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We congratulate the authors on their paper. POET elegantly tackles low rank plus sparse matrix
estimation, provided the eigenvalues of the low rank matrix grow at rate O(p) (see Assumption 1).
Suppose now that this assumption does not hold, and instead, we have the following condition.

Assumption 1’. All the eigenvalues of the K ×K matrix p−αB′B are bounded away from both 0
and ∞ as p →∞, where 0 < α < 1.

Similar conditions are widely used in sparse PCA and low rank plus sparse matrix estimation
problems; see, for example, Amini and Wainwright (2009), Agarwal et al. (2012). In the following,
we consider the three main objectives in Section 2. The notation and model are the same as those
in the paper.

Proposition 1’ & 2’ Assume Assumption 1. For the factor model with condition (2.1), we have

|λj − ‖b̃j‖2| ≤ ‖Σu‖, for j ≤ K,

|λj | ≤ ‖Σu‖, for j > K.

Moreover, if {‖b̃j‖}K
j=1 are distinct, then

‖ξj − b̃j/‖b̃j‖‖ = O(p−α‖Σu‖), for j ≤ K.

From this we see that under a suitable sparsity condition on Σu, the first K principal components
are still approximately the same as the columns of the factor loadings, even if the eigenvalues are
not as spiked as O(p).

However, for POET to control the relative error of the matrix estimate, Assumption 1 is nec-
essary, as can be seen from a close inspection of the proof of Theorem 2 of Bai and Ng (2002). In
fact, if Assumption 1 is replaced with Assumption 1’, we have, for K ′ < K, that

lim
p,T→∞

P{IC(K ′) < IC(K)} > 0.

The other half of this theorem still holds, however, so the less spiked structure will not asymptoti-
cally increase the risk of over-estimation in the selection of K.
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Table 1: For the same u and µB as in Section 6.2, define µ̃′B = (µ′B ,µ′B)′ and expand ΣB to a
block diagonal matrix Σ̃B by making ΣB the diagonal block of Σ̃B . The rows of B1 are generated
from a N6(µ̃B , Σ̃B) distribution. Expand the generating process of F similarly to match B1 and
generate F 1 accordingly, and then let Y = C1B1F

′
1 + u. Here, K = 6, Kmax = 20. The means of

the estimated K are reported over 100 repetitions, with standard errors in brackets.
Methods C1 = 1 C1 = 1/3 C1 = 1/10 C1 = 10
IC 6.00(0.00) 1.08(0.27) 1.00(0.00) 6.00(0.00)
AIC 20.00(0.00) 20.00(0.00) 20.00(0.00) 20.00(0.00)
BIC 6.00(0.00) 2.00(0.00) 1.00(0.00) 6.00(0.00)

The performances of IC, AIC and BIC are compared in Table 1, with the corresponding largest
eigenvalues of Y Y ′ in Figure 1. If the spectrum structure satisfies Assumption 1 (C1 ≥ 1), both IC
and BIC select the correct value of K. However, if we shrink the spiked eigenvalues, IC and BIC
tend to underestimate, while AIC overestimates, the true K.

To examine the effect of missing the Kth common factor, assume (2.1) and that rank(B′B) = K,
but the estimator is

Σ̂K−1 = ΣK−1
i=1 λ̂iξ̂iξ̂

′
i + R̂

T
K−1,

where R̂
T
K−1 is the entrywise-shrunk estimator of RK−1 = bKfKf ′Kb′K + Σu. In this case, due

to the common factor, most of the pairs of cross-sectional units in RK−1 are no longer “weakly
correlated”. Note that the θ̂ij ’s in Appendix A are still the same, i.e., no extra shrinkage is
introduced. However, mp used in Theorem 2 and 3 is not o(p), so the error bound does not converge
to zero. On the other hand, when K is correctly or over-estimated, even substituting Assumption
1’ for Assumption 1, the corresponding results in Theorems 2 and 3 still hold. Thus, if there is
doubt about the validity of Assumption 1, a less severe penalty (e.g. AIC) may be preferable, to
avoid the more serious error of underestimation of K.
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Figure 1: The largest 20 eigenvalues of Y Y ′ in cases (a) C1 = 1 (b) C1 = 1/3, (c) C1 = 1/10 and
(d) C1 = 10.
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