from the conclusion of Theorem 9 and

setting C∗ := max{(3C/2)5/4, 1}, we see that if ν2
k ≥ C∗

k
n log5/4

(
en
k

)
and k ∈ {1, . . . , n},

then

C
k4/5ν

2/5
k

n4/5
log

en

kνk
≤ Cν2

k

{
1

C
4/5
∗ log(en/k)

log

(
en3/2

C
1/2
∗ k3/2 log5/8(en/k)

)}
≤ ν2

k .

On the other hand, if ν2
k ≤ C∗

k
n log5/4

(
en
k

)
and k ∈ {1, . . . , n}, then

k4/5ν
2/5
k

n4/5
log

en

kνk
.
k

n
log1/4

(en
k

)
log

(
en3/2

k3/2 log5/8(en/k)

)
.
k

n
log5/4 en

k
.

It follows that Theorem 9 implies the following sharp oracle inequality: there exists a

universal constant C > 0 such that

Eh0d
2
X(f̂n, f0) ≤ min

k=1,...,n

(
ν2
k + C

k

n
log5/4 en

k

)
.

The proof of Theorem 9 proceeds by first considering the case k = 1, described in

Proposition 10 below, for which we obtain a slightly different approximation error

term.

Proposition 10. Let a ∈ [0,∞) and suppose that Z1, . . . , Zn
iid∼ h0 for some h0 ∈ Ha

with empirical distribution function Qn, and let ĥn := h∗a(Qn). Set ν := inf{dH(h0, h) :

h ∈ H(1)
a , h0 � h}. Then there exists a universal constant C > 0 such that

Eh0d
2
X(ĥn, h0) ≤ C

(
ν2/5

n4/5
log

en

ν
+

1

n
log5/4(en)

)
.

Remark: Since 21/2 ≤ ne−3/2 for n ≥ 8 and the function x 7→ x2/5 log(en/x) is

increasing for x ≤ ne−3/2, Proposition 10 remains true if we redefine ν2 := 2 ∧
inf

h∈H(1)
a
d2

KL(h0, h). Hence, the conclusion of Proposition 10 is stronger than that

obtained by specialising Theorem 9 to the case k = 1.

11



5 Algorithm

In this section, we assume we are given data X1, . . . , Xn in Rp and let Zi := ‖Xi‖
for i = 1, . . . , n. We let Pn and Qn denote the empirical distributions of X1, . . . , Xn

and Z1, . . . , Zn respectively. Proposition 2 above shows that, provided at least one of

Z1, . . . , Zn is non-zero, the function φ̂n := φ∗(Qn) is well-defined, and we can then set

f̂n(x) := eφ̂n(‖x‖). Our aim is therefore to provide an algorithm for computing φ̂n.

Let Φ̄ denote the set of φ ∈ Φ with the property that φ is constant on the interval

[0, Z(1)] and affine on the intervals [Z(i−1), Z(i)] for i = 2, . . . , n, with φ(r) = −∞ for

r > Z(n). Observe that if we fix φ ∈ Φ, and φ̄ ∈ Φ̄ be such that φ̄(0) = φ(0) and

φ̄(Zi) = φ(Zi) for all i = 1, . . . , n. Then by concavity of φ, we have φ(r) ≥ φ̄(r) for all

r ∈ [0,∞). Hence

L(φ,Qn) =
1

n

n∑
i=1

φ(Zi)−
∫ ∞

0
rp−1eφ(r) dr + 1 ≤ 1

n

n∑
i=1

φ̄(Zi)−
∫ ∞

0
rp−1eφ̄(r) dr + 1

= L(φ̄,Qn). (6)

We now assume for simplicity of exposition that Z1, . . . , Zn are distinct. The more

general case can be treated similarly by assigning appropriate weights to duplicated

points. Any φ ∈ Φ̄ can be identified with φ = (φ1, . . . , φn)> ∈ Rn given by φi := φ(Zi)

for i = 1, . . . , n. For i = 1, . . . , n− 1, let δi := Z(i+1)−Z(i). Define v1 = (v1,j)
n
j=1 ∈ Rn

to have two non-zero entries, namely v1,1 := −1, v1,2 := 1. Further, for i = 2, . . . , n−1,

let vi = (vi,j)
n
j=1 ∈ Rn have three non-zero entries, namely

vi,i−1 :=
1

δi−1
, vi,i := − 1

δi
− 1

δi−1
and vi,i+1 :=

1

δi
.

Finally, let Φ̄n :=
{
φ ∈ Rn : v>i φ ≤ 0 for i = 1, . . . , n − 1

}
. By (6), we see that it

suffices to compute φ∗ = (φ∗1, . . . , φ
∗
n)> ∈ argmaxφ∈Φ̄n F (φ), where

F (φ) :=
1

n

n∑
i=1

φi −
1

p
Zp(1) −

n−1∑
i=1

∫ Z(i+1)

Z(i)

rp−1 exp

(
Z(i+1) − r

δi
φi +

r − Z(i)

δi
φi+1

)
dr + 1.

(7)

This is a finite-dimensional convex optimisation problem with linear inequality con-

straints. We propose an active set algorithm for the optimisation of (7), a variant

of the algorithm used in Dümbgen et al. (2007) to compute the ordinary univariate

log-concave MLE. For φ ∈ Φ̄n, we define A(φ) :=
{
i ∈ {1, . . . , n− 1} : v>i φ = 0

}
to be

the set of ‘active’ constraints. Note that this is the complement in {1, . . . , n} of the set

of ‘knots’ of φ. Given a set A ⊆ {1, . . . , n − 1}, we define V (A) :=
{
φ ∈ Rn : v>i φ =

0, ∀ i ∈ A
}

, and

V ∗(A) := argmax
φ∈V (A)

F (φ). (8)

12



Here, the maximiser is unique because F (·) is strictly concave on Rn with F (φ)→ −∞
as ‖φ‖ → ∞. It is convenient to define, for i = 1, . . . , n− 1, vectors bi = (bi,j)

n
j=1 ∈ Rn

by

bi,j := −
j−1∑
k=i

δk,

where, as usual, we interpret an empty sum as 0, and also define bn := 1n ∈ Rn, the

all-one vector. It follows from this definition that b>i vi = −1 for i ∈ {1, . . . , n− 1} and

b>i vj = 0 for all i ∈ {1, . . . , n} and j ∈ {1, . . . , n− 1} with i 6= j. Finally, given φ ∈ Φ̄n

and φ′ ∈ Rn, we define

t(φ, φ′) := max

{
v>i φ

′

v>i (φ′ − φ)
: i ∈ {1, . . . , n− 1} \A(φ) , v>i φ

′ > 0

}
.

We are now in a position to present the full algorithm; see Algorithm 1. It is guaranteed

to terminate in finitely many steps with the exact solution.

Algorithm 1 Computing the spherically symmetric log-concave MLE

Input: X1, . . . , Xn ∈ Rp. Output: φ ∈ Φ̄n.

1: Zi ← ‖Xi‖ for all i = 1, . . . , n.

2: A← {1, . . . , n− 1}.
3: φ← V ∗(A).

4: while maxi=1,...,n b
>
i ∇F (φ) ≥ 0 do

5: i∗ ← argmaxi=1,...,n b
>
i ∇F (φ)

6: φ′ ← V ∗(A \ {i∗})
7: while φ′ /∈ Φ̄n do

8: φ← t(φ, φ′)φ+ {1− t(φ, φ′)}φ′

9: A← A(φ)

10: φ′ ← V ∗(A)

11: end while

12: φ← φ′

13: A← A(φ)

14: end while

We complete this section by providing further detail on how to solve the opti-

misation problem in (8). Given the active set A ⊆ {1, . . . , n − 1}, let us define

I := {1, . . . , n} \A. We index the elements of I by i1 < . . . < iT where T := |I|. Given

v ∈ R(n−1)×n, we also write vA for the matrix in R|A|×n obtained by extracting the rows

of v with indices in A. Observe that the set {φ = (φ1, . . . , φn)> ∈ Rn : vAφ = 0} is the

13



subspace of Rn where for j < i1, we have φj = φi1 , and for j ∈ {it + 1, . . . , it+1 − 1},
we have

φj =
Z(it+1) − Z(j)

Z(it+1) − Z(it)
φit +

Z(j) − Z(it)

Z(it+1) − Z(it)
φit+1 .

It follows we can solve the optimisation problem (8) by solving instead an unconstrained

optimisation over T variables, i.e. by computing

max
φI∈RT

1

n

(
i1φi1 +

T−1∑
t=1

it+1∑
j=it+1

Z(it+1) − Z(j)

Z(it+1) − Z(it)
φit +

Z(j) − Z(it)

Z(it+1) − Z(it)
φit+1

)

− 1

p
exp(φi1)Zp(i1) −

T−1∑
t=1

∫ Z(it+1)

Z(it)

rp−1 exp

(
Z(it+1) − r

Z(it+1) − Z(it)
φi +

r − Z(it)

Z(it+1) − Z(it)
φit+1

)
dr.

We solve this latter problem via Newton’s method.

6 Empirical performance

In this section, we compare the performance of the spherically symmetric log-concave

MLE against two alternative approaches. The first competitor is the spherically sym-

metric estimator f̃n defined in the introduction, based on computing the univariate

log-concave MLE of the density of the norms of the data. The second competitor is

the spherically symmetric estimator f̃ker
n , which is similar but estimates the density of

the norms of the data via kernel smoothing.

In the first experiment, we generate data from an isotropic Gaussian distribution

f0 and measure the error in Kullback–Leibler divergence dKL(·, f0). For each setting of

n and p, we repeat the simulation 100 times and report the average error. The results

are shown in Figure 2a and 2b. In Figure 2b, we plot n−4/5 on the x-axis for various

sample sizes to demonstrate the scaling proved in Theorem 8.

