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Abstract

This thesis contributes to the mathematical and theoretical understanding of the
bootstrap, introduced into Statistics by Efron in 1979. It consists of four main chap-
ters, the first of which examines cases of bootstrap inconsistency, with particular
reference to the Hodges and Stein estimators. We evaluate a proposal of Beran for
the diagnosis of inconsistency and investigate modifications, such as the m out of n

bootstrap, which restore consistency.

The bootstrap distribution of the Stein estimator is of interest as a method of con-
structing confidence sets for the mean of a spherically symmetric distribution. We
study these confidence sets in Chapter 2, where we also propose an analytic formula-
tion, and give mathematical results as well as numerical simulations to suggest their

improvements over the usual confidence set.

Recently, the bootstrap has been applied to classification problems in an attempt to
reduce the error rate of a classifier, using a technique known as bagging. In Chapter 3
we study the bagged nearest-neighbour classifier, and advocate bagging with smaller

resample sizes than the actual sample sizes.

The final chapter considers the question: ‘What is the probability that the bootstrap
performs badly?’. We formulate this problem in terms of the Mallows distance be-
tween the bootstrap distribution of a sample mean and its true sampling distribution,

whose properties are found to depend on the tail of the underlying population.
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Preface

The May 2003 issue of Statistical Science is a commemoration of the Silver Anniver-
sary of the bootstrap, and is a fascinating reminder of the impact the bootstrap has
had on statistical theory and practice. Born in May 1978, I am one of the first gen-
eration of ‘bootstrap babies’, brought up in the age of the personal computer, where
numerical approximations of almost unlimited precision can be found to previously

intractable problems.

Despite our newfound capabilities, however, it is important not to lose sight of the
fact that practical implementation of the bootstrap is almost always a two-stage
approximation procedure. The first step is to approximate the distribution of the
statistic of interest, é, under the unknown distribution of the data, P, by the bootstrap
distribution of é; that is, the distribution of f under some data-driven estimate, P,
of P. The second stage is to simulate samples from 73, computing 0 on each sample.
Since the power of the modern computer generally enables sufficiently many samples
to be drawn to ensure that the simulation error in the second step is small, the issue

that lies at the heart of the bootstrap is the validity of the first approximation.

This thesis examines this bootstrap approximation in various contexts, and from dif-
ferent perspectives. Chapter 1 focuses on non-regular circumstances in which the

standard bootstrap procedure is known to be inconsistent. This work is closely con-
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nected with two other important statistical discoveries of the last century, namely
the phenomena of superefficiency and Stein estimation. The surprisingly good perfor-
mance of the standard bootstrap compared with its competitors leads us to question
the prominence attached to bootstrap consistency. An abbreviated version of this

chapter is to appear in the December 2003 issue of Biometrika.

A natural motivation for studying the bootstrap distribution of the Stein estimator is
as a method for constructing improved confidence sets for the mean of a multivariate
normal distribution, or more generally, a spherically symmetric distribution. This has
applications to the problem of finding a confidence set for the regression coefficients
in the linear model, and is the subject of Chapter 2. We present and discuss two
different confidence set constructions, one via an analytic method and the other via

the bootstrap.

Chapter 3 concerns an emerging and exciting area of applications of the bootstrap, to
prediction and classification problems. Our focus is on bagging, short for ‘bootstrap
aggregating’, where predictors may be improved by averaging the results of predic-
tions made based on resamples of the data. We consider applying bagging to the
nearest-neighbour classifier, showing in particular that the resample sizes must be
small in comparison with the actual sample sizes for bagging to result in an asymp-
totic improvement. The idea of using reduced resample sizes in conjunction with the

bootstrap is another theme discussed in Chapter 1.

Finally, in Chapter 4 we examine a different aspect of bootstrap performance, namely
its large deviations properties. This work was partly motivated by some of the sim-
ulations in Chapter 1, although our results in this chapter concern the sample mean
and the Mallows metric. Broadly, we find encouraging large deviations behaviour of
the bootstrap if the tail of the underlying distribution of the data is finite, but that

this is not necessarily the case if the tail is heavy.



PREFACE vii

It is a great pleasure to have the opportunity to thank my supervisor, Alastair Young,
for his support, encouragement and sound advice. I have also been extremely for-
tunate to have shared an office with Christina Goldschmidt and, latterly, Michail
Loulakis. They, as well as other friends and colleagues, especially Olly Johnson, Lara
Jamieson, Gareth Birdsall, Amanda Turner, John Harper, Ruth King, Damon Wis-
chik, Edward Crane and Paul Russell, have been very generous with their time and

helped to make the Statslab such a friendly environment.

I am grateful to the Engineering and Physical Sciences Research Council for their
financial support, and to Peter Hall for arranging a Visiting Fellowship for me at the

Australian National University in the early summer of 2003.

This dissertation is the result of my own work and includes nothing which
is the outcome of work done in collaboration except where specifically

indicated in the text.

Chapter 3 of this thesis is based on work carried out during my visit to the Australian
National University, and, excluding the Appendix but including Theorem 3.4.1, this
chapter is joint work with Peter Hall. A condensed version has been submitted to
the Journal of the Royal Statistical Society, Series B. Certain results in Chapter 4,
specifically Proposition 4.2.1, Lemmas 4.5.6, 4.5.7 and 4.5.8 and Theorem 4.5.11,
are joint work with Edward Crane. I intend to submit both Chapters 2 and 4 for

publication very shortly.

R. J. Samworth
Cambridge, 2003



Chapter 1

Bootstrap Diagnostics and

Inconsistency

1.1 Introduction

Asymptotic analysis, usually as the sample size tends to infinity, has been an impor-
tant tool for developing and understanding many statistical procedures. The boot-
strap is no exception, and limit theorems have played a prominent role ever since

Efron (1979) introduced the idea and began the process of establishing its validity.

The potential of Efron’s idea was quickly seized upon, and Bickel and Freedman (1981)
gave general conditions under which the bootstrap could be expected to be consistent,
as well as studying many examples. Singh (1981) provided a more detailed asymptotic
treatment of the standardised sample mean, which revealed the second-order accuracy
of the bootstrap, and hence the possibility of improvement over traditional normal

approximation. The success of his analysis set a trend among many authors to use the
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powerful machinery of Edgeworth expansions in the study of the bootstrap, notably
Hall (1992), who built on earlier work in a non-bootstrap context by Bhattacharya
and Rao (1976). Beran (1982) argued that the bootstrap is asymptotically minimax.
More recently, saddlepoint approximations have been applied to examine the relative

error properties of the bootstrap (e.g. Jing, Feuerverger and Robinson, 1994).

It is consistency, though, which is seen as the sine qua non for the bootstrap. Many
authors refer to bootstrap ‘failure’ in cases of inconsistency, and ‘success’ otherwise.
This terminology may be inappropriate, however, for two reasons. Firstly, the sample
size may not be large enough for the asymptotics to accurately reflect the finite-
sample situation. More importantly, consistency is a fixed parameter property: there

is generally no guarantee that any convergence is uniform over the parameter space.

An important contribution to the study of bootstrap consistency was made by Beran
(1997), who considered locally asymptotically normal models, and characterised con-
sistency in terms of an asymptotic independence property. This result is the basis for
his graphical diagnostic, intended to give justification for the validity of the standard
bootstrap approach, or to warn of its possible unreliability. This idea was followed
and developed in a more practical setting by Canty, Davison, Hinkley and Ventura
(2000). Beran also proved that asymptotic superefficiency is a sufficient condition for
bootstrap inconsistency, and cited the Hodges and Stein estimators as examples of

this phenomenon.

Several issues arise in the implementation of Beran’s diagnostic; these are discussed
in Section 1.2. We are led to formalise the procedure with reference to the examples
above, in order to compare it with various alternatives. Our conclusion is that well-
known existing procedures may be more suitable for diagnosing inconsistency in these

instances.



CHAPTER 1. BOOTSTRAP DIAGNOSTICS AND INCONSISTENCY 3

It is natural next to consider the best course of action if faced with the possibility
that the standard n out of n bootstrap may be inconsistent. It has been suggested
that one should reduce the bootstrap resample size, an idea which dates back to
Bretagnolle (1983). The use of this device has been shown to lead to consistent
estimators in wide generality, but typically there is an asymptotic loss of efficiency
in cases where the standard bootstrap is known to work successfully. Recent work,
such as Bickel, Gotze and van Zwet (1997) and Politis, Romano and Wolf (1999),
has focused on remedying these losses. If entirely successful, this would negate the
need for a diagnostic; but even then, further questions, especially the difficult choice
of the reduced bootstrap resample size, remain. We examine both theoretically and
empirically in the Hodges and Stein examples whether efficiency losses are manifested
in finite samples, whether an optimal choice of resample size can be suggested and
also investigate other alternatives which restore consistency. All proofs are given in

Section 1.5.

1.2 Local asymptotic normality and the bootstrap

In this section, we describe the locally asymptotically normal (LAN) model, which
was introduced into Statistics by Le Cam (1960) in his study of asymptotically similar
tests. In addition, we introduce the bootstrap and outline the concepts necessary to

understand the relevant version of Beran’s key theorem (Theorem 1.2.6).

Suppose Xi,..., X, are independent and identically distributed random vectors in
R™, and write Py for the distribution of X = (X1,...,X,,). The parameter 6 belongs
to a parameter space ©, which we assume is an open subset of R¥. Suppose that the
components of X have density py with respect to Lebesgue measure on R™, and for

h € R*, let L, (h,0) denote the log-likelihood ratio of Py,,,-1/2, with respect to Py.
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Thus,
La(h,0) = 1og<H z%;g)f))

-1 e
Definition 1.2.1. The model {Py : 8 € ©} is LAN at 6y if there exist a random

vector Yy, (0o, X) € R* and a non-singular k x k matriz 1(60y) such that under Py, we

have both Yy,(0p, X) 2 Ny, (0, 1(6p)), and
Ly (b, 00) = B Y, (00, X) — 2h"I(60)h + 0,(1)

as n — oo, for every h € RE and every sequence (h,) in R* converging to h.

Local asymptotic normality acquires its name from the fact that the log-likelihood
ratio in LAN models is asymptotically the same as that of NV (h, I _1(00)) with re-
spect to N (0,171(65)). Thus an LAN model {Py ., 1/2, : h € R*} and the model
{N(h,I7%(6)) : h € RF} are similar in their statistical properties. Note here that
the original model {IPy : § € ©} has been reparametrised in terms of a local parameter

h=nl2(0 — 6,).

A Taylor expansion argument shows that in our case of independent and identically
distributed random variables, the LAN property is satisfied under mild regularity
conditions on the log-likelihood ¢,(0) = log py(x) (van der Vaart, 1998, pp. 93-95).
The sequence Y,,(#,z) and Fisher information matrix I(f) are then related to the

score function, Vyl,(6), through
1 n
Ya(0,X) = —5 D Volx,(0) and I(0) =By (Volx(0) Volx (0)").
=1

Let T,, = T,(X) be an estimator of §. Of interest is the root n'/?(T, — 6), and
we denote its sampling distribution under Py by H,(f). Statistical considerations
such as the construction of confidence sets for  motivate the study of such roots. If

0, = 6,(X) is another estimator of 6, then the (parametric) bootstrap distribution
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estimator of H,(#) is Hn(f,). As defined, the bootstrap distribution is a random
probability measure, although we usually study it as a conditional distribution, for

given X.

Definition 1.2.2. Suppose d is a metric on the space of probability measures on R .

A

We say that H,(0,) is d-consistent at 6y if for all € > 0,
Pyo {d(H,,(0,), Ha(00)) > €} — 0 (1.1)

as n — oQ.

We shall be primarily interested in the topology of weak convergence. If (1.1) holds for

A

a metric which metrises weak convergence, we will simply say H,(6,) is consistent at
fp. If, in addition, there exists a limit distribution H(6y) such that H,(fy) converges
in distribution to H (), we write H,(6,) 4 H (6) in Py,-probability as n — oco.

Often, consistency is proved by verifying the conditions of the following proposition,

which is a version of Theorem 1 of Beran (1984).
Proposition 1.2.3. Let 0y € O, and suppose that the following conditions hold:
(i) there ezists a limit distribution H(6y) such that H,(6,) 4 H(6y) as n — oo for
every sequence (6,) in © converging to Oo;
(ii) there exists a sequence of estimators (6,) such that 6, — 0q in Py, -probability
as m — 0o.

Then H,(6,) KN H(6y) in Py, -probability as n — oo.

Beran (1997) shows the importance of local asymptotic equivariance in determining

bootstrap consistency:
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Definition 1.2.4. Suppose that H,(6) KN H(6y) as n — oo. The sequence of esti-
mators (T,,) of 0 is locally asymptotically equivariant at 6y if for every h € R* and

every sequence (hy,) in R¥ converging to h, we have
H, (0o +n~2h,) % H(6,)

as n — Q.

Local asymptotic equivariance is a slightly stronger property than that of reqularity
(Héjek, 1970), which only requires the above convergence to hold with h, = h for all

n.

Before we can state the main theorem, we need to define one final property of esti-
mators, typically satisfied by maximum likelihood estimators in exponential families
and, more generally, by one-step maximum likelihood estimators (van der Vaart, 1998,

pp. 71-75) in LAN models.

Definition 1.2.5. A sequence of estimators (T, i) is asymptotically efficient at 0y if,
under Py,

Tn,E - 00 + n_l/QI_I(HO)Yn(HO, X) + op(n_l/Q)

as n — Q.

We suppose the existence of such a sequence of estimators, and write K, (6) for the

joint distribution of (n'/2(T,, — T, r), Ya(0, X)) under P,.

Theorem 1.2.6 (Beran). Suppose that the model {Pp : 6 € O} is LAN at 0y and
that H,(6o) N H(6) as n — co. Suppose that the estimator 6, used to construct the
bootstrap distribution satisfies the condition that n'/? (én—HO) converges in distribution,
under Py,, to a limit distribution which has full support in R¥. Then the following

are equivalent:
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(a) H,(6,) KN H (6y) in Py, -probability as n — oo;

(b) Kn(én) 4 D(6y) x N(O,I‘l(ﬁo)) in Pg,-probability as n — oo, for some dis-
tribution D(0y) such that H(6y) can be written as the convolution of D(6y) and
N(Oa 171(00)) ;

(c) the sequence of estimators (T,,) are locally asymptotically equivariant at 6y with

limit distribution H(6y).

Thus, in LAN models, part (c) of the theorem gives a means of verifying the bootstrap
consistency in part (a). Beran’s diagnostic is based on the asymptotic independence

in part (b) of the theorem:

(1) Given Xj,...,X,, compute 0,, and then generate B independent bootstrap
samples X = {X7,, ..., X, }fori=1,..., B from P; .

(3) Compute a; = n'/*(T;, — T ;) and dj = Y, (0, X7) fori=1,...,B.

(4) Choose real-valued, continuous functions f and g on RF and plot the pairs
{(f(az‘), g(d;“)) :i=1,..., B} to assess whether the approximate independence

breaks down. If so, mistrust the bootstrap distribution from this data set.

In this author’s experience, this procedure can be ambiguous. On what basis do
we decide what does and what does not look independent? How large does n need
to be before we should expect to see independence at points of local asymptotic
equivariance? How should we choose the scalar summaries f and ¢ in the multi-
dimensional case? Figure 1.1 shows the result of applying the algorithm above to the

Stein estimator (defined in Section 1.3.2) with the functions f and g both chosen to
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P RS ™ i
- %f' - o H : s
¥ o~ '!'-.:-. X ™ — Vg e
E ;.Eig . E ;f':“ @
o o ety .
(an o
[ [ [ [ [ [ [
0 1 2 3 0 0.5 1
[la*]| [la*]|

Figure 1.1: Beran’s diagnostic applied to the Stein estimator. On the left-hand
plot, # = (0,0,0,0,0); on the right, § = (—0.1,0.1,0,0,0). The choice of # on the
right ensures that the likelihood ratio test of size 0.05 of Hy : 6, = ... = 6y versus
H, : Hy is not true, rejects Hy with probability approximately 0.95 (see Section 1.3.2).
Parameter values: n = 1,000, B = 100, £ = 5.

be the Euclidean norm on R¥. According to Theorem 1.2.6, we would like to be able

to diagnose dependence on the left and independence on the right.

1.3 The Beran diagnostic and alternatives

1.3.1 The Hodges estimator

Let Xy,...,X, be independent and identically distributed random variables, each
distributed according to N(6,1), and let X,, = n=* 3" | X;. The Hodges estimator

is defined by

_ bX, if |X,| <n l4
Tn,H(Xn) = _
X, otherwise,
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where b € (0, 1). It is possibly the simplest example of an asymptotically superefficient
estimator. The risk of the Hodges estimator, given by [, (nl/ 2(Tohm — 0)), converges
to b? when # = 0 and to 1 otherwise (Lehmann, 1998, p. 442); the Cramér-Rao lower
bound is 1. Though it is possible to modify the definition of the Hodges estimator to
extend the set of asymptotic superefficiency to an arbitrary closed countable set (Le
Cam, 1953), this is of limited practical benefit. The reason is that in one dimension,
it is a feature of asymptotically superefficient estimators that at fixed n they should
behave poorly in terms of risk near a point of asymptotic superefficiency (Le Cam,
1953; Héjek, 1972). Nevertheless, similar superefficient truncation estimators have
been studied, for instance, in wavelet regression, where estimates of wavelet coeffi-
cients are discarded if smaller in modulus than some threshold value. Further details

can be found in Canty, Davison, Hinkley and Ventura (2000).

We are interested in estimating the distribution H,, () of n*/?(T,, y — ), and consider

the bootstrap approximation H,(X,). We will see in Section 1.4.1 that H,(X,) is
consistent if and only if § # 0. We may take T, p = X,,, so part (b) of Theorem 1.2.6
states that if § # 0, then a* = n'/*(T}; ; — X) and d* = n'/?(X}; — X,,) are asymp-
totically independent in Py-probability, with marginal distributions a point mass at

the origin and N(0, 1), respectively. Here, conditional on Xj,..., X, we have that
X},..., X7 are independent and identically distributed N(X,, 1) random variables,

VI | n _
Xa=n X Xy and T2y =T (X2,

In the remainder of this subsection, we assess the formal properties of the procedure
described in the last paragraph of Section 1.2 when applied to this example. Expressed
in the language of hypothesis testing, the clear implication of Beran’s diagnostic is
that we should take as our null hypothesis that the standard bootstrap works — in
other words # # 0. This runs counter to the general philosophy of hypothesis tests,

in which Hj is the conservative hypothesis, to be rejected only if there is evidence
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against it. More conventional, then, would be the null hypothesis that the standard
bootstrap is inconsistent, i.e. # = 0. For this reason, we choose to swap over the null

and alternative hypotheses.

With the new 6 = 0 null hypothesis, the theory of classical tests in exponential fami-
lies gives that a uniformly most powerful unbiased (UMPU) test of size « is to reject
H, if n'/?|X,,| > ®'(1 - /2), where ® is the standard normal distribution function.
Formalising Beran’s method in this context requires the choice of a test statistic. Be-
ran notes (albeit in the nonparametric bootstrap setting) that the sample correlation
(or equivalently 7 = Y27 | ard?) is unreliable due to the presence of outliers. For,

either af = 0 or the points (a},d}) lie on a line with gradient —1/(1 — b). Instead,

17

he argues that a large proportion of points with a = 0 is evidence of independence,

implicitly suggesting that we should take

1 B
T:_ ]]~a,’.k:

as our test statistic. We can compute the critical value, ¢, for the test as follows:

(1) Choose a test size, « € (0,1), and an integer R such that (R+1)(1 — «) is also

an integer.
(2) For each j =1,..., R, repeat steps (3) to (5).
(3) Generate Y, ; ~ N(0,1/n).
(4) Generate Y;r; ~ N(Y,;,1/n) independently for i = 1,..., B.
(5) Compute a; = n*/?(T, (Y,;;) —Y,;;) for each i = 1,..., B, and then evaluate

* _ B
Ty =B '3 Y=o

(6) Let c=T7

(R+1)(1—a))> 1-€- the ((R+1)(1 — @))th order statistic of T7, ..., Tk.
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Power
0.5

0
I

Figure 1.2: A comparison of the power functions of the UMPU test (solid) and the
one derived from Beran’s diagnostic (dashed). Parameter values: a = 0.05, b = 0.5,

B =100, R =999, n = 1,000 (left), n = 4,000 (right).

Our test function is
1 ifT>c

p(T)=4 v ifT'=c ,
0 ifT'<e

where v € [0, 1] is chosen so that

R R

1 Z Y Z

E IL{T]f*>c} + E ﬂ{TJt*:c} = Q.
Jj=1 Jj=1

Figure 1.2 shows the power functions of the UMPU test and the one derived from
Beran’s diagnostic. In the latter case, 10,000 Monte-Carlo replications of each test
were performed, ensuring a simulation standard error of no more than 0.005 at each

point.

We find that Beran’s test performs acceptably for small n, but very poorly as n in-

creases. To explain this behaviour, note that if P, denotes the conditional probability
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of X* = (X7,..., X)), given X1,...,X,, then

P,(a* =0)
=PI,y = X;) = P(I X5 > 071/
=P, (n'*(X; - X,) < —n'/* —n'2X,) + P, (n'A(X; — X,,) > n'/* —n'/2X,,)

d(—n'/t —nt2X,) +1 - ®(n'/* —n'/?X,),

It follows that conditional on X4,..., X,,, we have
BT ~ Bin(B,®(—n'* — n'?X,) + 1 — ®(n'/* — n'/2X,)).

Writing n'/2X,, = n'/20 + Z, where Z ~ N(0,1), we see that the (unconditional)
power function for the Beran test varies over scale n='/%, in the sense that its value
at £n /% converges to a constant. On the other hand, the UMPU test has power

function

w(f) =Py (n'?|X,| > ® (1 — a/2))
=®(® H(a/2) — n?0) +1 - 3(d (1 — a/2) — n'/?0),

and so varies over scale n~1/2.

1.3.2 The Stein estimator

Now suppose that X;,..., X, are independent and identically distributed random
vectors in R¥ where & > 4, and let X = (X1,..., X,). Each component of X has a k-
variate normal distribution Ny (6, I), with mean vector § € R* and identity covariance

: I S e
matrix. Write X,, = n Zi:1 X;, define ;1 : R — R by p(z) = k! Zlefﬂz‘, and let

e denote a k-vector of ones. The Stein estimator is defined by

To,s(Xa) = p(Xn)e + (1 — n|| X, f;(g)_(n)dp) (Xn — u(Xn)e).
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Thus each component of X, is ‘shrunk’ towards the mean of the nk observations.
By contrast with the one-dimensional setting of Section 1.3.1, when k£ > 4, the Stein
estimator is superefficient for every value of n; its risk less than the Cramér-Rao lower
bound, namely &, for all # € R*. The asymptotic risk is 3 when the components of
6 are all equal, and k otherwise (Brandwein and Strawderman, 1990). That the set
of points of asymptotic superefficiency is of Lebesgue measure zero does not detract
from its practical importance due to its good finite-sample properties. In fact, the
behaviour of the Stein estimator in this regular parametric setting is symptomatic of
that of superefficient shrinkage estimators employed in more general problems such
as kernel density estimation and nonparametric regression. There, the complexity of
the parameter space allows far more severe forms of superefficiency (Brown, Low and

Zhao, 1997).

We consider estimating the sampling distribution, H, (), of n'/2(T, s — 6), by the
bootstrap approximation, H,(X,). We will see in Section 1.4.2 that H, (X,,) is consis-
tent if and only if the components of # are not all equal. As in the Hodges example,
we may take T,z = X,, so part (b) of Theorem 1.2.6 states that if the compo-
nents of § are not all equal then a* = n'/*(T; ¢ — X7) and d* = n'*(X; — X,,)
are asymptotically independent in Py-probability with marginal distributions a point

mass at the origin and Ni(0,I) respectively. Again, conditional on X7,..., X, we

have that X7,..., X are independent and identically distributed Ny(X,,I) random

V* _ —1 n _
vectors, X, =n Zi:l X} and T, s = T,, 5(X;;). Note that in applying the diagnos-
tic algorithm to this example, we are forced to choose scalar summaries of the data

(cf. Figure 1.1).

As argued in the Hodges example, for the purposes of formal inference we should
really be testing Hy : 6, = ... = 0 against H; : Hy is not true. Considered as a

classical hypothesis testing problem, this is very similar to a situation in which one
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would use a one-way analysis of variance (ANOVA) test, except that the covariance
matrix of each component of X is I rather than o%I, for some unknown scalar factor
o%. With 021 covariance matrix, the ANOVA test is uniformly most powerful amongst
the class of all tests invariant under location, scale and orthogonal transformations,
and uniformly most powerful among those tests whose power functions depend on
6 only through ||@ — u(f)e||?/o® (Lehmann, 1986, Chapters 6 and 7). However, in
our situation the test is not invariant under scale transformations, so justification
in terms of optimality criteria is lacking. It nevertheless remains a possibility to be
considered. In such a test, we would reject Hy if

X — p(Xa)e|?

1 n _ > F(k:—l,k(n—l)) :
FD 2 | X, — X2 ()

F =

where F(:=1k(=1)(q) is the upper a-point of the F(:=1E(=1) distribution. Note that

the distribution of F' under Py is the same as that of

Ya/(k(n — 1))’
where Y] has a non-central chi-squared distribution with £ —1 degrees of freedom and

non-centrality parameter A = n||¢/ — pu(f)e[?, and is independent of Y5 ~ x¥(, -

A natural alternative to the ANOVA test is a generalised likelihood ratio test. The
maximum likelihood estimator of 6 is 1(X,,)e under the null hypothesis and X,, under

the alternative hypothesis. Thus the generalised likelihood ratio is given by

Supgezs eXp(—5 2" 1y g)2)
1 T v 7
supalz...zak eXp(_§ Z?:l ||)(Z — 0”2)

exp(=3 2 |IX,— X,
=e(=3X7 X, — u(X)el?)

1=

— exp (]| X — u(Xa)ell/2).

LX(-HO’ Hl) =

so we would reject Hy if n|| X, — u(Xn)e||> > x2_,(c), where x? () is the upper

a-point of the x7 , distribution. Justification for using this test can be expressed
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in terms of the shortcoming of the test and its Bahadur deficiency. If we write
O, =RF\{0:60, =... =0}, the shortcoming of a test is defined, for each 6 € O,
as the difference in power between the test in question and the most powerful test of
the same size. Theorem 3.6.1 of Kallenberg (1978) states that the shortcoming of the
likelihood ratio test based on sample of size n tends to zero, uniformly for 8 € ©1, as

n — o0.

To describe Bahadur deficiency, let N(«, 3,60) denote the number of observations
needed for the likelihood ratio test of size « to achieve power S at § € ©; and
let N*(«,3,0) denote the minimum of N(a,3,6) of over all size « tests. Then
Corollary 5.3.6 of Kallenberg (1978) gives that, for each g € (0,1) and 6 € ©,, there
exists A = A(f3,0) such that

: N(a,ﬁ,&)—N+(a,ﬁ,0)
1 < A.
Yot logNt(a,B,0)

In this sense, the likelihood ratio test is Bahadur deficient of order O(log N*(a, B, 0))

as o — 0.

We implement Beran’s ideas as follows: given Xi,..., X, construct the statistic
T =37 |lat|lld;] after following steps (1)~(3) of the algorithm given at the end of
Section 1.2. This can be compared with independently generated values of 77, ..., T,
where each T}, for j = 1,..., R, is the value of T" when the original data are drawn
from Ng(0,7). Under the alternative hypothesis, we expect the value of the test
statistic to be reduced. There is no need to consider randomised tests in this case.
The proposition below validates the plotting of the power function of this test as a

function of A = n||0 — u(f)e]?.