In the second experiment, we generate data whose true density is uniform on a

Euclidean ball, i.e., f0(x) = p−pc−1
p 1{‖x‖≤p}. We measure the error in Hellinger distance

because f0 has bounded support and there exist x ∈ Rp where f̃ker
n (x) > 0 but f0(x) =

0. We plot the results in Figures 2c and 2d. For the simulation study described in

Figure 2d, the error for f̃ker
n is always above 0.01 and hence does not appear in the

figure. In Figure 2d, we plot n−1 on the x-axis to demonstrate the scaling proved in

Theorem 9.

In the third experiment, the true density is f0(x) = Γ(p)−1c−1
p e−‖x‖ and, as with

the first experiment, we measure the error in Kullback–Leibler divergence. We plot

the results in Figure 2e and 2f. In Figure 2e, we plot n−1 on the x-axis to demonstrate

the scaling proved in Theorem 9.
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Figure 2: Simulation studies.

These simulations confirm the theoretical findings in Section 8 and illustrate the

strong finite-sample performance of the spherically symmetric log-concave MLE.

15



7 Proofs of main results

7.1 Proofs from Section 2

Proof of Proposition 1. Suppose that f is a density on Rp that can be written as f(x) =

eφ(‖x‖) for some φ ∈ Φ. Then f is upper semi-continuous and spherically symmetric.

Moreover, for any t ∈ (0, 1), and x, y ∈ Rp, and using the facts that φ is decreasing

and concave,

log f
(
tx+ (1− t)y

)
= φ

(
‖tx+ (1− t)y‖

)
≥ φ

(
t‖x‖+ (1− t)‖y‖

)
≥ tφ(‖x‖) + (1− t)φ(‖y‖) = t log f(x) + (1− t) log f(y).

Thus, f is log-concave, as required.

We now turn to the converse. Suppose that f ∈ FSS
p . Then since f is upper semi-

continuous and spherically symmetric, we can write f(x) = g(‖x‖) for some upper

semi-continuous g : [0,∞) → [0,∞). It remains to show that log g is decreasing and

concave. To this end, suppose for a contradiction that there exists r > r′ ≥ 0 such

that log g(r) > log g(r′), and let x ∈ Rp be such that ‖x‖ = r. Then

log f
(r′x
r

)
= log g(r′) < log g(r) =

r + r′

2r
log f(x) +

r − r′

2r
log f(−x),

contradicting the log-concavity of f .

On the other hand, if g is not log-concave, then there exist r, r′ ∈ [0,∞) and

t ∈ (0, 1) such that log g(tr+ (1− t)r′) < t log g(r) + (1− t) log g(r′). But then, for any

x ∈ Rp with ‖x‖ = 1, we have

log f(trx+ (1− t)r′x) = log g(tr + (1− t)r′)

< t log g(r) + (1− t) log g(r′) = t log f(rx) + (1− t) log f(r′x),

again contradicting the log-concavity of f .

Proof of Proposition 2. (i) Fix φ ∈ Φa. Observe that if limr→∞ φ(r) = c > −∞, then

L(φ,Q) ≤ φ(a)− ec
∫∞
a rp−1 dr = −∞. Otherwise limr→∞ φ(r) = −∞, and then there

exist α > 0, β ∈ R such that φ(r) ≤ −αr + β (Cule and Samworth, 2010, Lemma 1).

Hence, L(φ,Q) ≤
∫∞
a φdQ ≤ −α

∫∞
a r dQ(r) + β = −∞.

(ii) Now suppose that Q({a}) = 1 and let eφn(r) := n1{r∈[a,a+n−1]}. Then,

L(φn, Q) = logn− n
∫ a+n−1

a
rp−1 dr + 1 ≥ log n− (a+ n−1)p−1 + 1→∞

as n→∞.
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(iii) Finally, suppose that Q ∈ Qa. For φ(r) := −r, we have

L(φ,Q) = −
∫ ∞
a

r dQ(r)−
∫ ∞
a

rp−1e−r dr + 1 ≥ −
∫ ∞
a

r dQ(r)− Γ(p) + 1 > −∞,

so supφ∈Φa L(φ,Q) > −∞.

For δ, ε > 0, let Qa(δ, ε) :=
{
Q ∈ Qa : Q

(
(a+ δ,∞)

)
≥ ε
}

. Then, since Q({a}) < 1,

we have Q ∈ Qa(δ, ε) for some δ, ε > 0. We also write M := φ(a) and M ′ := φ(a+ δ).

Then by the concavity of φ,

L(φ,Q) ≤M(1− ε) +M ′ε−
∫ a+δ

a
rp−1 exp

(
M − r − a

δ
(M −M ′)

)
dr + 1. (9)

If M > 0 and (M −M ′)ε > 2M , then

L(φ,Q) ≤M − eM
∫ a+δ

a
rp−1 exp

(
−2M(r − a)

εδ

)
dr + 1

≤M − eM
(
εδ

2M

)p ∫ 2M/ε

0

(
2Ma

εδ
+ s

)p−1

e−s ds+ 1

≤M − eM
(
εδ

2M

)p ∫ 2M/ε

0
sp−1e−s ds+ 1.

On the other hand, if M > 0 and (M − M ′)ε > 2M , then from (9) we see that

L(φ,Q) ≤ −M + 1. We deduce that there exists M∗ > 0, depending only on δ and ε,

such that

sup
φ∈Φa

L(φ,Q) = sup
φ∈Φa:φ(a)≤M∗

L(φ,Q) <∞.

The existence of φ∗ then follows from the proof of Theorem 2.2 in Dümbgen et al.

(2011).

(iv) By the change of variable formula (e.g. Billingsley, 1995, Theorem 16.13),

we have
∫
Rp φ(‖x‖) dP (x) =

∫
[0,∞) φ(r) dQ(r) for all φ ∈ Φ. The result then follows

from (iii), specialised to the case a = 0.

Proof of Proposition 3. (i) For any φ ∈ Φa, we may define φα ∈ Φαa by φα(r) :=

φ(r/α) − p logα. The map φ 7→ φα is a bijection from Φa to Φαa. Let φ∗ = φ∗a(Q).

Then, for any φ ∈ Φa, we have∫
[αa,∞)

φ∗α dQα −
∫ ∞
αa

rp−1eφ
∗
α(r) dr =

∫
[a,∞)

φ∗ dQ− p logα−
∫ ∞
a

sp−1eφ
∗(s) ds

≥
∫

[a,∞)
φdQ− p logα−

∫ ∞
a

sp−1eφ(s) ds

≥
∫

[αa,∞)
φα dQα −

∫ ∞
αa

rp−1eφα(r) dr.

This establishes that φ∗α = φ∗αa(Qα) and thus proves scale equivariance.
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(ii) For any t > 0, we have

0 ≥ 1

t

{
L(φ∗ + t∆, Q)− L(φ∗, Q)

}
=

∫
[a,∞)

∆ dQ− 1

t

∫ ∞
a

(et∆(r) − 1)h∗(r) dr. (10)

Choose t0 > 0 small enough that φ∗+ t0∆ ∈ Φa. Since
∫∞
a rp−1eφ

∗(r) dr <∞, we must

have φ∗(r) → −∞ as r → ∞, and hence, by reducing t0 > 0 if necessary, we may

assume that
∫∞
a ∆(r)rp−1eφ

∗(r)+t0∆(r) dr <∞. Now, for t ∈ (0, t0],

1

t
(et∆(r) − 1) ≤ 1

t0
(et0∆(r) − 1)1{∆(r)≥0} + ∆(r)1{∆(r)<0}.

Hence, if
∫∞
a ∆(r)h∗(r) dr > −∞, then we may apply the dominated convergence

theorem to (10) to take the limit as t ↘ 0 and reach the desired conclusion. On the

other hand, if
∫∞
a ∆(r)h∗(r) dr = −∞, then for every t ∈ (0, t0],

1

t

∫ ∞
a

(et∆(r) − 1)h∗(r) dr

≤
∫ ∞
a

(
1

t0
(et0∆(r) − 1)1{∆(r)≥0} + ∆(r)1{∆(r)<0}

)
h∗(r) dr = −∞.

The result follows.

(iii) Letting ∆(r) = −r, this is a consequence of (ii).

(iv) Letting ∆(r) = log
(
h0(r)/h∗(r)

)
, this also follows from an application of (ii).

Proof of Proposition 4. The proof is very similar to (in fact, somewhat more straight-

forward than) the proof of Dümbgen et al. (2011, Theorem 4.5), so we focus on the

main differences. We first observe that if Xn ∼ Pn and X ∼ P are defined on the same

probability space, then∣∣E‖Xn‖ − E‖X‖
∣∣ ≤ E‖Xn −X‖ ≤ dW(Pn, P ).

Hence, writing Qn and Q for the distributions of ‖Xn‖ and ‖X‖ respectively, we deduce

that dW(Qn, Q) ≤ dW(Pn, P ) → 0. It follows that
∫∞

0 r dQn(r) →
∫∞

0 r dQ(r) < ∞,

and lim supn→∞Qn({0}) ≤ Q({0}) < 1, so Qn ∈ Q for n ≥ n0, say. For such n,

we write φ∗n := φ∗(Qn) and φ∗ := φ∗(Q). Let n0 ≤ n1 < n2 < . . . be an arbitrary,

strictly increasing sequence of positive integers. By extracting a further subsequence

if necessary, we may assume that L(φ∗nk , Qnk) → α ∈ [−∞,∞]. First note that, by

considering the function φ(r) = −r,

α ≥ lim
k→∞

∫ ∞
0
−r dQnk(r)− (p− 1)! + 1 =

∫ ∞
0
−r dQ(r)− (p− 1)! + 1 > −∞.

Our next claim is that lim supk∈N supr∈[0,∞) φ
∗
nk

(r) < ∞. To see this, recall the defi-

nition of the classes Q(δ, ε) from the proof of Proposition 2, and let δ0, ε0 > 0 be such
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that Q ∈ Q(δ0, ε0). By examining the proof of Proposition 2, it suffices to prove that

Qnk ∈ Q(δ0, ε0) for large k (with a = 0). But lim infk→∞Qnk
(
(δ0,∞)

)
≥ Q

(
(δ0,∞)

)
≥

ε0, which establishes the claim.

Let r0 := sup{r ∈ [0,∞) : Q(r) < 1}. Our next claim is that lim infk→∞ φ
∗
nk

(r) >

−∞ for all r ∈ [0, r0). To see this, note by our first claim that we may assume without

loss of generality that there existsM∗ ≥ max(α, 0) such that supk∈N supr∈[0,∞) φ
∗
nk

(r) ≤
M∗. Then, for any r ∈ [0, r0),

L(φ∗nk , Qnk) ≤ φ∗nk(0)
{

1−Qnk
(
(r,∞)

)}
+ φ∗nk(r)Qnk

(
(r,∞)

)
.

Since Q
(
(r,∞)

)
> 0, we deduce that

lim inf
k→∞

φ∗nk(r) ≥ lim inf
k→∞

L(φ∗nk , Qnk)− φ∗nk(0)
{

1−Qnk
(
(r,∞)

)}
Qnk

(
(r,∞)

) ≥ − M∗ − α
Q
(
(r,∞)

) > −∞,
as required.

These two claims allow us to extract a further subsequence (φ∗nk(`)) that converges in

an appropriate sense to a limit φ∗ ∈ Φ (in particular, this convergence occurs Lebesgue

almost everywhere). It turns out that φ∗ = φ∗(Q), that L(φ∗nk(`), Q) → L(φ∗, Q),

and, writing f∗` := f∗(Pnk(l)) , we have
∫
Rp |f

∗
` − f∗| → 0. The desired total variation

convergence (4) follows. See the proof of Theorem 4.5 of Dümbgen et al. (2011) for

details.

For the final claim, note that our previous argument allows us to conclude that

f∗(Pn) converges to f∗(P ) Lebesgue almost everywhere. The conclusion therefore

follows from Rockafellar (1997, Theorem 10.8).

7.2 Proofs from Section 3

Proof of Proposition 5. Let r0 := sup{r ∈ [a,∞) : φ̂n(r) = φ̂n(a)} and define s0 :=

r0−a. By (6), we have that r0 = Zi for some i because Qn is an empirical distribution.

We also know that the right derivative of φ̂n at r0 is strictly negative. Hence, by

Proposition 3(ii), applied to the functions ∆(r) := ±(r − r0)+, we have∫ ∞
a

(r − r0)+ĥn(r) dr + r0 =
1

n

n∑
i=1

(Zi − r0)+ + r0

=
1

n

n∑
i=1

(Zi − r0) +
1

n

n∑
i=1

(Zi − r0)− + r0

= Z̄ +
1

n

n∑
i=1

(r0 − Zi)+. (11)
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Now, since φ̂n(r) = φ̂n(a) for all r ∈ [a, r0], we have

1 ≥ eφ̂n(a)

∫ r0

a
rp−1 dr = eφ̂n(a) r

p
0 − ap

p
.

We deduce that∫ ∞
a

(r − r0)−ĥn(r) dr = eφ̂n(a)

∫ r0

a
(r0 − r)rp−1 dr

≤ p

rp0 − ap

(
rp+1

0

p
− r0a

p

p
− rp+1

0

p+ 1
+
ap+1

p+ 1

)
= r0 −

p

p+ 1

rp+1
0 − ap+1

rp0 − ap
≤ s0

ρ(s0)
, (12)

where we used Lemma 14 to obtain the final bound. From (11) and (12), we find that

µĥn =

∫ ∞
a

(r−r0)+ĥn(r) dr−
∫ ∞
a

(r−r0)−ĥn(r) dr+r0 ≥ Z̄+
1

n

n∑
i=1

(r0−Zi)+−
s0

ρ(s0)
.

(13)

In particular, µĥn ≥ Z̄ −
s0
ρ(s0) .

For i = 1, . . . , n, let Z̃i := Zi if Zi ≤ r0 and Z̃i := s0 + a if Zi > r0. Then

n−1
∑n

i=1(r0 − Zi)+ = s0 − n−1
∑n

i=1(Z̃i − a) ≥ 0 and n−1
∑n

i=1 Z̃i ≤ Z̄. Hence

s0

ρ(s0)
− 1

n

n∑
i=1

(r0 − Zi)+

=
s0 − n−1

∑n
i=1(Z̃i − a)

ρ(s0)
+
n−1

∑n
i=1(Z̃i − a)

ρ(s0)
−
(
s0 −

1

n

n∑
i=1

(Z̃i − a)

)

≤
(
s0 −

1

n

n∑
i=1

(Z̃i − a)

)(
1

ρ(s0)
− 1

)
+
Z̄ − a
ρ(s0)

≤ Z̄ − a
ρ(s0)

. (14)

The second lower bound for µĥn follows from (13) and (14). The upper bound on µĥn
follows from Proposition 3.

Proof of Proposition 6. We have

sup
r≥a

log ĥn(r) ≥
∫ ∞
a

log ĥn dQn ≥ `ĥn ,

so since ĥn is upper semi-continuous, there exists r0 ≥ a such that log ĥn(r0) ≥ `ĥn . By

Lemma 15, we then have that σĥn ≤ C
′e−`ĥn for some universal constant C ′ > 0. Now,

let M := 3 ∨ supr≥a log ĥn(r) and let Dt := {t : log ĥn(r) ≥ t}. By (Dümbgen et al.,

2011, Lemma 4.1), we have that λ(D−2M ) ≤ 6Me−M . Suppose now for contradiction

that M > max
{
−2 log(δQn/6), −2`ĥn

}
. Then

λ(D−2M ) < 6e−M/2 < δQn ,
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so Qn(D−2M ) ≤ 1/2. Hence∫ ∞
a

log ĥn dQn ≤ −2M{1−Qn(D−2M )}+MQn(D−2M ) ≤ −M/2 < `ĥn ,

a contradiction. We deduce that (5) holds, so by Lemma 15, there exists a universal

constant c′ > 0 such that σĥn ≥ c
′min(δ2

Qn , e
2`ĥn , 1). The lower bound for σĥn follows,

with Cσ := max(C ′, 1/c′).

Proof of Proposition 7. We may assume that n ≥ 500. Let E := {|Z̄ − µh0 | ≤ 1}, so

that P(Ec) ≤ 1/n, by Chebychev’s inequality. On the event E, we have µĥn ≤ Z̄ ≤
µh0 + 1 by Proposition 5. If s0 ≤ 1, then µĥn ≥ Z̄ − 1 ≥ µh0 − 2 because ρ(s0) ≥ 1

(Lemma 13(iii)). If s0 > 1, then by Proposition 5 and Lemma 13(iv),

µĥn ≥ Z̄ −
Z̄ − a0

ρ(s0)
≥ µh0 − 1− 20(µh0 + 1− a0)

ρ(s0 + 1)

≥ µh0 − 21− 20(µh0 − a0)

ρ(s0 + 1)
.

Hence, if ρ(s0)/s0 < 2−7, then by Lemma 11, we have µĥn−µh0 ≥ −21−20×212 ≥ −217.

On the other hand, if ρ(s0)/s0 ≥ 2−7, then by Proposition 5,

µĥn − µh0 ≥ Z̄ − µh0 −
s0

ρ(s0)
≥ −1− 27 ≥ −28.

It follows that there exists a universal constant Cµ > 0 such that

P
(
|µĥn − µh0 | > Cµ

)
≤ 1/n.

To bound σĥn , we show that, taking δQn = 2−11 and `ĥn = −3, there exists a universal

constant C > 0 such that the hypotheses of Proposition 6 hold with probability at least

1 − C/n. To verify the first condition, note that ‖h0‖∞ ≤ 29 (Lovász and Vempala,

2007, Theorem 5.14(b) and (d)). Let H0 and Hn denote the distribution functions

corresponding to h0 and Qn respectively. Let (a, b] be an interval of length at most

2−11. Then

Qn

(
(a, b]

)
= Hn(b)−Hn(a) = Hn(b)−H0(b) +H0(b)−H0(a) + {H0(a)−Hn(a)}

≤ 2‖Hn −H0‖∞ + ‖h0‖∞(b− a) ≤ 2‖Hn −H0‖∞ +
1

4
.

Now, by the Dvoretsky–Kiefer–Wolfowitz inequality,

P
(
‖Hn −H0‖∞ >

√
1

2n
log(4n)

)
≤ 1

2n
.

Hence, for any n ≥ 20, we have P
(
‖Hn − H0‖∞ > 1/8

)
≤ 1/(2n). Thus, when

δQn = 2−11,

P

(
sup

a0≤a<b<∞
|b−a|≤δQn

Qn

(
(a, b]

)
> 1/2

)
≤ 1

2n
.
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Now, by Lemma 16 and Bobkov and Madiman (2011, Theorem 1.1), for n ≥ 500 and

`ĥn = −3,

P
(

1

n

n∑
i=1

log h0(Zi) ≤ `ĥn

)
≤ P

(∣∣∣∣ 1n
n∑
i=1

log h0(Zi)−
∫ ∞
a0

h0 log h0

∣∣∣∣ > 1

)
≤ 2e−n

1/2/16 ≤ 250

n
.

The result follows by Proposition 6.

7.3 Proofs from Section 4

Proof of Theorem 8. Let h0 denote the density of ‖X1‖, so that h0(r) = rp−1eφ(r)

for some φ ∈ Φ. For i = 1, . . . , n, let Zi := ‖Xi‖, and write Qn for the empirical

distribution of Z1, . . . , Zn. Now let ĥn := h∗(Qn), so that ĥn(r) = rp−1eφ̂n(r), where

φ̂n := φ∗(Qn) = φ̃∗(Pn), by Proposition 2(iv). Then ĥn(Zi)/h0(Zi) = f̂n(Xi)/f0(Xi)

for i = 1, . . . , n, so d2
X(f̂n, f0) = d2

X(ĥn, h0). By scale equivariance (Proposition 3(i)),

we may assume without loss of generality that σh0 = 1. By Proposition 7, there

exist universal constants Cµ, Cσ, C > 0 such that P
(
ĥn /∈ H(h0, Cµ, Cσ)

)
≤ C/n. By

Lemma 17, there exists a universal constant K > 0 such that for every δ > 0,∫ δ

0
H

1/2
[]

(
ε,H(h0, Cµ, Cσ), dH

)
dε ≤ Kδ3/4.