Proposition 1.3.1. When X has distribution Py and X* has distribution P,, the
sampling distribution of T depends on 0 only through X\ = nl|0 — u(6)el|.

Figure 1.3 suggests that the power function of the Beran test is uniformly smaller
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Figure 1.3: The power functions of the likelihood ratio test (solid), the ANOVA test
(dotted), and Beran’s method test (dashed) of Hy : A = 0 and H; : A > 0. Parameter
values: n = 10 (left), n = 1000 (right), « = 0.05, k = 5, B = 100, R = 999; 10,000
Monte-Carlo repetitions at each value of A\. The dots are almost indistinguishable

from the solid line on the right-hand plot.

than both the generalised likelihood ratio test and the ANOVA test for both small
and large n. The ANOVA test is a little worse than the generalised likelihood ratio
test for small n and as good for large n. This is unsurprising as the ANOVA test is
analogous to using a t-test for a normal mean when the population standard deviation

is known, while the likelihood ratio test is akin to the more standard z-test.

1.4 Restoring consistency to the bootstrap

1.4.1 The Hodges estimator

It was mentioned in Section 1.3.1 that when estimating the distribution H,(6) of

nt/2(T,, g —0), the parametric bootstrap distribution H,(X,) is consistent when 6 # 0
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but inconsistent when # = 0. The bootstrap fails despite the fact that H,(#) converges
pointwise for all § € R, with a limiting distribution H (6) which is N(0,1) when 6 # 0
and N(0,b?) when § = 0. To explain this behaviour, note that provided b # 0,
we can compute the cumulative distribution function, H,(x,#) corresponding to the

distribution H,(6) as follows:

Ho(z,0)
=Py (n"*(Tpn — 0) < 2) =Py(Tpuw < n~ %2 +0)
=Py(X, <n Vx40, X, >n V) £ Py(bX, < n7V2z +6,[X,| <n ')
=Pp{X, < (~n YV A (n 2 +0))}
+ ]P’g{—n_l/4 <X, < (n_1/4 ANV 4 0))}
+Py(n YVt < X, <n V2 4-0)
=Py (n'/*(X, — 0) < (=n** —n'/20) A 2)
+ ]P’g{—nl/4 —nl29 < nY?(X, — 0) < (n*/* — n/20) A b (z+ (1 - b)0n1/2)}

+ Py (n/* — 0?0 < n**(X, - 0) < z).

Thus
)
O (z) if v < —n'/* —nl/29
®(—nl/* — nl/29) if —nl/* —nl/20 < x < —bn'/* —n'/29
H,(z,0) =« @{b_l(x +(1- b)0n1/2)} if —bnt/* — nl/20 < x < bnt/*t — nl/2p
d(nt/*t — nl/29) if bnl/* — nl/20 < x < nt/* —nl/29
| ©(2) if z > nl/% —nl/2g.

(1.2)
Under Py,, we have that n'/2(X,, —6,) has a standard normal distribution for every n
(so in particular the limit distribution has full support). It follows from Theorem 1.2.6
that H,(X,,) will be a consistent estimator of H,,(6p) if and only if the sequence (T}, z)
is locally asymptotically equivariant at 6,. The proof of the following proposition is

similar to an argument in Putter and van Zwet (1996), and is given in Section 1.5:
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Proposition 1.4.1. The sequence (T,,,i) is locally asymptotically equivariant at 0y if
and only if 0y # 0.

Remark: When 6, = 0, Theorem 2.3 of Beran (1997) shows that H,(X,) converges
in distribution, as a random element of the space of probability measures on the real

line metrised by weak convergence, to the random probability measure N ((b—l)Z , b2) ,

where Z ~ N(0,1).

The inconsistency of the standard n out of n bootstrap at the origin leads us to
consider an m out of n parametric bootstrap, H,,(X,), where m — oo as n — oo,
but m = o(n). The rationale is as follows: since H, () 4 H (f) as n — oo for all
6 € R, consistent estimation of H (@) and H,(f), or indeed H,,(#), amount to the same
thing. Thus the m out of n bootstrap may be thought of as an attempt to estimate
H,,(0) with the advantage that the parameter of the resampling distribution, X,,, is
likely to be closer to the true parameter § than is X,,. Indeed, as a consequence
of Corollary 2.1(b) of Beran (1997), H,,(X,) is consistent for all # € R provided m
tends to infinity slowly enough that m = o(n).

In Figure 1.4, we present a comparison of the errors in the bootstrap approximations

3/4

H,,(X,) as estimators of H,(#) for m = n'/2, m = n** and m = n. These values

of m are understood to be rounded to the nearest integer. We compare H,,(X,) and
H,,(0) using the supremum metric, d, on the corresponding distribution functions,
H,(z,X,) and H,(x,0), so that

d(Hm(Xn), Ha(0)) = sup |Hp(z, X,) — Hu(z,0)]. (1.3)

z€eR
This distance metrises convergence in distribution, by Pélya’s theorem (van der Vaart,
1998, p. 12), and has the advantage of being considerably easier to compute in practice

than other equivalent distances, such as the Lévy metric (Billingsley, 1995, p. 198).
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Figure 1.4: The distances d(H,,(X,), H,(0)), averaged over 1000 realisations of X,,
with m = n'/? (dotted), m = n3/* (dashed), m = n (solid). Parameter values:

b= 0.5, (a) n =100, (b) n = 10, 000.



CHAPTER 1. BOOTSTRAP DIAGNOSTICS AND INCONSISTENCY 20

It is particularly interesting to note that, although smaller choices of m do improve
the bootstrap performance in a very small neighbourhood of # = 0, the improvements
come at the expense of considerably worse performance outside this neighbourhood.
Treated as a problem in decision theory, the minimax rule appears to be to choose
m = n, and this would agree with the Bayes rule unless most of the mass of the prior

were concentrated in a very small neighbourhood of 6§ = 0.

We give here a heuristic explanation for the results observed. Write
m'2X, = m'/%0 + m'/?n- 127,

where Z ~ N(0,1). From (1.2), we see that the magnitude of the error in the
bootstrap approximation depends on the absolute value of the difference between
n'/?20 and m'/20 + m/?n"12Z. If || < n~'/2, then the random term in the error,
m*?n 127, dominates. The variance of this term increases as m increases relative
to n, although it always has zero expectation. However, for larger values of |0| the
difference between the two non-random terms, m'/26 and n'/?6, is crucial. This is
large in absolute value for small m relative to n, and decreases to zero as m increases

to n.

We now investigate whether or not it is possible to retain the desirable characteristics
of both methods by means of an empirical, data-driven choice of m. That is, if we let
m = f,(|Xn|), where f, : [0,00) — {1,...,n} is some suitably chosen non-decreasing
function, can we achieve improved performance in a neighbourhood of § = 0 without

loss elsewhere in the parameter space?

A simple class of possible choices of m is given by
{ An® if | X,| < Cn™?
m = _
n if | X,| > Cn7?,

where A,C >0, a € (0,1) and § € (0,1/2). Let M denote this class.
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Proposition 1.4.2. For any m € M and any 0 € R, we have that H,(X,) is a

consistent estimator of H,(0).

Numerical studies suggest, however, that while improved performance in a small
neighbourhood of # = 0 can be achieved, again this comes at the expense of worse
performance outside this neighbourhood. Although the ‘bad’ neighbourhoods vanish
in the limit as n tends to infinity, which ensures consistency, they remain a problem
in finite samples. The problem occurs in the region, in this case where || ~ Cn~*, in
which the event {|X,| < Cn "} has moderate probability. Considered as an attempt
to estimate the optimal value mgp; = Mept(6), the rule in (1.4) is analogous to using
the Hodges estimator as an estimator of 6, and suffers the same drawbacks. Of
course, other more complicated empirical choices of m are possible, but the scope for

improvement over the naive n out of n bootstrap appears small.

A further suggestion for restoring consistency, proposed by Putter and van Zwet
(1996), involves a refined choice of parameter estimate in the bootstrap approxima-

tion: we replace H,(X,) by Hn(én) where 6, is chosen so that

A

(i) Py—o(6, =0) = 1 as n — o0;

(i) Poso(fn # 0) = 1 as n — oo.

~

The consistency of H,(6,) then follows from Corollary 1.1 of Putter and van Zwet

(1996). The authors themselves suggest an estimator from the following class:

i { 0 if|X,]<Cn?
Uk, iR > onf

where C' > 0 and 3 € (0,1/2). Note that, when C = 1 and 8 = 1/4, this is the Hodges

estimator with b = 0. Once again, however, the improvements in the immediate
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vicinity of 8 = 0 are offset by severe losses elsewhere in the parameter space. For large
n, comparing the expression for H,(z,6) in (1.2) with the corresponding expression
for H,(x,0,), we see that, when # € (n=1/2, Cn=*), it is likely that n'/26,, will be zero,
whereas n/20 may be large. Thus H,(x,60,) will be a poor estimator of H,(z,6) in

this region of the parameter space.

1.4.2 The Stein estimator

Corollary 2.1(b) of Beran (1997) also applies to the Stein estimator, and gives that
H,,(X,) is consistent for H, () for all § € R¥, provided that m = o(n), as before.
By Pélya’s theorem, we may still compare bootstrap approximations to H,(f) using
the supremum distance on the corresponding distribution functions, and we continue
to denote this metric by d. As explicit distribution functions are not available in
this instance, comparisons must be based on the respective empirical distribution

functions. The algorithm is as follows:

(i) Choose B € N and repeat steps (ii) to (iv) fori =1,..., B.

(ii) Generate independent X, 1, ..., Xnr ~ Ng(8,n 1) to compute H, r(6), the
empirical distribution of n'/? (Tnys(Xn,l) — 0), ...,nt/? (Tn,S(Xn,R) — 0).

(iii) Generate independent X ,,..., X} . where, conditional on X, ;, we have
X;w' ~ Ng(Xnj,m™I) for j = 1,...,R. Compute ﬁm,R(Xn), the empirical

distribution of m!/2 (Tm,s(X;Z,l) — Xu1),...,m'/? (Tm,S(X:n,R) — X, r)-

(iv) Compute

(v) Compute d = B~' Y27 d,.
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In Figure 1.5, we plot d as a function of A\ = n||@ — u(A)el|?, for m = n'/2, m = n¥/*

and m = n. Numerical studies show no qualitative change for different -directions.

Asin the Hodges example, we find that improvements in a small neighbourhood of A =
0 are possible, but that there is still a price to be paid in terms of poor performance
for larger values of \. A minimax approach to selecting m would suggest choosing
m = o(n) (perhaps m = n**), whereas adopting a Bayesian decision principle would
lead to the choice m = n unless most of the mass of the prior distribution were
concentrated on a small neighbourhood of A = 0. The n out of n bootstrap performs
better relative to the alternatives as n increases. Incidentally, when two samples of
size R = 500 were drawn independently from N (0,1), the average over B = 200
realisations of the supremum distance between the empirical distribution functions
was 0.059. Figure 1.5 therefore suggests that H,(X,) is a very good approximation
to H,(0) for A > 10.

To explain these observations, let Z, Z' denote independent standard k-variate normal

random variables, and let T ¢ = Tp, ¢(X ;). Now, under Py,

(T, ¢ — 0) = n'/%(X, — (k —3) n'/2(Xn — p(Xn)e)
(Tp,s — 0) O R VETG ( e

~ (k=3){Z — u(Z)e+n'(0 — u(0)e) } (15)
|1Z — p(Z)e +n'/2(0 — p(6)e)|? '

and, under P,,
1/2(T . X )

1/2(X _ Xn)

(k = 3) m!/?(X;, — w(X;)e)
Im/2(X5, — u(X5,)e) |12

(k=3){Z'— w(Z"e+m'?(Z — u(Z)e) /n*? + m*/? (6 — ,u(H)e)}
2" — (2" e+ m'2(Z — u(Z)e) /n'/? + m/2(6 — (0 H

!

(1.6)
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Figure 1.5: The average distances d(H,, r(X,), Hyr(0)), with m = n!/? (circles),
m = n3/* (grey squares), m = n (black triangles). Parameter values: R = 500,

B =200, k =5, n'/20 = (A/2)'/%(~1,1,0,0,0), (a) n = 100, (b) n = 10, 000.
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Comparing (1.5) and (1.6), we see that H,,(X,) will be a good approximation to
H,(0) when m'/?(Z — u(Z)e)/n'? + m'/2(6 — pu(@)e) is close to n'/2(0 — pu(f)e).
When A is small, and in particular when A = 0, the main error is likely to come
from the random term, m'/?(Z — pu(Z)e)/n'/?. Since we can choose m to tend to
infinity as slowly as we like, we can make this error as small as we like, in probability.
However, when A is large, it is the difference between the two non-random terms,
m*2(0 — pu(0)e) and n'/?(0 — p(0)e), which dominates. This decreases to zero as m

increases towards n.

Note from (1.5) and (1.6) that when the components of 6 are not all equal, H, () con-

verges weakly to N (0, 1) and H,(X,) converges weakly in Pg-probability to Ny (0, I)
also. This explains the fact that the bootstrap distribution is consistent in this in-
stance. However, when the components of 6 are equal, H,(f) converges to the the

probability measure 7(0), where for any h € R¥ | we define (k) to be the distribution

of
(k—3)(Z — w(Z)e+ h — p(h)e)
1Z = w(Z)e+h— p(hlel* -
with Z ~ Ni(0,I). On the other hand, Theorem 2.3 of Beran (1997) shows that

H, (X,) converges weakly, as a random element of the space of probability distribu-
tions on R¥ metrised by weak convergence, to the random probability measure 7 (Z’),

where Z' ~ Ni(0,7) and is independent of Z.

Analogues of the empirical rules for choosing m and the Putter and van Zwet method
of restoring consistency also exist for this problem. For instance, the latter may be

implemented with

5 — { p(Xn)e if | Xy — p(Xn)el| < Cn~?