Define Ψ(δ) := max(Kδ3/4, δ), so that δ 7→ Ψ(δ)/δ2 is decreasing. By choosing δ∗ :=

K0n
−2/5 for a suitably large universal constant K0 > 0, we may apply Kim et al.

(2017b, Theorem 10) (a minor restatement of van de Geer (2000, Corollary 7.5)), to

deduce that there exists a universal constant K∗ > 0 such that

Ed2
X(ĥn, h0) ≤

∫ 16 logn

0
P
({
d2
X(ĥn, h0) ≥ t

}
∩
{
ĥn ∈ H(h0, Cµ, Cσ)

})
dt

+ 16 log nP
(
ĥn /∈ H(h0, Cµ, Cσ)

)
+

∫ ∞
16 logn

P
(
d2
X(ĥn, h0) ≥ t

)
dt

≤ δ2
∗ +K∗

∫ 16 logn

δ2∗

exp
(
− nt

K2
∗

)
dt+

16C log n

n
+

∫ ∞
16 logn

P
(

max
i=1,...,n

log
ĥn(Zi)

h0(Zi)
≥ t
)
dt

. n−4/5,

where, to obtain the final inequality, we have applied Lemmas 18 and 19.

Proof of Theorem 9. Fix h∗ ∈ H(k) where h∗(r) = rp−1eφ∗(r) and φ∗ ∈ Φ(k), let

I1, . . . , Ik be the k intervals on which φ∗ is affine, and let r0 := sup{r ∈ [a,∞) :

φ∗(r) > −∞}. Define Zj := {i : Zi ∈ Ij} and nj := |Zj |. Let J := {j : nj ≥ 1}
be the set of indices of intervals with at least one data point. Define Φ̃ to be the set

of upper semi-continuous functions φ : [0,∞)→ [−∞,∞) such that φ
∣∣
Ij

is decreasing
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and concave for each j = 1, . . . , k, and such that φ(r) = −∞ for r > r0. Note that a

function φ ∈ Φ̃ need not be globally decreasing and, in fact, need not be continuous

on [0, r0]. Given any φ ∈ Φ̃ and j ∈ J , let φ(j)(r) := φ(r) + log(n/nj) for r ∈ Ij , and

let ΦIj := {φ|Ij : φ ∈ Φ}. Now define

φ̃(j)
n := argmax

φj∈ΦIj

{
1

nj

∑
i∈Zj

φj(Zi)−
∫
Ij

rp−1eφj(r) dr

}
,

and let φ̃n(r) := φ̃
(j)
n (r)− log(n/nj) for r ∈ Ij , and φ̃n(r) := −∞ for r > r0. Then, for

any φ ∈ Φ̃,

1

n

n∑
i=1

φ̃n(Zi)−
∫ ∞

0
rp−1eφ̃n(r) dr =

∑
j∈J

nj
n

(
1

nj

∑
i∈Zj

φ̃n(Zi)−
n

nj

∫
Ij

rp−1eφ̃n(r) dr

)

=
∑
j∈J

nj
n

(
1

nj

∑
i∈Zj

φ̃(j)
n (Zi)−

∫
Ij

rp−1eφ̃
(j)
n (r) dr

)
−
∑
j∈J

nj
n

log
n

nj

≥
∑
j∈J

nj
n

(
1

nj

∑
i∈Zj

φ(j)(Zi)−
∫
Ij

rp−1eφ
(j)(r) dr

)
−
∑
j∈J

nj
n

log
n

nj

≥ 1

n

n∑
i=1

φ(Zi)−
∫ ∞

0
rp−1eφ(r) dr. (15)

It follows that the function h̃n defined by h̃n(r) := rp−1eφ̃n(r) is a density. Moreover, for

j ∈ J , the function h̃
(j)
n := n

nj
h̃n|Ij is a density. Writing pj :=

∫
Ij
h0, and h

(j)
0 := 1

pj
h0|Ij ,

we deduce from (15) that

Eh0d
2
X(ĥn, h0) ≤ Eh0

1

n

n∑
i=1

log
h̃n(Zi)

h0(Zi)

= Eh0
∑
j∈J

nj
n

(
1

nj

∑
i∈Zj

log
h̃

(j)
n (Zi)

h
(j)
0 (Zi)

)
+ Eh0

∑
j∈J

nj
n

log
nj
npj

. (16)

Now, since nj ∼ Bin(n, pj) and log x ≤ x− 1 for x > 0, we have

Eh0
∑
j∈J

nj
n

log
nj
npj
≤ Eh0

∑
j∈J

nj
n

(
nj
npj
− 1

)
=
∑
j∈J

(
n2p2

j + npj(1− pj)
n2pj

− pj
)

=
1

n

∑
j∈J

(1− pj) ≤
k

n
. (17)

To bound the first term in (16), for j = 1, . . . , k, let us first define qj :=
∫
Ij
h∗(r) dr,

h
(j)
∗ := h∗/qj , ν

2
∗,j := d2

H(h
(j)
0 , h

(j)
∗ ), ν2

∗ :=
∑k

j=1 pjν
2
∗,j , J0 := {j : njν

2
∗,j ≥ 1} and

temporarily assume that k ≤ e−1/4n. By Proposition 10 (and the subsequent remark)

below, applied conditionally on n1, . . . , nk, a simple extension of Jensen’s inequality

23



using the fact that x 7→ log5/4 x is concave on [e1/4,∞) (e.g. Han et al., 2017, Lemma 2)

and the fact that k 7→ k log5/4(en/k) is increasing for k ∈ [1, e−1/4n],

Eh0
∑
j∈J

nj
n

(
1

nj

∑
i∈Zj

log
h̃

(j)
n (Zi)

h
(j)
0 (Zi)

)
. Eh0

∑
j∈J

nj
n

(
1

nj
log5/4(enj) +

ν
2/5
∗,j

n
4/5
j

log
enj
ν∗,j

)

.
k

n
log5/4

(en
k

)
+

1

n
Eh0

∑
j∈J

n
1/5
j ν

2/5
∗,j
{

log(njν
2
∗,j) + log(e/ν3

∗,j)
}
.

(18)

To bound the second term of (18), observe that by two applications of Jensen’s in-

equality,

1

n
Eh0

∑
j∈J

n
1/5
j ν

2/5
∗,j log(njν

2
∗,j) ≤

1

n
Eh0
{
|J0|4/5

(∑
j∈J0

njν
2
∗,j

)1/5

log

(∑
j∈J0 njν

2
∗,j

|J0|

)}

≤ 1

n
Eh0
{
|J0|4/5

( k∑
j=1

njν
2
∗,j

)1/5

log

(∑k
j=1 njν

2
∗,j

|J0|

)}

≤ k4/5

n
log
(en
k

)
Eh0
{( k∑

j=1

njν
2
∗,j

)1/5}

≤ k4/5

n4/5
ν

2/5
∗ log

en

k
. (19)

But

ν2
∗ =

k∑
j=1

pjν
2
∗,j ≤ 2 ∧

k∑
j=1

pjd
2
KL(h

(j)
0 , h

(j)
∗ ) ≤ 2 ∧

{ k∑
j=1

pjd
2
KL(h

(j)
0 , h

(j)
∗ ) +

k∑
j=1

pj log
pj
qj

}
= 2 ∧ d2

KL(h0, h∗). (20)

Moreover, by three further applications of Jensen’s inequality, and using the fact that

x 7→ log5 x is concave for x ≥ e5, we have

1

n
Eh0

∑
j∈J

n
1/5
j ν

2/5
∗,j log(e/ν3

∗,j) ≤
3

n
Eh0

k∑
j=1

n
1/5
j ν

2/5
∗,j log

21/2e5

ν∗,j

≤ 3k4/5

n
Eh0
{( k∑

j=1

njν
2
∗,j log5 21/2e5

ν∗,j

)1/5}
≤ 3k4/5

n4/5

( k∑
j=1

pjν
2
∗,j log5 21/2e5

ν∗,j

)1/5

≤ 3k4/5

n4/5
ν

2/5
∗ log

(
21/2e5

k∑
j=1

pjν∗,j
ν2
k

)
≤ 3k4/5

n4/5
ν

2/5
∗ log

2e5

ν2
∗

≤ 3k4/5

n4/5
{2 ∧ d2

KL(h0, h∗)}1/5 log
2e5

2 ∧ d2
KL(h0, h∗)

, (21)

where the last step follows from the fact that x 7→ x1/5 log 2e5

x is increasing for x ≤ 2.

Combining (16), (17) (18), (19), (20) and (21), the result follows in the case k ≤ e−1/4n.
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Now suppose k > e−1/4n. Then, by Theorem 8,

Eh0d
2
X(ĥn, h0) . n−4/5 .

k

n
log5/4 en

k
,

which completes the proof.

Proof of Proposition 10. By the scale equivariance described in Proposition 3(i), we

may assume without loss of generality that σh0 = 1. Define ν := inf
{
dH(h0, h) : h ∈

H(1)
a , h0 � h

}
∈ [0, 21/2]. By Lemma 20, if δ ∈ (0, 2−9 − ν), then for every ε > 0, it

holds that

H[]

(
ε,H(h0, Cµ, Cσ) ∩H(h0, δ), dH

)
≤ H[](ε,H(h0, δ), dH) .

(δ + ν)1/2

ε1/2
log5/4 1

δ
.

On the other hand, if δ ≥ 2−9 − ν, then by Lemma 17, for every ε > 0, we have that

H[]

(
ε,H(h0, Cµ, Cσ) ∩H(h0, δ), dH

)
≤ H[]

(
ε,H(h0, Cµ, Cσ), dH

)
.

1

ε1/2
.

(δ + ν)1/2

ε1/2
.

It follows that∫ δ

0
H

1/2
[]

(
ε,H(h0, δ) ∩H(h0, Cµ, Cσ), dH

)
dε . (δ + ν)1/4

{
log5/8(1/δ) ∨ 1

}∫ δ

0
ε−1/4 dε

. δ3/4(δ + ν)1/4
{

log5/8(1/δ) ∨ 1
}
.

Define Ψ(δ) := Cδ3/4(δ + ν)1/4{log5/8(1/δ) ∨ 1}, where C > 0 is chosen such that

Ψ(δ) ≥ max

{∫ δ

0
H

1/2
[]

(
ε,H(h0, δ) ∩H(h0, Cµ, Cσ), dH

)
dε , δ

}
,

Set δn := K
{
ν2/5

n4/5 log en
ν + 1

n log5/4(en)
}1/2

for a universal constant K > 0 to be chosen

later. Then, because Ψ(δ)/δ2 is non-increasing, we have

inf
δ≥δn

n1/2δ2

Ψ(δ)
=
n1/2δ2

n

Ψ(δn)
=

n1/2δ
5/4
n

C(δn + ν)1/4{log5/8(1/δn) ∨ 1}
.

By choosing the universal constant K > 0 sufficiently large, we can ensure that this

ratio is larger than the universal constant required to apply Theorem 10 in the online

supplement of Kim et al. (2017b) (a minor restatement of van de Geer (2000, Corol-

lary 7.5)). We deduce from this result that there exists a universal constant C > 0

such that for δ ≥ δn,

P
(
d2
X(ĥn, h0) ≥ δ2

)
≤ C exp

(
−nδ

2

C

)
. (22)

Moreover, by Lemmas 18 and 19, for n ≥ 4,∫ ∞
16 logn

P
(

max
i=1,...,n

log
ĥn(Zi)

h0(Zi)
≥ t
)
dt = log n

∫ ∞
16

P
(

max
i=1,...,n

log
ĥn(Zi)

h0(Zi)
≥ s log n

)
ds

. log n

∫ ∞
16

n−(s/2−1) +
( 28e

ns/16

)n
+ n−sn

1/2/256 ds .
log n

n
.

(23)
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It follows from (22), (23) and Proposition 7 that

Ed2
X(ĥn, h0) ≤

∫ 16 logn

0
P
({
d2
X(ĥn, h0) ≥ t

}
∩
{
ĥn ∈ H(h0, Cµ, Cσ)

})
dt

+ 16 log nP
(
ĥn /∈ H(h0, Cµ, Cσ)

)
+

∫ ∞
16 logn

P
(
d2
X(ĥn, h0) ≥ t

)
dt

≤ δ2
n + C

∫ ∞
δ2n

exp
(
−nt
C

)
dt+

C log n

n
+

∫ ∞
16 logn

P
(

max
i=1,...,n

log
ĥn(Zi)

h0(Zi)
≥ t
)
dt

.
ν2/5

n4/5
log

en

ν
+

log5/4(en)

n
,

as required.

8 Auxiliary results

8.1 Lemmas used in results in Section 3

The mean µh of any h ∈ Ha is constrained because h(r) = rp−1eφ(r) and φ is decreasing.

The next lemma formalises this notion.

Lemma 11. Let a ≥ 0 and let h ∈ Ha with σh = 1. For s ∈ (0,∞), let ρ(s) :=
(a+s)p−1ps
(a+s)p−ap . Then, writing s∗ := sup{s ∈ (0,∞) : ρ(s)

s ≥ 2−7}, we have

a ≤ µh ≤ a+ 212ρ(s∗ + 1).

Remark: Even though we cannot obtain an analytic expression for ρ(s∗ + 1), we

can apply the bounds developed in Lemma 13 to control µh. For example, since

ρ(s) ≤ p for any a ≥ 0 by Lemma 13(iii), we have that µh − a . p. When a = 0, this

bound is sharp up to the universal constant, because taking eφ(r) = p
ap1{r∈[0,a]}, where

a = (p+ 1)(p+ 2)1/2/p1/2, yields µh = p1/2(p+ 2)1/2.

Proof. If h ∈ Ha with σh = 1, then h(r) = 0 for r ∈ (−∞, a) and thus, µh ≥ a. For

the upper bound on µh, we first observe that h(µh) ≥ 2−7 by Lovász and Vempala

(2007, Theorem 5.14(d)). Since ρ(s)/s is decreasing by Lemma 13(ii) and 1 ≤ ρ(s) ≤ p
by Lemma 13(iii), we have that s∗ ∈ (0,∞). Suppose for a contradiction that µh >

a+212ρ(s∗+1). Then, since ρ is increasing by Lemma 13(i), we have ρ(s+1)
µh−a < 2−12 for

all s ≤ s∗. Moreover, by definition of s∗, we have ρ(s)/s < 2−7 for all s > s∗. Hence

sups∈(0,∞) min
(
24 ρ(s)

µh−a ,
ρ(s)
s

)
< 2−7. But then Lemma 12 establishes a contradiction,

so µh ≤ a+ 212ρ(s∗ + 1), as desired.

The next lemma is used in the proof of Lemma 11.
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Lemma 12. For any a ≥ 0, h ∈ Ha and any s ∈ (0,∞),

h(a+ s) ≤ min

{
16
ρ(s+ 1)

µh − a
,
ρ(s)

s

}
.

Proof. Let us fix h ∈ Ha and define h̃(s) := h(a + s). Observe that h̃ is a density

of the form h̃(s) = eφ(s)(a + s)p−1 for some φ ∈ Φ0. We will show that h̃(s) ≤
min

{
16ρ(s+1)

µh̃
, ρ(s)

s

}
for all s ∈ [0,∞). The lemma then follows because µh̃ = µ− a.

To this end, fix s0 ∈ (0,∞) and define h̃s0(s) := α(s+a)p−1
1{s∈[0,s0]} where α−1 :=∫ s0

0 (a+ s)p−1 ds = (a+s0)p

p − ap

p . Then

1 = α

∫ s0

0
(a+ s)p−1 ds ≥

∫ s0

0
eφ(s)(a+ s)p−1 ds ≥ eφ(s0)

∫ s0

0
(a+ s)p−1 ds.

Thus, we see that eφ(s0) ≤ α and therefore h̃(s0) ≤ h̃s0(s0) = α(s0 + a)p−1 ≤ ρ(s0)/s0,

as desired.

To prove the second part of the bound, observe that if s0 ≥ µh̃/8, then ρ(s0)
s0
≤ 8ρ(s0)

µh̃

and lemma follows. We therefore fix s0 ∈ (0, µh̃/8), and also define M := log 4 ∨
sups∈[0,∞) log h̃(s) and fix m ∈ (−∞,M − 2]. For t ∈ [m,M ], let Dt := {s ∈ [0,∞) :

log h̃(s) ≥ t}. Since h̃ is itself a log-concave density, we have that, any t ∈ [m,M ] and

s ∈ Dm,

log h̃

(
t−m
M −m

s0 +
M − t
M −m

s

)
≥ (t−m)M

M −m
+

(M − t)m
M −m

= t.

Hence, writing λ for Lebesgue measure on R,

λ(Dt) ≥ λ
(
t−m
M −m

s0 +
M − t
M −m

Dm

)
=

M − t
M −m

λ(Dm).

Using Fubini’s theorem as in Dümbgen et al. (2011, Lemma 4.1), we can now compute

1 ≥
∫
Dm

h̃(s)− em ds ≥
∫
Dm

∫ M

m
et1{log h̃(s)≥t} dt ds

=

∫ M

m
etλ(Dt) dt ≥

λ(Dm)

M −m

∫ M

m
(M − t)et dt =

λ(Dm)eM

M −m

∫ M−m

0
xe−x dx

≥ λ(Dm)eM

2(M −m)
.

Since Dm is an interval containing s0, we conclude that log h̃(s) ≤ m whenever |s−s0| >
2(M −m)e−M . Thus, for |s− s0| ≥ 4e−M , we have

log h̃(s) ≤ inf
{
m ∈ (−∞,M − 2] : 2(M −m)e−M < |s− s0|

}
= M − |s− s0|eM

2
.
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We now consider two cases. If s0 − 4e−M > 0, then using the bound h̃(s) ≤ ρ(s)/s,

Lemma 13(i) and the fact that eM ≥ 4, we have

µh̃ ≤
∫ ∞

0
sh̃(s) ds ≤

∫ s0−4e−M

0
s exp

{
M − (s0 − s)eM

2

}
ds+

∫ s0+4e−M

s0−4e−M
ρ(s) ds

+

∫ ∞
s0+4e−M

s exp

{
M − (s− s0)eM

2

}
ds

≤ 2

∫ ∞
2

(
s0 −

2t

eM

)
e−t dt+ 8e−Mρ(s0 + 1) + 2

∫ ∞
2

(
s0 +

2t

eM

)
e−t dt

≤ 4s0 + 8e−Mρ(s0 + 1).

Since 4s0 < µh̃/2, we conclude that eM ≤ 16ρ(s0+1)
µh̃

.

Now, suppose s0 − 4e−M ≤ 0. Then, similarly,

µh̃ ≤
∫ ∞

0
sh̃(s) ds ≤

∫ s0+4e−M

0
ρ(s) ds+

∫ ∞
s0+4e−M

s exp

{
M − (s− s0)eM

2

}
ds

≤ 8e−Mρ(s0 + 1) + 2

∫ ∞
2

(
s0 +

2t

eM

)
e−t dt

≤ 2s0 + 4e−M
{

2ρ(s0 + 1) + 1
}
.

Using the facts that s0 ≤ µh̃/8 and ρ(s0 + 1) ≥ 1 yields the desired upper bound on

eM .

The next lemma provides basic properties of the function ρ defined in Lemma 11.

Lemma 13. For any p ∈ N and a ≥ 0, we have

(i) ρ(s) is increasing;

(ii) ρ(s)
s is decreasing;

(iii) 1 ≤ ρ(s) ≤ p for all s ∈ (0,∞);

(iv) ρ(s+1)
ρ(s) ≤ 20 for s ≥ 1.

Proof. (i) Define α := (a+ s)/a ∈ (1,∞). Then

ρ(s) =
(a+ s)p−1ps

(a+ s)p − ap
=
αp−1p(α− 1)

αp − 1
= p

(
1− αp−1 − 1

αp − 1

)
,

which is increasing in α, as required.