Xn if || X, — u(Xn)el| > Cn~?,
where C > 0 and § € (0,1/2), in which case the resulting bootstrap approximation
H,(f,) is a consistent estimator of H,(0) for all # € R*, again by Corollary 1.1 of
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0 1 2 5 10 20
n=100 H,(X,) | 0214 0.193 0.176 0.115 0.074 0.063
H,(T,s) | 0.141 0.160 0.153 0.108 0.071 0.061

n=10000 H,(X,) |0.214 0.171 0.167 0.118 0.071 0.062
H,(T,s) | 0.141 0.164 0.157 0.109 0.071 0.062

Table 1.1: The distances d(H,(X,), Ha(0)) and d(H,(Tn,s), H,(0)). Parameter val-
ues: R =500, B =200, k = 5.

Putter and van Zwet (1996). Although numerical studies suggest it is possible to
achieve minor improvements for a fixed n with a suitable choice of C, any choice of C
will eventually be poor for sufficiently large n, because n|| X, — u(X,)e||? has a non-
central chi-squared distribution with (k — 1) degrees of freedom and non-centrality
parameter )\, so the event {|| X, — (X, )e|]| < Cn~?} has moderate probability when
A~ C2n*28_ Thus the event {6, = u(X,)e} is eventually probable, even for large \,

and H,(0,) will then perform poorly. Similar remarks apply to empirical choices of

m in the m out of n bootstrap.

In fact, it is another inconsistent alternative bootstrap distribution, H, (T, s), which
seems to come closest to improving the poor performance of H,(X,) near A\ = 0 while
retaining the good performance elsewhere in the parameter space (cf. Table 1.1).
Applying Theorem 2.3 of Beran (1997) again, the random limiting distribution of
H,(T,,s) when the components of 6 are all equal is 7(V'), where V ~ 7(0). Since we
can construct V' by shrinking Z ~ Ng(0,I) towards u(Z)e, we expect that 7(V') will
be closer to 7(0) = m((Z)e) than is 7(Z). This argument breaks down if || Z — u(2)el|

is so small that the shrinkage factor is negative and large in modulus. However, this

is a rare event, which has overall little effect.
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1.5 Appendix

Proof of Proposition 1.3.1.
Recall that 7= "7 ||az||||dZ|| is a sum of B independent and identically distributed
random variables, so it suffices to show the result for ||a*||||d*||. Observe that
(k —3)|In"2(X5 — Xl
Int/2 (X5 — p(X7)e)|
N (k- 32/
12" = w(Z")e + Z — p(Z)e + n/?(6 — p(f)e)||’

la*[[lld"[l =

(1.7)

where Z, Z' are independent standard normal random variables on R¥. The idea of
the proof is to find the set of transformations of § € R* which preserve ||0 — pu(6)e]|,
and show that the distribution of the random variable above is invariant under such

transformations.

For d > 0, we seek to characterise the set By = {# € R* : |0 — u(f)e|]| = d}.
Geometrically, we can consider § — p(f)e as the orthogonal projection of € onto the
(k — 1)-dimensional subspace S = {z € R* : (z,€) = 0}. (Here, and throughout, (-, -)
denotes the Euclidean inner product.) Since § € S is in By if and only if ||0]| = d, it
follows that By is a hyper-cylinder in R*, with axis along e (cf. Figure 1.6). Thus if
0,0" € By, we can write

0' = PO — pB)e) + u(®)e,

where P is a k x k orthogonal matrix mapping S into itself.
Note that if e is an eigenvector of P with eigenvalue 1, and 6 € S, then
(PB,e) = (0, PTe) = (h,e) =0,

so P maps S into itself. Now suppose 6,6 € B;NS. We show that there exists an or-

thogonal matrix with eigenvalue 1 and corresponding eigenvector e which maps 6 to 6'.
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Figure 1.6: Diagram showing the set S and the hyper-cylinder By, which has axis

along e.

Choose an orthogonal change of basis matrix A such that Ae/kY? = (0,0,...,0,1)T.
Then
(AB, Ae) = (0, AT Ae) = (0, e) = 0,

and similarly (A€, Ae) = 0, so we can find a (kK — 1) x (kK — 1) orthogonal matrix B
such that

Af = AF'.
0

0 --- 0 1
Hence, if C' denotes the k x k matrix obtained by extending B as above, then ATCA is

orthogonal and ATCAf = §'. Moreover, e is an eigenvector of ATC A with eigenvalue

1.

We see from (1.7) that adding ¢ e to 6, for some ¢ € R, does not change the distribution
of ||a*|||[d*||. Thus it suffices to show that, for § € B;N.S, the distribution of ||a*||||d*||

is the same when X has distribution Py as when X has distribution Ppy, provided
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that P is orthogonal and Pe = e. Noting that () =0 for # € S, we have

12 _ IPTZ| ‘
1Z' = w(Z)e+ Z — (Z)e +n'2PO||  ||PT (2" — u(Z")e + Z — p(Z)e) + nt/?0)|

Now Z' — pu(Z")e ~ Ni(0,%), where ¥ = I — ee’ /k, and it therefore follows that
PT(Z' — u(Z')e) ~ Ni(0, P'SP). But

1 1 1
PSP = pT (I - EeeT)P = PTP——(P"e)(P"e)" =1 — ec”.
Similarly, PT(Z — u(Z)e) ~ Ni(0,%), and the result follows. O

Proof of Proposition 1.4.1.

Suppose 6y # 0, and let (6,) be any sequence converging to #y. We assume that
6o > 0, as the other case is very similar. From (1.2) we see that H,(z,6y) — ®(x) as
n — oo for all x € R, so the result will follow if we show that H,(z,6,) — ®(z) as

n— oo forall z € R.

Given € > 0 with € < 6y, there exists ng € N such that |6, — 6y| < € for all n > ny.

Moreover, there exists n; € N such that
CD(nl/4 —n'’2(f, — €)) <e¢/2

for all n > n;. Observe from (1.2) that for n > ng, H,(z,0,) and ®(x) agree on the

interval [n'/4 — n'/2(6y — €), 00). Thus, for n > max(ng, ny),

|Hy(z,0,) — ®(2)| < sup |Hy(x,0,) — @(z)]
x<nl/4—n1/2(0y—e)

<28 (nt* — n2(0y — ¢))

<e

Conversely, if §, = 0, then H,(z,0;) — ®(b~'z) as n — oo for all z € R. Suppose
that (6,) is a sequence such that for some non-zero h € R and some sequence (h;,)

converging to h, we can write 8, = n~'/2h,,. Again from (1.2), we see that H,(z,6,)
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and ®{b~!(z + (1 — b)0,n'/?) } agree on the interval (—bn'/* — h,,bn'/* — h,). Since
both are distribution functions, it follows that given § > 0, there exists ng € N such
that

sup|H z,0,) —@{b" (z+ (1 - b)9nn1/2)}| <0

zeR

for all n > ngy. Moreover, since ®(-) is uniformly continuous, there exists n; € N such
that
sup|®@{b " (z + (1 = 0)8,n'/*)} —@{b*(z+ (1 = b)h) }| <

zER

for n > ny. But then, for all n > max(ng,n1),
sup |Hy(z,0,) — @(b~'z)| > sup|®{b~" (z + (1 = b)h) } — ®(b~"'z)| — 26
zeR

(557 -o(Z5 )| -2

since the supremum is attained at x = —(1 — b)h/2. Since § > 0 was arbitrary, we

see that the sequence (7, i) is not locally asymptotically equivariant at 6 =0. O

Proof of Proposition 1.4.2.
Recall the definition of the metric d in (1.3). We deal separately with the cases § =0
and 0 # 0. Let m € M, and m™ = An®. Given € > 0, we have

Po—o{d(Hm(Xn), Ha(0)) > €} = Py_o{d(Hm(X 0)) > €| X, < Cn P}
+ Py o{d( m(Xn), Hy(0)) > € | Xn| > Cn ™7}
< Poco{d(Hm- (X,), Ha(0)) > €} + 28(—Cn'/*7P)

—0
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as n — 0o, by Corollary 2.1(b) of Beran (1997). On the other hand,

Pozo{d(Hm(Xn), Ha(0)) > €} = Poso{d(Hm(Xys), Ha(0)) > €, | X,| < Cn™F}
+ ]Pg?so{d(Hm(Xn),Hn(e)) > €, | X,| > Cn_’g}
< ®(Cnt? P — pl20) — &(—Cn/? P — n'/2g)

+ Pyso{d(Hn(Xy), Ha(0)) > €}

as n — 0o, by Theorem 1.2.6. 4



Chapter 2

Small confidence sets for the mean
of a spherically symmetric

distribution

2.1 Introduction

Suppose that X has a k-dimensional spherically symmetric distribution about 6, with

density f(||z — 6]|?). The usual (1 — «)-level confidence set for 8 is
COX)={eR" : | X —0|* <},

where ¢? satisfies
/ f(||33||2)]1{|\z||2502} dr =1— a.
]Rk

This chapter is concerned with the construction of improved confidence sets for 6

when k£ > 3. Specifically, we consider sets of the form
{0 € R® |75 (X) — 0]1* < o*(II XD},

32
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where
a

TS(X) = (1 - W)+X

is a positive-part Stein estimator, h, = max(h,0) and a > 0. Note that, in con-
trast to Chapter 1, and to simplify the calculations, we consider the version of the
Stein estimator which shrinks the observations towards the origin. We investigate two
methods of construction of the radius function v(-), both involving direct approxima-
tion of the upper a-point of the sampling distribution of ||7d (X) — 6]|%. The first is
an analytic procedure, giving an explicit expression for v(-) which is never larger than
c and which can be considerably smaller. Despite this, subject to minor conditions
on the underlying density, we are able to show that the resulting confidence set domi-
nates C°(X) in terms of coverage probability, provided ||0|| is either less than a given
bound, or sufficiently large. Simulations suggest that dominance may well be attained
for all values of ||6]|, at least for moderate or large k. An alternative to the analytic
procedure is to apply the parametric bootstrap. Here, even greater improvement in
volume over the original confidence set is possible, without the coverage probability

dropping below the nominal level, but at the expense of a less explicit radius function.

Structurally, the confidence sets are of the same form as those of Casella and Hwang
(1983), who consider only the multivariate normal case and who obtain their radius by
modifying the solution to an empirical Bayes problem. However, the sets constructed
in this paper, as well as having a more natural motivation, compare favourably in the
region of the parameter space which is of most interest when applying the positive-

part Stein estimator (c.f. the discussion in Section 2.6).

The importance of finding good confidence sets for the mean of a spherically sym-
metric distribution derives from their applications. For n > k, consider the linear
model

X =A 0 +0 €, (2.1)

nx1 nxk kx1 nx1
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where the design matrix A is assumed to be of full rank £, and where the error vector
€ has a density which is spherically symmetric about the origin. Of course, this model
includes the standard linear model with normally distributed errors as an important
special case. Hwang and Chen (1986) show how the problem of finding a confidence
set, for 6 in the model (2.1) can be reduced to the simpler form studied in this chapter,

provided that the error variance o2 is known.

Zellner (1976) cites several authors who have considered the linear model with spheri-
cally symmetric errors as a model for practical situations, and proposes other scenarios
himself. Properties of the usual least squares estimator, § = (ATA) *ATX | in the
model (2.1), have been studied by Thomas (1970), Zellner (1976) and Box (1953),

amongst others.

Interest in the problem of point estimation of # when X has a multivariate normal
distribution was sparked by the celebrated discovery of Stein (1956), who proved
the existence of estimators which strictly dominate X with respect to the squared
error loss function when k£ > 3. Brandwein and Strawderman (1978) and Brandwein
(1979) extended these results to cover spherically symmetric distributions. It is now
known that the Stein phenomenon applies to a very wide class of distributions and
loss functions — see, for example, Brandwein and Strawderman (1990) or Evans and
Stark (1996). By contrast, progress on the confidence set problem has been much
slower, to the extent that results for confidence sets which strictly dominate the
obvious confidence set in terms of volume are still restricted to the multivariate normal
distribution. As several authors testify, this is not to do with the lesser importance

of the confidence set problem, but rather because of its technical difficulty.

A loss function is rarely stated explicitly in the confidence set problem, though Casella
and Hwang (1983) and Beran (1995) are exceptions in this regard. Instead, different

confidence procedures tend to be compared according to four criteria: shape, cov-
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erage probability, volume and conditional properties. It is the need to ensure good

performance in all of these respects that makes the problem so demanding.

It is difficult to make concrete statements regarding the shape of a reasonable con-
fidence set. At first sight, it is hard to look beyond a sphere when dealing with
a spherically symmetric distribution. However, Berger (1980) gives a heuristic ar-
gument suggesting that this choice may not be so clear-cut. In fact, Faith (1976),
Shinozaki (1989) and Tseng and Brown (1997) have all also proposed non-spherical
confidence regions. There is a consensus that an acceptable confidence set should
be at least connected, though this still seems to be quite a weak requirement. We
suspect that most practitioners would be reluctant to use a confidence set unless its

geometry were fairly well understood.

Fortunately, coverage probability and volume can be treated in a more satisfactory
way, and they are of course intimately linked. According to Joshi (1969), a confidence

set C(X) strictly dominates C°(X) if

(i) Po(C(X) 3 0) > Py(CO(X) 36) for all f € RE;

(ii) Vol(C(z)) < Vol(C°(z)) for all z € R¥,

with strict inequality either in (i) for some 6, or in (ii) for all z in some set with
positive Lebesgue measure. Joshi also pointed out that two confidence sets should
be considered equivalent if their symmetric difference has zero volume. Of course,
the practitioner is more interested in a reduction in volume, provided that the cov-
erage probability does not drop below the nominal level, than in increased coverage

probability at a fixed volume.

Appreciation of the importance of the conditional properties of confidence sets be-

gan with Fisher (1956, 1959). Rules for satisfactory conditional performance were
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formalised by Buehler (1959) and Robinson (1979a,b) in terms of a betting game
between two players. Casella and Hwang (1986) were the first to consider the condi-
tional properties of confidence sets for the mean of a multivariate normal distribution.
Robinson (1979b), Lu and Berger (1989), Robert and Casella (1994) and Wang (2000)
all take another approach, and discuss how to improve the reported confidence state-

ments for the usual confidence set C°(X).

Tseng and Brown (1997) give an excellent review of the earlier literature on the
multivariate normal confidence set problem, which, in addition to those references
already given, includes Stein (1962, 1981) and Hwang and Casella (1982, 1984). Tseng
and Brown themselves propose somewhat egg-shaped sets which have exact coverage
probability and they also find sufficient conditions under which their sets uniformly
dominate C°(X) in terms of volume. Unfortunately, as the authors themselves admit,
these sufficient conditions do not appear to be entirely satisfactory, and it seems
difficult to choose an optimal set from within the class they study. In addition, the
shape of the sets can be quite complicated, although certain results concerning the

geometry are obtained.

Previous work on the spherically symmetric case, such as Ki and Tsui (1985), Hwang
and Chen (1986) and Robert and Casella (1990), has focused on proving that con-
fidence sets of the same radius as C°(X) have higher coverage probability when re-
centred at a positive-part Stein estimator. In this chapter, we recognise that once a
spherical confidence set centred at the positive-part Stein estimator has been decided

upon, the ideal, exact, (1 — «)-level confidence set would be
{0 € R* - || T (X) — 0|* < wa(8)},

where w, () is the upper a-point of the sampling distribution of |74 (X) — 6]|*>. Of
course, this is not a feasible confidence set as the radius depends on the unknown .

The approach taken in Section 2.3 is a direct, analytic estimation of w,(f). Specif-
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ically, we compute the first two non-zero terms in the Taylor series of w,(#) about
the origin, allowing us to write

um@)Zum®)+%wﬂ®HﬂV+0mﬂV)

as ||0]] — 0. Ignoring the o(||0]|?) term, we estimate ||A]|> by an estimator ||| and
obtain the confidence set
O(x) = {9 € B [ 75(X) - 0]” < min(wa (0) + %wg(0)||é||2,c2> L

We are motivated by the knowledge that T4 (X) performs best as an estimator of
6 when ||0]| is small, which suggests that this is the region of the parameter space
where one would expect a spherical confidence set centred at the positive-part Stein
estimator with radius v(||X||) = ¢ to show greatest improvement, in terms of cover-
age probability, over C°(X). Simulations in Hwang and Casella (1982) support this
intuition. More importantly, this suggests that it is for small values of || X || that we
can hope to see the greatest reduction in volume while maintaining at least the same
coverage probability as C°(X). The radius function v(r) we propose attains the value
¢ —aj/c at r = 0, which is rather smaller than the suggestion in Casella and Hwang

(1983).

In Section 2.4, we make use of the simple analytic form of the radius function to prove
some results about the properties of the confidence set. A particularly interesting
feature of the work from a theoretical point of view is that the radius of the analytic
confidence set depends on the density f only through ¢, and a quantity f'(c*)/f(c?),
called the Relative Increasing Rate (RIR) of f at ¢*. Both Hwang and Chen (1986)
and Robert and Casella (1990) have noted the importance of this latter quantity in
establishing dominance of their recentred sets over C°(X). Simulations of the coverage
probabilities are provided for three spherically symmetric densities: the k-variate

normal, the multivariate ¢, and the double exponential. These latter distributions
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were studied in Hwang and Chen (1986). The multivariate ¢ distribution with N

degrees of freedom has density

||x||2>—(N+k)/2

Fllel?) oc (14153

Relative to the normal model, it gives more flexibility to the practitioner, through the
choice of the number of degrees of freedom, but is a close approximation to normality
when the number of degrees of freedom is large (c.f. Zellner, 1976). The double

exponential distribution with parameter d has density
F([l]?) oc e~

and the parameter choice d = (k + 1)'/? ensures each component of X has unit

variance.

As was suggested by the work in Chapter 1, another appealing approach to the
problem for the modern statistician involves a parametric bootstrap procedure. In
the related problem where we have independent random vectors Xi,...,X,, each
having the same spherically symmetric distribution as X, we encounter a similar
inconsistency problem to that in Section 1.4.2. Nevertheless, as was discussed in
Chapter 1, inconsistency does not preclude the bootstrap performing successfully
at finite sample sizes. We investigate the parametric bootstrap confidence set in
Section 2.5, and present various comments and generalisations in Section 2.6. Most

of the proofs and some ancillary results are deferred to Section 2.7.

2.2 Preliminaries

Suppose X is a random variable taking values in a sample space X which is endowed

with a o-algebra. Suppose also that 6 is a parameter of the distribution of X, taking
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values in a parameter space © which is also equipped with a o-algebra. A confidence

procedure C' is a measurable subset of X x ©, and has two associated cross-sections.

A confidence set C(X) for 0 is the X-section:
CX)={0€0:(X,0) €C}.

The abuse of notation in which # is used both for the parameter of interest and the

index in the confidence set is standard and causes no confusion. The 6-section is
CO)={zrecX:(z,0)€C}.

As we will see, the #-section is important for calculations involving conditional and
unconditional coverage probabilities of confidence sets. Moreover, for 6, € O, the
set C'(6y) can be seen as an acceptance region for a hypothesis test of Hy : 6 = 6,.
Birnbaum (1955) treats hypothesis testing as a problem in decision theory with 0 —1
loss, and shows that, under certain conditions on the spherically symmetric density
f, atest of Hy: 0 = 6y against H; : 6 # 6, is admissible if and only if its acceptance
region is convex (provided we regard tests whose acceptance regions differ only on
a set of measure zero as equivalent). As our primary interest is finding confidence
sets rather than in hypothesis testing, we shall follow Casella and Hwang (1983) and
merely require that C(6) should be connected for each § € R*.

2.3 Constructing the analytic confidence set

We say that X has a k-variate spherically symmetric distribution about 6 if X — 6
has the same distribution as P(X — 6) for all £ x k£ orthogonal matrices P. We
assume that £ > 3 and that the distribution, Py, of X has a density with respect to

Lebesgue measure on R*, whose value at a point z € R* may therefore be written as
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f(llz — 0]]?). We begin with a useful result concerning all estimators of # of the form

v(||X||) X, where v : [0,00) — R is a measurable function:
Proposition 2.3.1. For a € (0,1), the upper a-point of the sampling distribution of

IV (IIX])X — 8||*> depends on 0 only through ||6]|-

Proof. The upper a-point, w, satisfies

/Rk Flllz = O1”) Lqalya—oje <wy do =1 — .

If Pis a k x k orthogonal matrix, then

/Rk Fllz = POI) Ly aipa-—poje<uy dz = /Rk FUIP 2 = O1P) Ly oy pra—ope <uw) 42,

from which the result follows, on substituting y = P7x. O

The positive-part Stein estimator

TH(X) = (1 - ﬁ)f{ (2.2)

is of the form (|| X||) X, and we let w,(]|@]|) denote the upper a-point of the sampling
distribution of ||T4 (X) —#]||?. The theorem below is the main theorem of this section,

and is proved in Section 2.7.

Theorem 2.3.2. Suppose that w,(0) > 0, and that the spherically symmetric density

f is twice continuously differentiable. Then
1
wa([|0l]) = wa(0) + Swi (0)16]” + o([101°)

as ||0]] — 0, where wy(0) = (¢ — a/c)? and

,,(0):{1(1 a)(a(k—l) 2ac? 2a? f’(02)>+a(k—1)}.

1
e A 2k

k

+a (?4a)? A+a f(?)
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The condition that w,(0) > 0 is equivalent to requiring that a < Py(||X|* > a),
which in turn is equivalent to ¢ > a; this will rarely be restrictive in practice. For
instance, when f is the standard k-variate normal density, James and Stein (1961)

showed that the ordinary Stein estimator

7509 = (1~ )X

strictly dominates X in the point estimation problem with squared error loss for
a € (O,Q(k — 2)), and that @ = k — 2 is the optimal choice. In this case, the

confidence set

{eR | X -0 <k-2}

has only about 50% coverage probability.

Having computed w,(0) and w!(0), a natural, theoretical confidence set for 6, of
nominal (1 — a)-level coverage, is
1
C(X) = {0 € R* : |15 () = 0] < min (wa (0) + 5L (0)10]%, ¢*) |-

Of course, this confidence set cannot be used in practice, as the radius depends on
the unknown ||0||*>. However, we can estimate ||0||* from the data. There are many
possible ways of doing this: a bootstrap approach would suggest that the square of
the population mean should be estimated by the square of the sample mean, namely
| X ||?; the minimum variance unbiased estimate is || X||* — k, but we do not wish to
allow our estimate to be negative, so (|| X||* — k)4 is another possibility; ||7d (X)|?

is a third option.

Simulations of the coverage probabilities of these confidence sets with a = k — 2 were
performed. These confirmed that estimating ||0]|* by (||X||? — &)+ or ||T4 (X)]||* fails
to yield a (1 — a)-level confidence set. The principal reason for this is that in these

cases, the radius of the confidence set takes the constant value ¢ — a/c for || X||* < a.
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Thus the coverage probability drops by at least Fj (.—q/c)2(a) at ||0]| = ¢ —a/c, where
Fi () is the distribution function of a non-central chi-squared random variable with

k degrees of freedom and non-centrality parameter A.

On the other hand, estimating ||#]|? by || X||? is more successful. This has the addi-
tional advantage of simplicity, and the resulting confidence set is

O(x) = {0 € B ¢ T (X) — 0]]* < min(w, (0) + %wZ(O)HXHQ, ) @y

As noted in Section 2.1, an extremely interesting feature of this confidence set is that
it depends on the density f only through ¢? and the Relative Increasing Rate of f at
c2. Typically, ¢? will be large enough to ensure that the RIR at ¢ is negative, with
very negative values indicating that the distribution has light tails. For the three
distributions mentioned in Section 2.1, namely the standard multivariate normal, the
multivariate ¢t with NV degrees of freedom, and the double exponential with parameter

d, the relative increasing rates at ¢? are

1 N +k .
p— _—— n —_——
2 TN+ea) ° 2¢’

respectively.

Since C°(X) is minimax (Stein, 1962), a necessary condition for the confidence set
C(X) in (2.3) to dominate C°(X) in coverage probability is that w!(0) > 0. Perhaps
surprisingly in view of the results of Hwang and Chen (1986) and Robert and Casella
(1990), this condition corresponds to the RIR at ¢? being less than some positive
bound depending on a,c? and k. One of the themes of these previous works is that a
confidence set of the same radius as C°(X) has uniformly higher coverage probability
when recentred at a positive-part Stein estimator, provided that the RIR at ¢? is
greater than some negative bound. As mentioned in the previous paragraph, however,

this positive bound will almost certainly be unrestrictive in practice.
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The choice of a is more delicate in the spherically symmetric case than the multivariate
normal. For general spherically symmetric distributions, Brandwein (1979) showed

that the ordinary Stein estimator Ts(X) dominates X with respect to squared error

< (0wl

provided Eq(||X]|72) is finite. For unimodal spherically symmetric distributions,

loss for £ > 4 and

Brandwein and Strawderman (1978) proved that the range can be improved to

a € (0 2k }
"k +2)Eo (|| X172 ]
for k > 4, and a € (0,0.375] for k = 3. For k > 4, this upper bound is

20k -2k . 20k=1)(k—2k
k+2 M Tk +2)

for the multivariate ¢ distribution with N degrees of freedom, and the double expo-
nential distribution with parameter d = (k + 1)1/ 2 respectively. These upper bounds

are close to 2(k — 2) for moderate and large k, but no optimal estimator is given.

In their study of confidence sets in spherically symmetric distributions, Hwang and

Chen (1986) find values of ag such that sets of form
{0 e R |T5(X) - 0]* < ¢} (2.4)

have uniformly higher coverage probability than C°(X), for all a € (0,ag). These
values arise from showing the derivative of the coverage probability with respect to a
is non-negative for a € (0, ag|, and are therefore relatively weak. In the special cases
of the multivariate ¢t and double exponential distributions, Hwang and Chen (1986)
succeed in giving somewhat improved bounds on a for domination, although these
are still rather smaller than £ — 2. The same authors also demonstrate that

/()
f'(e)

a<—(k—2)
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is a necessary condition for domination in terms of coverage probability, provided
f'(c®) > 0. Note that this bound is equal to 2(k — 2) in the multivariate normal
case, and will typically be even larger for multivariate ¢ distributions and the double

1/2 Numerical studies and a

exponential distribution with parameter d = (k + 1)
heuristic argument in Hwang and Chen (1986) suggest that this necessary condition

is close to being sufficient.

An immediate corollary of Theorem 5.1 of Hwang and Chen (1986) is that, under
their mild conditions on f,
(k —2)f(c*)

=T o) 25)

gives the greatest coverage probability for large ||f|| for confidence sets of the form
(2.4). Moreover, their theorem also shows that this coverage probability is greater
than 1 — « for sufficiently large ||@||. Since (2.4) is the same as our analytic confidence
set C(X) in (2.3) for sufficiently large || X|| provided that w!(0) > 0, it follows that

C(X) strictly dominates C°(X) in coverage probability for sufficiently large ||0]].

As the value of a in (2.5) above is close to k — 2 in the cases considered here, we take
a = k — 2 in our numerical studies of the confidence set (2.3), which are presented in
Figures 2.1, 2.2 and 2.3. This has the additional advantage of simplifying comparison
between different distributions. In each figure, 400,000 Monte-Carlo repetitions were
used to approximate the coverage probability at each value of 6, giving a simulation

error standard deviation of about 0.0005 at each point.