(ii) If a > 0, then

ρ(s)

s
=
p

a

αp−1

αp − 1
,

which is decreasing in α. If a = 0, then ρ(s)/s = p/s and the claim also follows.
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(iii) The lower bound follows from (i) and the fact that lims↘0 ρ(s) = 1, while the

upper bound follows from (i) and the fact that lims→∞ ρ(s) = p.

(iv) We have

ρ(s+ 1)

ρ(s)
=

(a+ s+ 1)p−1

(a+ s)p−1

s+ 1

s

(a+ s)p − ap

(a+ s+ 1)p − ap

≤ 2

(
1 +

1

a+ s

)p−1{ 1− ( a
a+s)

p

(1 + 1
a+s)

p − ( a
a+s)

p

}
.

Hence, if a+s ≥ p/2, then ρ(s+1)/ρ(s) ≤ 2e2 ≤ 20. On the other hand, if a+s < p/2,

then (1 + 1
a+s)

p − ( a
a+s)

p ≥ 1
2(1 + 1

a+s)
p and the claim follows again.

Lemma 14. For any p ≥ 1 and r0 > a ≥ 0, we have that

r0 ≤
p

p+ 1

rp+1
0 − ap+1

rp0 − ap
+
rp0 − ap

rp−1
0 p

Proof. Writing x := 1− (a/r0)p, we are required to prove that for x ∈ (0, 1],

1 ≤ p

p+ 1

1− (1− x)
p+1
p

x
+
x

p
. (24)

The inequality holds when x↘ 0 and at x = 1. To finish the proof, it suffices to show

that tp(x) := 1−(1−x)(p+1)/p

x is concave on (0, 1). But

p2(1− x)x3t′′p(x) = 2p2
{

1− (1− x)1/p}(1− x)1−1/p − p(2− x)x− x2

≤ 2px
{

1− (1− 1/p)x
}
− p(2− x)x− x2 = −(p− 1)x2 ≤ 0,

as required.

Lemma 15. Let h ∈ F1.

(i) There exists a universal constant c > 0 such that σh ≥ c/h(µh);

(ii) There exists a universal constant C > 0 such that σh ≤ C/ supr∈R h(r).

Proof. (i) Let f(r) := σhh(σhr + µh), so f is a log-concave density with µf = 0 and

σf = 1. Then

σh =
f(0)

h(µh)
≥ 2−7

h(µh)
,

where the final inequality follows from Lovász and Vempala (2007, Theorem 5.14(d)).

(ii) Since h is upper semi-continuous, there exists r0 ∈ R such that h(r0) =

supr∈R h(r). Thus

σh ≤
f(r0/σh)

h(r0)
≤ ‖f‖∞

supr∈R h(r)
≤ 27

supr∈R h(r)
,

by Lovász and Vempala (2007, Theorem 5.14(b) and (d)).
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Lemma 16. For any f ∈ F1 with σf = 1, we have that

−1

2
− 1

2
log(2π) ≤

∫ ∞
−∞

f log f ≤ 9 log 2.

Proof. By the location invariance of the entropy functional, we may assume without

loss of generality that
∫∞
−∞ xf(x) dx = 0. Since ‖f‖∞ ≤ 29 (Lovász and Vempala, 2007,

Theorem 5.14(b) and (d)), we have∫ ∞
−∞

f log f ≤ 9 log 2.

Now let g(x) := (2π)−1/2e−x
2/2, so by the non-negativity of Kullback–Leibler diver-

gence,∫ ∞
−∞

f log f ≥
∫ ∞
−∞

f log g = −1

2

∫ ∞
−∞

x2f(x) dx− 1

2
log(2π) = −1

2
− 1

2
log(2π),

as required.

8.2 Lemmas used in both Theorem 8 and Proposition 10

The next lemma is a very slight generalisation of (Kim and Samworth, 2016, Theorem 4)

and can be proved in the same manner, with minor modifications to handle the general

mean and variance perturbation.

Lemma 17. Kim and Samworth (2016, Theorem 4) Fix Cµ, Cσ > 0 and h0 ∈ Ha.

There exists C > 0, depending only on Cµ, Cσ, such that for every ε > 0,

H[](ε,H(h0, Cµ, Cσ), dH) ≤ C

ε1/2
.

Lemma 18. Let a ≥ 0 and let Z1, . . . , Zn
iid∼ h0 ∈ Ha with σh0 = 1. Then for n ≥ 4

and t ≥ 8,

P
(

sup
r≥a

log ĥn(r) > t log n

)
≤
( 28e

nt/8

)n
+ 2n−tn

1/2/128.

Proof. Let Qn denote the empirical distribution of Z1, . . . , Zn. Let E1 be the event

that Qn(A) ≤ 1/2 for every interval A of length at most 6n−t/2. Since ‖h0‖∞ ≤ 29

(Lovász and Vempala, 2007, Theorem 5.14(b) and (d)), we have that

P(Ec1) = P

(
n⋃
i=1

⋃
A⊂{1,...,n}\{i}
|A|=bn/2c

⋂
j∈A
{Zj ∈ [Zi, Zi + 6n−t/2]}

)

≤ n
(
n− 1

bn/2c

)
P
(bn/2c+1⋂

j=2

{Zj ∈ [Z1, Z1 + 6n−t/2]}
)

≤ n
(
n− 1

bn/2c

)
(296n−t/2)bn/2c ≤

( 28e

nt/8

)n
.
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Now let E2 :=
{∫∞

a log h0 dQn > −(t/2) log n
}

, so by Lemma 16 and Bobkov and

Madiman (2011, Theorem 1.1),

P(Ec2) ≤ P
(∣∣∣∣∫ h0(r) log h0(r) dr −

∫
log h0 dQn

∣∣∣∣ ≥ −1

2
− 1

2
log(2π) +

t

2
log n

)
≤ P

(∣∣∣∣∫ h0(r) log h0(r) dr −
∫

log h0 dQn

∣∣∣∣ ≥ t

8
log n

)
≤ 2n−tn

1/2/128.

But on E1∩E2, and applying Proposition 6 with δQn = 6n−t/2 and `ĥn = −(t/2) log n,

we find that

sup
r≥a

log ĥn(r) ≤ max

{
−2 log

(δQn
6

)
, −2`ĥn , 3

}
≤ t log n.

The result follows.

Lemma 19. Let a ≥ 0, let h0 ∈ Ha with σh0 = 1, and suppose that Z1, . . . , Zn
iid∼ h0.

Then there exists a universal constant C > 0 such that for any n ≥ 2 and t ≥ 4,

P
(

sup
r∈[Z(1),Z(n)]

log
1

h0(r)
≥ t log n

)
≤ Cn−(t−1).

Proof. This result follows from the proof of Kim et al. (2017b, Lemma 2).

8.3 Lemmas used in Proposition 10

For h0 ∈ Ha and δ > 0, let

H(h0, δ) :=
{
h ∈ Ha : h� h0, dH(h, h0) ≤ δ

}
.

Lemma 20. Fix a ≥ 0 and let h0 ∈ Ha. Assume that ν := inf{dH(h0, h) : h ∈
H(1)
a , h0 � h} < 2−9. Then there exists a universal constant C > 0 such that, for all

δ ∈ (0, 2−9 − ν) and all ε > 0,

H[]

(
ε,H(h0, δ), dH

)
≤ C

(
δ + ν

ε

)1/2

log5/4 1

δ
.

Proof. Fix h1 ∈ H(1) with h0 � h1 and let ν1 := dH(h0, h1). Then, by the triangle

inequality,

H(h0, δ) ⊆ H(h1, δ + ν1).

Since h1(r) = rp−1eφ1(r) where φ1 is affine, log(h/h1) is concave for any h ∈ H(h1, δ +

ν1). We therefore have

H(h1, δ + ν1) ⊆ F̃(h1, δ + ν1)

where the right-hand side is defined in (25). The result then follows from Lemma 22.
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Lemma 21. Let f, g ∈ F1. Then there exist universal constants C ′µ, C
′
σ such that for

all δ ∈ (0, 2−8], if dH(f, g) ≤ δ, then

1

C ′σ
≤ σg
σf
≤ C ′σ, |µg − µf | ≤ C ′µ.

Proof. Since the Hellinger distance is affine invariant, we may assume without loss of

generality that µf = 0 and σf = 1. By Lovász and Vempala (2007, Theorem 5.14(d)),

f(x) ≥ 2−10 for x ∈ [−1/9, 1/9]. We claim that g(x) ≥ 2−12 for some x ∈ [−1/9, 1/9].

To see this, suppose for a contradiction that g(x) ≤ 2−12 for all x ∈ [−1/9, 1/9]. Then,∫ ∞
−∞

(f1/2 − g1/2)2 ≥
∫ 1/9

−1/9
(2−5 − 2−6)2 dx ≥ (2/9)2−12 > 2−16 ≥ δ2,

a contradiction. By Lemma 15, it follows that σg ≤ C ′σ for some universal constant

C ′σ > 0. The lower bound on σg follows by symmetry.

Now assume without loss of generality that µg ≥ 0. By the first part and Fresen

(2013, Lemma 13), there exist universal constants α > 0 and β ∈ R such that g(x) ≤
e−αµg+β for all x ≤ 0. It follows that if µg ≥ (β + 12 log 2)/α, then∫ ∞

−∞
(f1/2 − g1/2)2 ≥

∫ 0

−1/9
(2−5 − 2−6)2 dx ≥ (1/9)2−12 > 2−16,

a contradiction. The result follows.

We prove a general result on the local bracketing entropy of log-concave densities.

Recall from the introduction that Fp denotes the class of all upper semi-continuous,

log-concave densities on Rp. Let f0 ∈ F1. We make no assumption on the support of

f0. We define

F̃(f0, δ) :=
{
f ∈ F1 : log(f/f0) concave, f � f0, dH(f, f0) ≤ δ

}
, (25)

where we adopt the convention that 0/0 := 0.