It appears that the confidence set (2.3) dominates C°(X) in terms of coverage prob-
ability for all of the distributions considered, apart from possibly in a narrow middle
range of values of ||f|| for small values of k. These exceptions are similar to those
found in Casella and Hwang (1983) and the problems are sufficiently small that they

can be ignored in most practical contexts. In view of the point estimation results
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X o 1 2 3 4 5 6 8 10 20
k=5 064 068 079 098 1.13 1.07 1.05 1.03 1.02 1.00
k=10|043 048 062 0.85 1.18 1.21 1.3 1.07 1.04 1.01

Table 2.1: Ratio of the radii of the confidence set (2.3) to the corresponding ones of

Casella and Hwang (1983) in the k-variate normal case and with o = 0.05.

g | o 1 2 3 4 5 6
k=5 099 097 087 058 024 0.05 0.01
k=10|097 095 0.83 058 0.26 0.06 0.01

Table 2.2: Estimates of the probability that the radius of the confidence set (2.3) is

less than ¢ in the k-variate normal case and with o = 0.05.

of Brandwein and Strawderman (1978) mentioned above, the choice of a is almost
certainly too large for these small values of k, although we do not pursue this matter

further here.

On the other hand, for all values of &, the radii show a great improvement over those
of C%(X), especially for small ||X||, as one would expect from their construction.
In fact, in the k-variate normal case, the radii tend to be considerably smaller than
those of Casella and Hwang (1983), with which they are directly comparable, for
small values of || X||, at the expense of being slightly larger for larger values of || X||
(c.f. Table 2.1). The ratio of the radii of (2.3) and C°(X) in the best case, that
is when ||X]| = 0, is 1 — a/c?. Thus, for fixed a, the maximum improvement in
volume is greater for distributions with lighter tails. Table 2.2 gives estimates of the
probability that the radius of the confidence set (2.3) is less than ¢, which, of course,

is a decreasing function of ||6]|.
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2.4 Properties of the analytic confidence set

We have already discussed the need for the RIR of f at ¢®> to be negative in order
for the confidence sets C(X) in (2.3) to have adequate coverage probability. In this
section we will see that the sets have several desirable properties provided also that
the RIR at ¢? is not too negative. These results are more in line with the works of
Hwang and Chen (1986) and Robert and Casella (1990), where dominance occurs
provided the tails of the distribution are heavy enough. Throughout this section, we
assume k > 3, and that f is twice continuously differentiable. Proofs are deferred to
Section 2.7. We start with some elementary bounds, which give simple yet general

conditions under which Proposition 2.4.2 and Lemma 2.4.3 hold.

Lemma 2.4.1. (i) Leta € (0,k—1] and o € (0, Py(||X||? > a)), and suppose that
()] f(c®) > —1/2. Then
1 n
— < —
(it) Let a >0 and o € (0,Pq(||X]|? > a)), and suppose that f'(c?)/f(c*) < 0. Then

1
_wll (0) 2

a(k —1)
2 ¢ .

2k

The next three results concern the f-section associated with the confidence set (2.3),

given by

0(0) = {z € B+ [T (2) — 0] < min (w (0) + %wg(0)||x||2,cz) 3

The first is an extension of Theorem A1l of Casella and Hwang (1983).

Proposition 2.4.2. Let a > 0, and suppose that 0 < w,(0)/2 < 1. Then C(0) is

connected, for all € RF.
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In fact, C'(f) can possess a stronger property when ||6|| lies in a range which is of

particular importance to us (c.f. Section 2.6).

Lemma 2.4.3. Let a > 0, and suppose that 0 < w2(0)/2 < 1. For ||0|| < c—a/c, if
z € C(0), then so is tx, for all t € [0,1].

In order to present the main theorem of this section, we let
C'0)={z e R : ||z — 0> < %}
denote the #-section corresponding to the usual confidence set C°(X).

Theorem 2.4.4. Let a € (0,k — 1], « € (0, Po(||X|*> > a)) and also suppose that
—1/2< f'(¢®)/f(¢*) < 0. If

c—a

19]]? < min (wa(O), W{QwZ(O)c‘L (- a)a}),

then C°(0) C C(0).

The upper bound on range of values of ||f|| for which the conclusion of the theorem
holds is the best possible, and the theorem is clearly non-vacuous since it holds for
|0|| = 0. In fact, the upper bound corresponds to a point just before the sharp drop
in coverage probability seen in Figures 2.1, 2.2 and 2.3. For instance, when k£ = 5,

« = 0.05 and f is the k-variate normal density, we have C°(#) C C () for ||| < 2.7.

An obvious corollary of this theorem is that C(X) dominates C°(X) in terms of
coverage probability for the particular range of values of ||f|| above. Moreover, it also

has implications for the conditional properties of C(X), which we now describe.
When making an assertion of the form

Py(C(X)230)=1—q,
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the statistician is averaging (integrating) over the sample space. However, the con-
fidence set must be specified on the basis of observing X = x, say. The statistician
should, therefore, question whether the probability assertion is still valid in the light
of the data. For instance, such considerations provide a strong criticism of confidence
sets centred at the ordinary, as opposed to positive-part, Stein estimator. For, if ||z]|
were very small, the confidence set would presumably be well away from the origin,
and the statistician would be unable to justify the probability statement in the light
of the data, whatever the true value of . Put another way, a hypothetical opponent
of the statistician could specify a very small sphere A centred at the origin, staking
an amount « to win 1 — a that C(x) does not contain 6 if z € A, and not making a
bet otherwise. Under infinitely many hypothetical repetitions of the experiment with

a referee who knows the true value of @, the opponent would win almost surely.

More formally, Buehler (1959) and Robinson (1979a) introduced various criteria for
judging the conditional performance of a confidence set. In our situation, if A is
a subset of R* of positive Lebesgue measure, Robinson calls A a negatively biased

relevant subset for C(X) if there exists € > 0 such that
Py(C(X)20| X €A <1l—-a—c¢

for all # € R¥, and advocates that one should not use a confidence set if there exists

a negatively biased relevant subset.

Another simple corollary of Theorem 2.4.4 is that for any subset A of R* of positive

Lebesgue measure, we have
Po(C(X) 20| X € A) >Pp(C(X) 20| X € A) (2.6)

for ||0|| in the given range. Casella and Hwang (1986) show that for any u > 0, there
exists 6 = 6(u) > 0 such that

Po(CO(X) 30| IX[?<u)>1—a
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for all ||0]|> < §, and a very similar argument shows that, for any £ € R¥ and u > 0,

there exists § = d(u) > 0 such that
Py(CO(X) 20| X — ¢ <u)>1—a (2.7)

for all ||§ — £||? < §. Combining (2.6) and (2.7), we see that there are no negatively
biased relevant spheres centred at & for C'(X), provided

e < min((wa(0) 55t {2000 - (¢ - aja} ).

2w (0)ct

2.5 The bootstrap confidence set

Here we investigate another way of approximating the ideal confidence set
{0 € R : [T (X) — 0]” < wa(ll6]])}- (2.8)

In a parametric bootstrap procedure, we estimate 6 by 6, say, and approximate (2.8)
by
{0 e R - |75 (X) = 0|” < wi(lI6])}, (2.9)

where w*(||0])) = inf{z € R : P,(||T§(X*) = 6||*> < z) > 1 —a}. Here, the conditional
density of X* given X is f(z — é), and P, denotes the probability under this con-
ditional distribution. In practice, w’(]|]|) is still unavailable explicitly, but we can
approximate it to any required degree of accuracy (in probability) by Monte-Carlo
simulation. The following algorithm, which first approximates the radius of the boot-
strap confidence set at a fixed number of equally spaced points, and then uses linear
interpolation to find the radius for the observed value of || X]||, greatly improves the

computational efficiency:

(i) Choose 71 max € (0,00) and M; € N, set Tmax = ("1 max; 0, --.,0) and then set
ry= jrmax/M1 for j=0,1,.. .,Ml.
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(ii) Choose a large integer B; such that (B; + 1)(1 — «) is an integer.
(iii) For each j =0,1,..., M; repeat steps (iv) to (vi).

(iv) Generate independent and identically distributed random vectors X7,..., X5

with density f(||z — 7).
(v) Compute U; = ||Tg (X}) —r]]? for i =1,..., By.

(vi) Estimate wq(||7;]]) by w}(||7;]]) = Uqsi+1)0-a)), i-e. the ((By + 1)(1 — a))th

order statistic of Uy, ..., Ug,.

(vii) Choose 01 max € (0,00) and My € N, set Omax = (61,max, 0, ...,0) and then set
0; = j0max/Ms for j =0,1,..., My.

(viii) Choose a large integer B, and an estimator ||| = [|0(X)]| of ||6]|.
(ix) For each j =0,1,..., M, repeat steps (x) to (xiii).

(x) Generate independent and identically distributed random vectors Xi,..., Xp

with density f(||z — 6;]|?).

2

(xi) Compute V; = ||Td(X;) — 6;]|> and ||6;]| = ||0(X;)|| fori =1,..., Bs.

(xii) For each i = 1,...,B,, find an integer s such that r, < ||6;]] < rss; and
approximate w (]|0;]]) by wz(||fi]]), which is obtained by linear interpolation

between w(rs) and w (rs41).

. N _ B
(xiii) Approximate Py, (|| T4 (X) — 0,]1> < wi(|16;])) by By Y. Ly cuns (113
It is possible to generate random vectors from many spherically symmetric distribu-
tions as

X = RU + 6,
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where R has the same density as || X ||, and U is independent of R and has a uniform
distribution on the unit sphere S = {z € R¥ : ||z|| = 1}. It follows that R has density
proportional to r7*~!f(r?) (Fang, Kotz and Ng, 1989, p. 35), while U has the same
distribution as Y/||Y||, where Y ~ N (0, I). For the double exponential distribution
with parameter d, we have R ~ I'(k,d). We can simulate random vectors from a
multivariate ¢ distribution with N degrees of freedom as follows: generate Z ~ n/x?,

and, conditional on Z, generate X ~ Ny (0, ZI) (Zellner, 1976).

The results of simulating the coverage probabilities of the bootstrap confidence sets
are given in Figures 2.4, 2.5 and 2.6, for the same distributions that were considered

in Figures 2.1, 2.2 and 2.3, and using ||| = || X]|.

The coverage probabilities and radii exhibit many of the same features as those of the
analytic confidence set (2.3) for small ||f|| and || X]|| respectively. However, we find
that it is possible to achieve an even smaller radius for larger || X|| by bootstrapping,
while retaining coverage probability at the nominal level. Of course, it is much harder
to prove any results concerning the properties of the bootstrap confidence set, such as
those presented in Section 2.4 for the analytic confidence set, as the radius is given in
a less explicit form. Nevertheless, Beran (1995) has studied the large k asymptotics
of similar bootstrap confidence sets centred at the positive-part Stein estimator in
the multivariate normal case, using a different approach involving a geometrical risk
criterion as well as coverage probability. Beran obtains the radii for his confidence sets
in a different way, however, and his simulation results suggest greater undercoverage

problems, which persist for larger values of k.
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2.5.1 The unknown scale factor case

Recall the linear model (2.1) introduced in Section 2.1:

X =A4 0 +0 €

nx1 nxk kx1 nxl

Throughout this chapter, we have assumed that the scale factor, o, is known, so
that without loss of generality we were able to take 0 = 1. In practice, however,
o? is usually unknown, but can be estimated from the data. The canonical model is
where Z = (X7, YT)T has a (k + v)-dimensional spherically symmetric density with
location parameter # = (7, 07)T and covariance matrix 02l ,. Here, I}, denotes
the (k + v) x (k + v) identity matrix, and, despite the increased dimension, we write
the density of Z as f,2(||z — €'||)?. The appropriate version of the positive-part Stein
estimator in this set-up is

allY|*/v
+

In the multivariate normal case,

Rals

14

2
v

0.2
~ —
14

and is independent of X; James and Stein (1961) showed that a = v(k—2)/(v+2) is
the optimal choice with respect to quadratic loss for a point estimate of #. Analytic
theory for confidence sets is very difficult when o? is unknown (though we expect a

2

good approximation to the known-o* case in the limit as ¥ — o). Bootstrapping,

however, remains a viable possibility, and in Table 2.3 we present some coverage

probabilities of the confidence set
{0 € R TE(XY) — 012 < wi(1XIL VID ), (2.10)

where
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1011/o
0 1 2 3 4 8 12 16 20

100 | 0.996 0.996 0.994 0974 0.944 0.938 0.936 0.937 0.937
v 1000 | 0.998 0.998 0.997 0.974 0.953 0.949 0.948 0.950 0.948
10000 | 0.999 0.998 0.997 0.975 0.953 0.950 0.950 0.950 0.950

Table 2.3: Coverage probabilities of the confidence set (2.10) in the k-variate normal
case. Parameter values: o = 0.05, a = v(k — 2)/(v + 2), k = 10.

wa(IX[L1Y]) = inf{z € R: P.(IT (X", Y") - X|” <) > 1 —a}.

Here, the conditional density of (X* Y*) given (X,Y) is fjyi2/(||z — X'||), where
X' = (XT,00)T and P, denotes the corresponding probability measure. The usual

confidence set in this situation is
k 2 k 2
{9 ER" X — 0l < |V Fulk, y)}, (2.11)

where Fy(k,v) is the upper a-point of an F-distribution with k& and v degrees of
freedom. This is an exact (1—a)-level confidence set, since it follows from Theorem 11

of Kelker (1970) that
|X — O|*/%
IY1?/v

has an F-distribution with £ and v degrees of freedom, regardless of the spherically
symmetric distribution. Table 2.4 gives the ratios of the radii of (2.10) to the corre-
sponding radii of (2.11). We find that it is possible to achieve similar gains in volume
to those observed in Section 2.5 for the known covariance matrix case, but that v

needs to be very large before undercoverage ceases to be a problem.
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0

1

2

X

3

4

6

10

20

1.2
14

0.57
0.57
0.57
0.57
0.57

0.61
0.60
0.60
0.59
0.59

0.69
0.67
0.66
0.65
0.63

0.82
0.77
0.72
0.70
0.69

0.87
0.85
0.83
0.80
0.77

0.93
0.91
0.90
0.88
0.87

0.96
0.95
0.94
0.94
0.94

0.97
0.97
0.97
0.97
0.96

60

Table 2.4: The ratio of the radii of the confidence set (2.10) to the corresponding
radii of (2.11) in the k-variate normal case. Parameter values: o = 0.05, £k = 10,

a=v(k—2)/(v+2), v=100.