Lemma 22. Suppose that δ ∈ (0, 2−9] and that f0 ∈ F1 with σf0 = 1. Then, for every

ε > 0,

H[]

(
ε, F̃(f0, δ), dH

)
.
δ1/2

ε1/2
log5/4 1

δ
.

Proof. In this proof, we let C be a generic universal constant whose value may vary

from instance to instance. Also, without loss of generality, let us suppose that µf0 =

0. Since f0(0) ≥ 2−7 (Lovász and Vempala, 2007, Theorem 5.14(d)), we may define

aL := inf{r ∈ R : f0(r) ≥ δ2} and aR := sup{r ∈ R : f0(r) ≥ δ2}. By Lemma 21 and

Fresen (2013, Lemma 13), there exist α > 0 and β ∈ R such that for any f ∈ F̃(f0, δ)
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and x ∈ R, we have f(x) ≤ e−α|x|+β. Let bL := − 1
α log eβ

δ4
and bR := 1

α log eβ

δ4
. Then,

for any f ∈ F̃(f0, δ), f(r) < δ4 for r ∈ (−∞, bL) ∪ (bR,∞), and [aL, aR] ⊆ [bL, bR].

First, we will bracket the region [bL, aL) ∪ (aR, bR]. To this end, fix ε > 0, and let

KL := min{k ∈ N : e−α(k−aL)+β ≤ δ4} and KR := min{k ∈ N : e−α(k+aR)+β ≤ δ4}, so

that max(KL,KR) . log(1/δ). By these definitions, aL−KL ≤ bL and aR +KR ≥ bR.

We segment [bL, aL) into subintervals Sk for k = 1, . . . ,KL, where

Sk :=
[
aL − k, aL − (k − 1)

)
, k = 1, . . . ,KL − 1,

SKL :=
[
bL, aL − (KL − 1)

)
.

For k = 1, . . . ,K, define ε2k := ε2

16KL
. For any r ∈ [bL, aL), we have that f0(r) ≤ δ2

because r < aL and, moreover, e−α|r|+β ≥ δ4 because r ≥ bL. Hence, by Lemma 24,

f(r) ≤ f0(r)eCδ log 1
δ . f0(r) ≤ δ2 for any f ∈ F̃(f0, δ) and r ∈ [bL, aL). Hence, by

Lemma 27,

H[]

(
ε

4
, F̃(f0, δ), dH, [bL, aL]

)
≤

KL∑
k=1

H[](εk, F̃(f0, δ), dH, Sk)

.
KL∑
k=1

δ1/2

ε
1/2
k

.
δ1/2

ε1/2
log5/4 1

δ
. (26)

By symmetry, we obtain the same bound for H[]

(
ε/4, F̃(f0, δ), dH, [aR, bR]

)
.

Now we bracket the region (−∞, bL) ∪ (bR,∞). For k ∈ N, define Sk := [bL −
k, bL − (k − 1)) and set ε2k := Cε2e−α(k−bL)/2 where C is a constant chosen such that∑∞

k=1 ε
2
k = ε2/16. Then, by Lemma 27 again,

H[]

(
ε/4, F̃(f0, δ), dH, (−∞, bL)

)
≤
∞∑
k=1

H[](εk, F̃(f0, δ), dH, Sk) .
∞∑
k=1

e−α(k−bL−1)/4

ε
1/2
k

.
1

ε1/2

∞∑
k=1

e−α(k−bL−1)/8 .
δ1/2

ε1/2
. (27)

The same bound holds for H[]

(
ε/4, F̃(f0, δ), dH, [bR,∞)

)
.

Next, we bracket the region [aL,−1/16], and recall that by Lemma 25, aL ≤ −1/9.

To this end, we write s0 := aL and partition [s0,−1/16] into segments [s0, s1], [s1, s2],

. . ., [sJ−1, sJ ] (where sJ = −1/16) as follows:

1. Choose s1 > s0 such that
∫ s1
s0
f0(t) dt = 4δ2.

2. For each j ≥ 2, if there exists t0 < −1/16 such that
∫ t0
sj−1

f0(t) dt ≥ 2
∫ sj−1

−∞ f0(t) dt,

then choose sj such that
∫ sj
sj−1

f0(t) dt = 2
∫ sj−1

−∞ f0(t) dt. Otherwise, set J := j

and choose sJ = −1/16.

Let φ0(r) := log f(r) and write Rangej(φ0) := supt∈[sj−1,sj ] φ0(t) − inft∈[sj−1,sj ] φ0(t).

We make the following six claims:
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(1) s1 < −1/16;

(2) (s1 − s0) supt∈[s0,s1] f0(t) . δ2 log 1
δ ;

(3)
∫∞
sJ
f0(t) dt > 2−11;

(4) (sj − sj−1) supt∈[sj−1,sj ] f0(t) . Rangej(φ0)
∫ sj−1

−∞ f0(t) dt for j = 2, . . . , J − 1;

(5)
∫ sJ
−∞ f0(t) dt ≥ 2−13;

(6) J . log(1/δ).

To verify claim (1), observe by Lovász and Vempala (2007, Theorem 5.14(a)) that

f0(t) ≥ 2−8 for all t ∈ [−1/9, 1/9]. Hence
∫ −1/16
s0

f0(t) dt ≥ (1/9 − 1/16)2−8 > 4δ2, so

s1 < −1/16.

For claim (2), note that −2 log(1/δ) ≤ φ0(t) ≤ β for t ∈ [s0, s1]. Thus by the

second part of Lemma 26 and the definition of s1, we have (s1 − s0) supt∈[s0,s1] f0(t) .

log(1/δ)
∫ s1
s0
f0(t) dt . δ2 log(1/δ).

For claim (3), we have
∫∞
sj
f0(t) dt ≥

∫ 1/9
−1/16 f0(t) dt ≥ 2−8(1/9 + 1/16) > 2−11.

For claim (4), observe that 2
∫ sj−1

−∞ f0(t) dt =
∫ sj
sj−1

f0(t) dt for j = 2, . . . , J − 1.

Hence

(sj − sj−1) supt∈[sj−1,sj ] f0(t)∫ sj−1

−∞ f0(t) dt
=

(sj − sj−1) supt∈[sj−1,sj ] f0(t)

2
∫ sj
sj−1

f0(t) dt
. Rangej(φ0),

where the final bound follows from Lemma 26.

For claim (5), we have∫ sJ

−∞
f0(t) dt ≥

∫ −1/16

−1/9
f0(t) dt ≥ 2−8(1/9− 1/16) ≥ 2−13.

Finally, for claim (6), we have∫ sj

−∞
f0(t) dt =

∫ sj−1

−∞
f0(t) dt+

∫ sj

sj−1

f0(t) dt = 3

∫ sj−1

−∞
f0(t) dt

for j = 2, . . . , J − 1. Since
∫ s1
−∞ f0(t) dt ≥

∫ s1
s0
f0(t) dt = 2δ2 by definition of s1 and

since
∫∞
−∞ f0(t) dt = 1, we conclude that J . log(1/δ).

Now set ε̃ := ε/(2J1/2). Then, by Lemma 27 and claim (2),

H[]

(
ε̃, F̃(f0, δ), dH, [s0, s1]

)
.

(s1 − s0)1/4

ε̃1/2
sup

eφ∈F̃(f0,δ)

sup
t∈[s0,s1]

eφ(t)/4

.
δ1/2

ε̃1/2
log1/4(1/δ) sup

eφ∈F̃(f0,δ)

sup
t∈[s0,s1]

e(φ(t)−φ0(t))/4

.
δ1/2

ε1/2
log1/2 1

δ
, (28)
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where the final bound follows from Lemma 24.

Now let j ∈ {2, . . . , J}, and observe by claim (1) that s1, . . . , sJ are strictly in-

creasing. Let F̌(f0, δ) :=
{
eφ−φ0 : eφ ∈ F̃(f0, δ)

}
. If {(ψ̌Lj , ψ̌Uj ) : j = 1, . . . , N} is an

ε̃-Hellinger bracketing set for F̌(f0, δ) with logN = H[]

(
ε, F̌(f0, δ), dH, [sj−1, sj ]

)
, then

we can define {(ψ̃Lj , ψ̃Uj ) : j = 1, . . . , N} by ψ̃Lj := f0ψ̌
L
j and ψ̃Uj := f0ψ̌

U
j . Then

dH(ψ̃Lj , ψ̃
U
j ) ≤ sup

t∈[sj−1,sj ]
f0(t)1/2dH(ψ̌Lj , ψ̌

U
j ) ≤ ε̃ sup

t∈[sj−1,sj ]
f0(t)1/2.

Moreover, on [sj−1, sj ], the conditions of Lemma 23 are fulfilled because
∫ sj−1

−∞ f0(t) dt ≥∫ s1
s0
f0(t) dt = 4δ2 and

∫∞
sj
f0(t) dt > 2−11 ≥ 4δ2 by claim (3). Thus, we may combine

Lemmas 23 and 24 with claim (4) and Lemma 28 to obtain

H[]

(
ε̃, F̃(f0, δ), dH, [sj−1, sj ]

)
≤ H[]

(
ε̃

supt∈[sj−1,sj ] e
φ0(t)/2

, F̌(f0, δ), dH, [sj−1, sj ]

)

.
supt∈[sj−1,sj ] e

φ0(t)/4

ε̃1/2

[
|sj−1|δ +

δ{∫ sj−1

−∞ f0(t) dt
}1/2

]1/2

(sj − sj−1)1/4 sup
t∈[sj−1,sj ]

e(φ(t)−φ0(t))/4

.
δ1/2

ε̃1/2
Range

1/4
j (φ0)

[
|sj−1|1/2

{∫ sj−1

−∞
f0(t) dt

}1/4

+ 1

]
.
δ1/2

ε̃1/2
Range

1/4
j (φ0), (29)

where the final bound follows because s2
j−1

∫ sj−1

−∞ f0(t) dt ≤ 1 by Markov’s inequality.