2.6 Comments and generalisations

We have seen that the confidence sets (2.3), (2.9) and (2.10) successfully harness the
power of the positive-part Stein estimator to produce confidence sets which can be
much smaller than the usual set C°(X), while still maintaining adequate coverage
probability. Unfortunately, we were unable to provide a proof that the confidence set

(2.3) strictly dominates C°(X) in terms of coverage probability for sufficiently large
k.

The assumption of a spherically symmetric density may be generalised as follows. If
Y = p+ BTX, where p € R™, B is a k x m matrix with BTB = ¥ having rank
k and X has a k-dimensional spherically symmetric density f about the origin, we
say Y has an m-dimensional elliptically symmetric distribution with parameters u
and X. If m = k, it follows from Theorem 2.16 of Fang, Kotz and Ng (1989) that

—-1/2

Y~ 1/2Y has spherically symmetric density f about § = ¥%/2y, so here the problem

reduces to the spherically symmetric case provided ¥ is known. In particular, if
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Y ~ Ni(p,0%Y), where o is an unknown scale factor and ¥ is a k x k known, positive
definite matrix, then the transformed vector X = X ~/2Y satisfies X ~ Ny (0, 0?I}),
where § = ¥~'/2;. As an application, consider a one-way analysis of variance with
k cells and n; observations in cell 4, for + = 1,..., k. If Y denotes the vector of cell

means, then ¥ is a diagonal matrix with diagonal entries ny', ..., n; "

One extension which is especially important for our work is the choice of origin for the
Stein estimator. Both (2.3) and (2.9) only represent a significant improvement over
CY(X) if 0 is reasonably near the origin. If a prior estimate of 0, say 6y, is available,

then one should redefine the positive-part Stein estimator as

a
TS(X) =6 + (1 - 7”)(_00“2) (X — 6y),
_|_

and replace the radius function v2(||X||) by v?(||X — 6||). The region of greatest
improvement is then near €y, so our confidence sets will perform particularly well if

the prior guess is nearly correct.

2.7 Appendix

In this section we give the proofs omitted in the main text. To aid exposition,
we return to the more general estimators of 6 of the form (||X||)X, which were
introduced in Section 2.3. Throughout, we assume -y satisfies the following conditions:

(i) y(r) > 0 for all r € [0, c0);

(ii) 7 is non-decreasing, and there exists 7o € [0,00) such that (r) is strictly

increasing for r > ry;

(iii) y(r) is twice continuously differentiable for r > r.
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Observe that the positive-part Stein estimator defined in (2.2) satisfies these condi-
tions with 7y = @'/2, while the ordinary Stein estimator does not. We continue to
write w (]|0]|) for the upper a-point of the sampling distribution of || (|| X)X — 8]/
The next two lemmas are needed to compute the first two non-zero terms in the

Taylor series of w,(0) in Lemma 2.7.3.

Suppose {F(z,\) : A € A C R} is a non-empty family of distribution functions on
the real line. We think of F(z, \) as Pp(||7d (X) — 0]|*> < z) when ||f]] = X\. We say
that F'(x,\) is strictly increasing in z at (zo,A) if F(z,\) < F(xo, ) for all x < zq
and F'(z,\) > F(xzo, A) for all z > x,.

Lemma 2.7.1. Let a € (0,1) and wo(A) =inf{z € R: F(z,\) > 1—a}. Fiz Ay € A

and let xy = wqa(Ag)-

(i) Suppose that F(x,\) is continuous in X\ at (x, \o) for all x in some neighbourhood
of xo, and that F(x,\o) is strictly increasing in x at (xg, No). Then wq(N) is

continuous in \ at Ag.

(1i) Suppose that both of the partial derivatives OF/0x and OF/O\ exist in some
neighbourhood of (xg,Ao) and are (jointly) continuous at (zo,Ao), and that
9F (29, Ao) > 0. Then wq(A) is differentiable with respect to A at Ao, and this
deriwative is given by

_0_1"“(3507 o)

wh(Ao) = 52

?9—1;(530, /\0) '

(iii) Suppose that, for some n > 2, all of the nth order partial derivatives of F
exist in some neighbourhood of (xg, Xo) and are continuous at (xg, No), and that

9E (29, o) > 0. Then wy(A) is n times differentiable with respect to A at Ao.

Proof. Choose § > 0 such that F'(z, \) is continuous in A at (z, Ag), for all z € R such
that [z — x| < J. Let €, = F(zg+ 6, X)) — (1 — ), let e = (1 — o) — F(zg — 9, o),
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and set € = min(eq, €5), so that € > 0.

Now choose h = h(e) > 0 such that both
|F(zo+0,\) — F(xg+ 6, )| <€/2 and |F(xg—06,\) — F(xo—09,)| <¢€/2
for all A € A such that |A — A\g| < h. For such ), we have
F(zg—6,\) < F(xg—0,X) + |F(xg — 0,\) — F(zg — 6, \o)|
<l-—a—e€+€/2
<1-a—eo,
and similarly F(zg + d,A) > 1 — a + €/2. Hence wy(Ng) — 6 < wa(A) < wy(Xg) +9

for all A € A such that |A — A\¢| < h, which proves (7).

To prove (i7), we first show that there exists a constant C' > 0 such that

Wa(A) — wa(Ao)
A=)
for all A € A with |\ — )¢/ sufficiently small. We choose

<C

3% (20, M)

9% (20, Ao)

Given € > 0, choose h = h(e) > 0 such that both

oF oF
o1 (@A) = 51 (@0, )| <
for all = € [zg, 2o + Ch] and |\ — X\g| < h, and

oF oF €
Bz B A0) = 5o (30, M) < 5

for all = € [zg, 9 + Ch]. Then for all A € A with |\ — A\g| < h, we have

C= + 1.

l\’)lm

F(.’Eo +C|)\— /\0|,)\)
€

> F(zg + C|A— Xol, Ao) — [A = /\0|(‘?9)\ (xo,)\o)‘ 5)

>1—a+C|x— AO'(ZIZ(%’)‘O) 260) |A — Ao‘(‘gf(l'o,)\o)‘ %)

>1—a—eA— A



CHAPTER 2. SMALL CONFIDENCE SETS 64

But € > 0 was arbitrary, so w,(A) < we(Xo)+C|A—Xo| forall A € A with [A—Xg| < h.
Similarly, by reducing h > 0 if necessary, we may assume wq () > wq(Ag) — C|A — Ag|
for all A € A with |A — X\g| < h.

Since 9E(zq,Ao) > 0 and F/dz and OF /O are continuous at (z, Ag), for [A — A
sufficiently small there is a unique solution in z to the equation F'(z,\) = 1 — . This

solution satisfies

oF oF
l—a= F(xo,)\o) + %(.@0,)\0)(.% —.T()) + a—/\(.To,)\o)()\ — )\0) +0(|.73 —.T0| + |)\ - )\0|)

as ¢ — xo and A — )g. Thus, given € > 0, there exists h = h(e) > 0 such that for
A € A with |A — Ag| < h, we have

:U—a:0+ g—f(xo,)\o) < €(|lz — xo| + |X = Xol) < (C+1)e
A=Xo ' L(z,ho)| T L(wo, M)A =) — L(wo, )’
0 Oz (330, 0) o (330, 0)( 0) o1 (ﬂﬁo, 0)

which proves (i).

Part (i77) follows immediately from (4¢) by induction and using the chain and quotient

rules. O

We now specialise to the case where
wa(N) = w([|0]]) = inf{z € R: Py(|ly(|IX[)X = AII” <z) >1-a}.

Lemma 2.7.2. Suppose that the spherically symmetric density, f, is twice continu-
ously differentiable. If w,(0) > 0, then wy(||0]|) is twice differentiable with respect to

10| in a neighbourhood of the origin.

Proof. The proof involves checking the conditions of Lemma 2.7.1. We will simply
show that

0
5PAMNXWX—MVSw >0,
x (wa(0),0)
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from which it will be seen that the other conditions follow similarly. For ||0|? < z,

we can write

Po([ly(IXINX = 0]|* < 2) = /Rk FUIE = O1P) Lgpyqeye-oy <o) dt.

The proof of Proposition 2.3.1 shows that we may assume 6 = (|||],0,...,0). Fol-
lowing Hwang and Casella (1982), we note that the integrand in the expression above
depends on t only through r = ||¢|| and the angle 3 between ¢ and 6, defined for ¢ # 0

and ||0|| > 0 by
't _ t
onell el
where ¢ = (t1,...,%). The angle § may be defined arbitrarily for ¢ = 0 or ||#|| = 0.

cos g =

We therefore transform to these spherical coordinates, with, say y3 = t3, ..., yx = tg-
The Jacobian determinant of the inverse transformation is |J| = (r?sin ) /t,, and we

may integrate out ys, ...,y to obtain, for ||6]|?> < =,

w pr(6,]19]])
Po(I(1XINX —6]° < 2) = K / / 1 sink 2 B £ (r2—2r ]| cos B+ |0]1%) drds,
0 0
(2.12)

where
27.‘.(161*1)/2

K= 27rjjj</oﬂsin”tdt> = {1

and 7, = r,(8,||0]]) is the unique positive solution to
v (r)r® — 2||0]| cos By(r)r + [|6||* — = = 0.

The uniqueness of the solution of the above equation is guaranteed by the condition
that ||0]|> < z, which ensures that the other root of the quadratic in v(r)r is negative.
Thus

Y(r )y =16] cos 8+ (x — [16]|*sin® )/ > 0,

1/2

so in particular 7, > a'/?. To simplify notation, we write (2.12) as

) m prri(B,10]])
Py((IXINX — 0]? < 2) = K / / h(r, B, |161]) drdp.
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Since the integrand in the above expression is continuous, and since r is differentiable

with respect to z, we find for (z, ||6]|) in a neighbourhood of (w4 (0),0) that

P " h(re. B0 1
2 (X)X ol < 2y = i [ Mo 1) 5 05
z o Y(re) +9(re)rs 2(z — ||6]|? sin® B)

(2.13)
Evaluating (2.13) at (z,|0]]) = (wa(0),0), and observing that r(3,0) does not
depend on f3, gives

0
—P XINX —96|* <
—Po(ln(IX )X - 6l < )

I( k—1 2 T
_ Ty f(7'+) 7 / sinf 2 BdS
wa(@,0)  2(Y(ry) + 7 (ry)ry)wd “(0) Jo

> 0.

We are now in a position to compute the required terms in the Taylor series of w,(0).

Lemma 2.7.3. Suppose that wa(0) > 0 and that f is twice continuously differentiable.
Then w!,(0) =0, and

k f'(r) 1/2

n ! 2T+
2UA(0) = i 2O =200) + 7 0 )r )+ 4rs

Y(re) + ' (re)rs }
(k= Duws”©) wd*0)@/(r) +9"(ro)rs)
re (V) + 7 (r)rs) (Y(r) + 7 (r)rs)”

where 4 is the unique positive solution to v(r)r = wa/*(0).

Proof. Transforming to spherical polar coordinates as in the proof of Lemma 2.7.2

gives, for ||0]| < wa’*(]|0])),

7w rr+(5,161)
K / / W(r, B, 6]) drdf = 1 — a, (2.15)
0 0
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where ry = r(85,]|0||) satisfies
Y )ry = (10 cos B+ (wa(ll6]) — 6] sin® B)"%,

and h(r, §,|0]|) is the integrand in (2.12). By Lemma 2.7.2, for sufficiently small |||,

we may differentiate (2.15) with respect to ||@]| to obtain

w pry(B,101])
-2/ / (r cos B — ||6]))r*~" sin®~2 8 ' (12—2[|0l|r cos 8 + ||0]]2) drdB
0 0

4 87'+
h 0 dB =0
+/0' (7”+,ﬁ,|| ||)a”0|| ﬁ ’
(2.16)
where
! _ 102
(2(7) + 7)) g = cos 4~ e D= 210100 (2.17)

: 172"
2(wa([1011) — [10]]* sin® B)
Evaluating (2.16) at ||0|| = 0 gives

PN A A k=2 (2
2/0/0 r*cos Bsin®~* B f'(r?) drdp

A F(r?) T hla { w, (0) } _
7(T+)+7’(T+)7‘+/o S Sl ey

where we have used the fact that . = r,(3,0), which is the positive solution to

y(r)r = wé/Q(O), does not depend on 3. But sin®~2 3 is symmetric about 3 = 7/2,

while cos § is anti-symmetric about 8 = 7/2, so wl,(0) = 0.
Differentiating again, we find

T rr+(B,1101])
2/ / P51 sink=2 8 (2 — 2||6|lr cos 8 + ||6|]2) drd3

o Jo
™ rr+(B191)
+ 4/ / (rcos B — (1612~ sin=2 8 f(+* — 2]|0||r cos § + |0I%) drd
o Jo

8T+

—4/ r.cos B — ||0]|)r* tsin® 28
0 ( + || ”) + 6”9”

™( 9, on [ or, \?
O se +—< ) }dﬁ:O. 218
/o {anew (s 810D+ 3\ p (2.18)

f'(r* —2|6]r cos B+ 110]]) dB
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We obtain 8?7, /d||0]|? by differentiating (2.17):

827"+

V) 47 (G )+ ) 47 r) g

- 2(w!(]16]]) — 2sin® B) (wa(|0]]) — ||6]|>sin? 8) — (w!,(/|6]]) — 2/16]| sin® B)Z
4(wa(||6]]) — 16]1? sin2 B)*/*

)

and also note that

oh o .k
o = (k= 1)r*2sin* =2 8 f(r2 — 2|6||ry cos B + |16]%)

+2(ry — ||0]] cos B)rk~ sin* = B f'(r2 — 2|07+ cos B + ||0]]%).
We are now in a position to evaluate (2.18) at ||@]| = 0 to obtain
™ T4+
0= 2/ / {27"(r*)r” cos® B+ f'(r*) }r* " sin* > Bdrdp
o Jo

47'511“(7&) KT P
— d
) +v'(r+>r+/o cos” pein™ 5

k—1 2 s 22 ! " 2
ri f(ry) g o wi(0)=2sin* B (29'(r) +7"(r4)ry) cos® B p
V(re )+ (r+)rs /o o ﬁ{ 2ws/*(0) (Y(ry) + ' (r)ry)? } g
k—2 g
"y 2 pr 2 k— 2 2 83ginf23d
00 +7](r+)r+)2{2r+f (r3) + ( 1)f(r+)}/0 cos? Bsin*? Bdp

EJ1+J2+J3+J4,

say. To evaluate J;, we convert temporarily back to Cartesian coordinates. Recalling

that in the spherical transformation, ¢; = r cos 3, we have

5=z [ e+ raePy = [ Lo B« re)a

s T4 ; 2 , o 2/
=2 [ oo e s it pards = e

where [}, = fow sin® Bdj, and the last equality follows on integrating the first term by
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parts. Moreover,

4rk f1(r?)
Jy = — 4 Io—1
R S I )

7o — ri T f(r}) {w’;(O)Ik_z L (20 ")) Tk — L) }
Al )y 2wi/?(0)  wi/*(0) (v(ry) + 7’(r+)r+)2
o=t (202 £/ + (k= 1) (2)) Lz — L),

2
(v(ry) + ' (ry)ry)
Putting this all together, and noting that Ij/I; o = (k — 1)/k, gives the required

expression after some simplification. O

The expression in Lemma 2.7.3 is still rather complicated. As we saw in the statement
of Theorem 2.3.2, however, the terms simplify considerably when we restrict attention

to the positive-part Stein estimator.