By symmetry, we obtain the same bracketing entropy bound over [1/16, aR]. For the

region [−1/16, 1/16], since
∫ −1/16
−∞ f0(t) dt ≥ 2−13 and

∫∞
1/16 f0(t) dt ≥ 2−13 by claim (5),

so arguing as in (29), we obtain

H[]

(
ε

2
, F̃(f0, δ), dH, [−1/16, 1/16]

)
.
δ1/2

ε1/2
. (30)

Now, by Jensen’s inequality and the fact that φ0 is unimodal,

J∑
j=2

Range
1/4
j (φ0) . J

(
log(1/δ)

J

)1/4

. log(1/δ). (31)

We conclude from (31), (30), (29), (28), (27), (26) and claim (6) that

H[]

(
ε, F̃(f0, δ), dH

)
≤ H[]

(
ε

2
, F̃(f0, δ), dH, [−1/16, 1/16]

)
+ 2

J∑
j=1

H[]

(
ε

2J1/2
, F̃(f0, δ), dH, [sj−1, sJ ]

)

+ 2H[]

(
ε

4
, F̃(f0, δ), dH, [bL, aL]

)
+ 2H[]

(
ε

4
, F̃(f0, δ), dH, (−∞, bL)

)
.
δ1/2

ε1/2
log5/4 1

δ
,

as required.
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Lemma 23. Let eφ ∈ F̃(eφ0 , δ) for some concave φ0 : R → [−∞,∞) and δ ∈ (0,∞).

Let r ∈ R be such that
∫ r
−∞ e

φ0(t) dt ∧
∫∞
r eφ0(t) dt ≥ 4δ2. Then

φ(r)− φ0(r)

2
≥ − 2δ{∫ r

−∞ e
φ0(t) dt ∧

∫∞
r eφ0(t) dt

}1/2
.

Proof. As a shorthand, let us write ψ := (φ−φ0)/2. Now fix r ∈ R and assume without

loss of generality that ψ(r) < 0 (because otherwise the result is immediate). Since ψ

is concave, ψ(t) ≤ ψ(r) either for t ∈ (−∞, r) or for t ∈ (r,∞). In the former case,

δ2 ≥
∫ ∞
−∞

eφ0(t)(1− eψ(t))2 dt ≥ (1− eψ(r))2

∫ r

−∞
eφ0(t) dt.

Hence

ψ(r) ≥ log

(
1− δ{∫ r

−∞ e
φ0(t) dt

}1/2

)
≥ − 2δ{∫ r

−∞ e
φ0(t) dt

}1/2
.

On the other hand, if ψ(t) < ψ(r) for t ∈ (r,∞), we can apply an almost identical

argument to see that

ψ(r) ≥ − 2δ{∫∞
r eφ0(t) dt

}1/2
,

as required.

Lemma 24. Let f0 = eφ0 ∈ F1 with µf0 = 0 and σf0 = 1, and let eφ ∈ F̃(f0, δ) for

some δ ∈ (0, 2−9). Then there exists a universal constant C > 0 such that for any

r ∈ R,
φ(r)− φ0(r)

2
≤ C(|r|+ 1)δ.

Proof. Again, we write ψ := (φ− φ0)/2. Since we seek an upper bound for ψ, we may

assume without loss of generality that ψ is upper semi-continuous, and by symmetry,

it suffices to prove the bound at a fixed r ≥ 0. Further, we assume without loss of

generality that ψ(r) > 0 (because otherwise the result is immediate).

Let r0 := r + 1. Define S :=
{
t ∈ [−r0, r0] : ψ(t) ≥ ψ(r)

218c1r0

}
, sL := inf{t : t ∈ S},

and sR := sup{t : t ∈ S}. We note that r ∈ S since 218c1r0 ≥ 2. Then, since ex−1 ≥ x
for any x ≥ 0, we have

δ2 ≥
∫ sR

sL

eφ0(t)(eψ(t) − 1)2 dt ≥
∫ sR

sL

eφ0(t)ψ(t)2 dt ≥
(

ψ(r)

218c1r0

)2 ∫ sR

sL

eφ0(t) dt. (32)

Now, define S′ :=
{
t ∈ [−r0, r0] : ψ(t) ≥ − ψ(r)

218c1r0

}
, s′L := inf{t : t ∈ S′}, and

s′R := sup{t : t ∈ S′}. Then

δ2 ≥
∫

[−r0,r0]\[s′L,s
′
R]
eφ0(t)(1− eψ(t))2 dt ≥

{
1− e−

ψ(r)

218c1r0

}2
∫

[−r0,r0]\[s′L,s
′
R]
eφ0(t) dt.
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If
∫

[−r0,r0]\[s′L,s
′
R] e

φ0(t) dt > 0, then, by rearranging terms, we have

ψ(r) ≤ −218c1r0 log

(
1− δ{∫

[−r0,r0]\[s′L,s
′
R] e

φ0(t) dt
}1/2

)
. (33)

As a shorthand, let us define

T1 :=

∫ sR

sL

eφ0(t) dt, T2 :=

∫ sL

s′L

eφ0(t) dt+

∫ s′R

sR

eφ0(t) dt,

T3 :=

∫ s′L

−r0
eφ0(t) dt+

∫ r0

s′R

eφ0(t) dt.

Inequalities (32) and (33) yield

ψ(r) ≤ 218c1r0
δ

T
1/2
1

(34)

ψ(r) ≤ −218c1r0 log

(
1− δ

T
1/2
3

)
if T3 > 0. (35)

Since T1 + T2 + T3 =
∫ r0
−r0 e

φ0(t) dt, we have that T1 + T2 + T3 ≥ 2−14 from the proof of

Lemma 25.

We claim that T2 ≤ 2−15. To see this, note that by concavity of ψ (cf. the proof of

Theorem 1 of Cule et al. (2010)),

s′R − s′L ≤ (sR − sL)
1 + 1

218c1r0

1− 1
218c1r0

≤ (sR − sL)

(
1 +

4

218c1r0

)
.

Hence

T2 =

∫
[s′L,sL]∪[sR,s

′
R]
eφ0(t) dt ≤ c1(s′R − sR + sL − s′L) ≤ (sR − sL)

4

218r0
≤ 2−15.

It follows that either T1 ≥ 2−16 or T3 ≥ 2−16. If T1 ≥ 2−16, then the result follows

from (34). On the other hand, if T3 ≥ 2−16, then from (35), we have ψ(r) ≤ 219r0δ,

which again proves the claim.

Lemma 25. Let f ∈ F1 with µf = 0 and σf = 1. Let δ ∈ (0, 2−4]. Then aL := inf{r :

f(r) ≥ δ2} ≤ −1/9, aR := inf{r : f(r) ≥ δ2} ≥ 1/9, and∫ aR

aL

f(r) dr ≥ 2−14. (36)

Proof. By Lovász and Vempala (2007, Theorem 5.14(d)), 2−7 ≤ f(0) ≤ 24 and f(r) ≥
2−8 for all r ∈ [−1/9, 1/9]. Since log-concave functions are unimodal, we conclude that

aL ≤ −1/9 and aR ≥ 1/9. Now define α := log f(0) and β := log f(aL). Then∫ 0

aL

f(r) dr = |aL|
∫ 1

0
f((1− s)aL) ds ≥ |aL|

∫ 1

0
esα+(1−s)β ds

= |aL|eβ
1

α− β
(eα−β − 1) ≥ (1/9)2−8 1

α− β
(eα−β − 1).
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Now, by Lovász and Vempala (2007, Theorems 5.14(b) and 5.14(d)) α−β ≥ −7 log 2−
9 log 2 = −16 log 2, so we deduce that∫ 0

aL

f(r) dr ≥ (1/9)2−8 1

16 log 2
(1− 2−16) ≥ 2−15.

By symmetry, the same bound holds for
∫ aR

0 f(r) dr. The lemma follows.

Lemma 26. Let φ0 : R → [−∞,∞) be concave. Let a < b and fix an arbitrary

t∗ ∈ [a, b]. Let

q(s) :=

{
(1− e−s)/s if s 6= 0

1 if s = 0.

Then∫ b

a
eφ0(t) dt ≥ (t∗ − a)eφ0(t∗)q

(
φ0(t∗)− φ0(a)

)
+ (b− t∗)eφ0(t∗)q

(
φ0(t∗)− φ0(b)

)
.

Moreover, if max{φ0(a), φ0(b)} ≤ φ0(t∗) ≤ max{φ0(a), φ0(b)} + τ for some τ ≥ log 2,

then ∫ b

a
eφ0(t) dt ≥ (b− a)eφ0(t∗) 1

2τ
.

Proof. Let us first suppose that t∗ > a. We have φ0(t) ≥ sφ0(a) + (1 − s)φ0(t∗) for

t ∈ [a, t∗], where s := t∗−t
t∗−a . Hence∫ t∗

a
eφ0(t) dt ≥ (t∗ − a)

∫ 1

0
esφ0(a)+(1−s)φ0(t∗) ds ≥ (t∗ − a)eφ0(t∗)q

(
φ0(t∗)− φ0(a)

)
.

We can bound
∫ b
t∗ e

φ0(t)dt when t∗ < b by a similar argument to yield the first conclu-

sion.

For the second part, observe that q is strictly decreasing, so from the first part,∫ t∗

a
eφ0(t) dt ≥ (b− a)eφ0(t∗)q(τ) ≥ (b− a)eφ0(t∗) 1

2τ
,

for τ ≥ log 2.

The following two lemmas are from Kim et al. (2017a), though the first is only a

minor restatement of Doss and Wellner (2016, Theorem 4.1). For a < b and −∞ ≤
B1 < B2 < ∞, we define F̃([a, b], B1, B2) to be the set of log-concave functions f :

[a, b]→ [eB1 , eB2 ].

Lemma 27. There exists a universal constant C > 0 such that for every a < b and

B, ε > 0,

H[](ε, F̃([a, b],−∞, B), dH, [a, b]) ≤ C
eB/4(b− a)1/4

ε1/2
.
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Lemma 28. There exists a universal constant C > 0 such that

H[](ε, F̃([a, b], B1, B2), dH, [a, b]) ≤ C(B2 −B1)1/2 e
B2/4(b− a)1/4

ε1/2
.

for every ε > 0, a < b and −∞ ≤ B1 ≤ B2 <∞.
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