Proof of Theorem 2.3.2.
For 7 > a'/?, we have y(r) + /'(r)r = (1 + a/r?) and 2v'(r) + "(r)r = —2a/r>.
Moreover, if Z has density f, then

L—a=P(|Z]" <) =P (IZDIZ]I* < 7*(c)c”),

50 wa(0) = (c — a/c)?. Lastly, ry = r(83,0) satisfies r,y(ry) = wé/Q(O), so that

1/2

ry = ¢ > a'/*. Substituting these expressions into (2.14) gives the result. O

2.7.1 Proofs of the properties of the analytic confidence set

Proof of Lemma 2.4.1.

To prove (i), recall from Theorem 2.3.2 that

Tk

c2

1 "0) = 1 (1 a) (a(k - 1) 2ac? 20’ fI(CQ)) + a(k —1) (2.19)

9 Ve c+a  (2+a)? A+a f(P) %k
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and that the condition on o means that ¢ > a. Hence, for a € (0,k — 1],

i< - (g <

To prove (ii), we note that

iz (- 8)Carae) a2

g

The next two results are slightly more general than the versions stated in Section 2.4.
They specialise to cover Proposition 2.4.2 and Lemma 2.4.3 respectively, on replacing

v()|lz]|)x by T4 (z), and v*(r) by its expression in (2.3).

Proposition 2.7.4. Let § € R*, a > 0 and y(r) = (1 — a/r?).. Suppose that
v :[0,00) = [0,00) is a non-decreasing function with the property that there exists

r* € (a'/?, 00] such that v*(r) is twice differentiable for r € (a'/?,7**) with

d*v? <ot 6_cL2 N 4a|0)|
dr? rt r3

for all v € (a'/2,7*), and v2(r) is constant for r > r**. Then the set
C(0) = {z € R" : |y(ll=])z — 0l < v*(||=[)}
is connected. In particular, if d®v?/dr® < 2 for all r € (a'/?,7**), then C(0) is

connected for every € RF.

Proof. By Theorem 3.1 of Casella and Hwang (1983), the set C(f) is connected if and
only if the set

S(161) = {r € [0,00) : (v(r)r = [181])" < v*(r)}
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is an interval. For ||6|| > 0, let r*(||#||) denote the positive root of v(r)r = ||#|| and
define 7*(0) = a'/2. Let,

Sy = Si([16]l) = {r € [0,00) : (v(r)r = 1I6]})" < v*(r), r < (101}
Sy = S>(101) = {r € [0,00) : (v(r)r = [161])* < v(r), v > r*(l6])}-

Since r*(||0]|) € S1 N Sy, it follows that S(||€]|) = S1 U Sy is an interval if and only if

both S; and Sy are intervals.

For r < r*(||0]]), the function f(r) = (y(r)r —||0||)? — v*(r) is decreasing in r, which
proves that S is an interval. If r € (r*(||0]|),r**), we have

dv?(r)

F'(r) =2(y(r) +/(r)r) (v (r)r = 116]]) = — =

so that

d*v*(r)
dr?

() =2(3(r) + 7 (r)r)” +2(29'(r) + " (r)r) (v(r)r = [6]]) —

a\? 4a a d*v*(r)
=2(1+55) - (=T -00) -5
6a?  4alld||  d*v3(r)
=2+ Tt s T e

> 0.

Since f(r*(]|0]])) < 0, there can therefore be at most one root to the equation f(r) =0
for r € (r*(]|0]|),r**). For r > r**, we have that f(r) is increasing, and this proves

that Sy is an interval, as required. O

Lemma 2.7.5. Assume the hypotheses of Proposition 2.7.4, including the requirement
that d*v?/dr? < 2 for all v € (a'/?,7**), and also assume that dv?/dr < 2r for all
r € (al/?, 7). For ||0]| < v(0), if x € C(0), then so is tz, for all t € [0,1].
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Proof. Observe that z € C(0) if and only if f(r) < 0, where

F(r) =72(r)r* = 2[0lly(r)r cos B + [I6]]* — v*(r)

= ((r)r — [|6] cos B)” + [|6]]* sin” B — v*(r),

where r = ||z||, and where, for 7 > 0 and ||#|| > 0, we have cos 3 = 270/(||z]|||0]|)-
The angle 8 may be defined arbitrarily for ||z|| = 0 or ||@|| = 0. Since f(0) < 0
by hypothesis, it suffices to show that f has at most one non-negative root for each
B € [0,7]. Let r*(]|@]|) denote the positive root of v(r)r = ||0||cos S if it exists,
and otherwise set r*(||d||) = a'/2. Then f(r) is decreasing for r < r*(||d]|) and if

r € (r*(||0]]),**), we have

d*v*(r)  6a®  4al|0]| cos B

" .
f(r)_Q_W+T—4+ 7‘3
6a®  4alld|| cos
et dalo]cos

r r

Thus f is strictly convex if g € [0,7/2], or if ||f]| = 0, or if 8 € (7/2,7], ||6] > 0
and 7 < —3a/(2||0|| cos 8). In the remaining case where 8 € (7/2,x], ||#]] > 0 and
r > —3a/(2]|0|| cos B), we have

dv?(r)  2a? a
f,(T) =2r — % — F - 2(1 + 7”_2>||9|| COS,B
2a®>  2a|6]| cos B
B T e

But this final expression is positive for » > —a/(]|6|| cos §). Finally, f is increasing

for r > r**, and the result follows. O

Proof of Theorem 2.4.4.

In view of Lemma 2.4.3, it suffices to show that the boundary 0C°(6) of C°(#) lies
inside C(f). Suppose x € 9C°(), and define r, 3 as in the proof of Lemma 2.7.5.
Then

2

r = /6] cos B+ (¢* — ||6]|*sin® 8)/*.
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In their Theorem 2.1, Hwang and Casella (1982) prove that C°(#) is contained in the
set

{z € R ||T5 (2) — 0]* < ¢},
for ||0]| < ¢, and the result is trivial if either ||| = 0 or r < a'/2. Therefore, for

0 < ||0|| € wa(0) and r > a'/?, we let

1
F(B.11611) = 7*(r)r* = 2[|0]ly(r)r cos B+ [|0]]” = wa(0) — Fw,(0)r*
a®> a®>  2da|f||cosB 1 )
=ttt O
a  a® a4 07 —c) 1,0
=atne 2 ~ 30,

where 7 = ||| cos 8+ (¢* — ||0]|? sin? ﬁ)1/2, so that it is enough to show f(8,[|6]]) <0

for all 8 € [0, 7] and ||@|| in the given range.

Since dr/88 = —||6]|r sin B/(c® — ||0||? sin® B)'/2, we find

of —2l|0]| sin 8 a(c® = |0>? —a) 1
o5 <oOlsng fle =P =) L)
B (2 —0))2sin? ) r

from which we deduce that f has turning points at § = 0, 7 and possibly at 5*, where

(2 pzen2 gy /21t 20(¢® — 10" — a)
{116l cos 5" + (¢* — [jo)*sin? ) *} = U

Since r is a decreasing function of 8 € [0, 7], a solution to this last equation exists if
and only if
2a(c* — ||0||* — a)

o < el

(e—lIo)" <

Observe first that

700 = (o= =gr) = (e= %) = 5ut)e ol <o
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Next,
a? a? 2al|0||  a(k—1) )
0,4 < —-—— _ 6
FO01) < =5 + o+ 2L D e
1 da(k —1)c3 6ac?(k — 1)
PO ) 3 ~\v ) 4 2 9 2 TV
= 02(c+||9||)2{“0”( e 2 )*” | ( ac k )

<0.

Finally,

5. 10l = { (1- %) G B s — o -}

REAUS *”{o—%)@Z?o))“—w—now—af”}-

Thus we find f(5*,|6||) is non-positive for

o < ¢ —a-(1-3) 2w(0) 2w"(0)c4{2wg(o)c - (¢~ aja}.



Chapter 3

The bagged nearest-neighbour

classifier

3.1 Introduction

Suppose we observe data pairs £ = {(X;,Y;) : ¢ = 1,...,n}, in which Xy,..., X,
are the independent variables, or inputs, and Y7, ...,Y,, are the dependent variables,
or responses. In the language of machine learning, £ is often called a training, or
learning, set. On the basis of L, a predictor assigns the response of an arbitrary input
x. When the response is a class variable, i.e. each response belongs to finite set of

unordered elements, a predictor is referred to as a classifier.

Classification problems have a long history, dating at least from the famous Iris data
example of Fisher (1936). A medical application is described in Breiman, Friedman,

Olshen and Stone (1984) as follows:

At the University of California, San Diego Medical Center, when a heart

75
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attack patient is admitted, 19 variables are measured during the first 24
hours. These include blood pressure, age, and 17 other ordered and binary
variables summarizing the medical symptoms considered as important in-

dicators of the patient’s condition.

The goal of a recent medical study ...was the development of a method
to identify high risk patients (those who will not survive at least 30 days)

on the basis of the initial 24-hour data.

Hand (1981) gives details of classification problems in archaeology, agriculture, speech
recognition and cardiac wave analysis, amongst many others. Apart from the breadth
of application, however, it is important to note that in many cases the data to be
classified may take values in high-dimensional spaces, or even, as in the last two
examples above, infinite-dimensional function spaces. In such settings, techniques

assuming the existence of densities for the underlying populations may not be viable.

Nearest-neighbour methods are one of the oldest approaches to classification, begin-
ning with the work of Fix and Hodges (1951). Nevertheless, they are constantly
being adapted to new settings — see, for example, Kuncheva and Bezdek (1998) and
Mollineda, Ferri and Vidal (2000). A major attraction of nearest-neighbour classifiers
is their simplicity. For implementation they require only a measure of distance on the
sample space, along with training samples; hence their popularity as a starting-point

for refinement and improvement.

Bagging is a means of improving the performance of a classifier (or, more gener-
ally, a predictor) by combining the results of many empirically simulated predictions.
Breiman (1996) introduced the technique, and also coined the term, which is derived
from bootstrap aggregating. Bagging classifiers can sometimes, although not always,

reduce the error rate (Bay, 1999). An overview of bagging and related techniques,
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such as boosting, can be found in the recent book by Hastie, Tibshirani and Friedman

(2001).

In this chapter we show that, in circumstances where the relative densities of two
populations can be meaningfully defined, a bagged nearest-neighbour classifier can
converge, as the training-sample sizes increase, to the optimal Bayes classifier. How-
ever, we obtain this limit if and only if the simulated training samples are of asymp-
totically negligible size relative to the respective actual training samples, and if the
simulated training-sample sizes diverge together with the actual training-sample sizes.
If, as is commonly the case in practice, the simulated training-sample sizes are the
same as those of the actual training samples, then the nearest-neighbour classifier
does not converge to the Bayes classifier. These results apply to both with- and
without-replacement bagging, which are the two approaches most commonly used in

practice.

The extent of the improvements can be determined by probability calculations, which
we discuss theoretically and illustrate numerically. It is shown, for example, that in
the case of with-replacement bagging, the resample size should be at most 69% of
the original sample size if the bagged nearest-neighbour classifier is to asymptotically
improve on the performance of its unbagged counterpart. The ceiling is reduced to

50% in the case of without-replacement bagging.

These results are of interest for two reasons. Firstly, because the majority of bagging
experiments employ relatively large resample sizes; much of the evidence against the
performance of bagged nearest-neighbour classifiers (e.g. Breiman, 1996; Bay, 1999)
is for full-size resamples. Secondly, because in most statistical work, the performance
of classifiers is discussed in settings where population densities are well-defined and
estimable. However, to construct the Bayes classifier only the relative densities are

needed, weighted by the prior probabilities of each class. Indeed, the optimal Bayes



CHAPTER 3. THE BAGGED NEAREST-NEIGHBOUR CLASSIFIER 78

classifier depends only on whether the weighted density ratio is greater than 1 or less
than 1, rather than its exact value. We show that our result about convergence of the
nearest-neighbour classifier to the Bayes rule can be set up in this context, making it

relevant to a relatively general class of problems.

Friedman and Hall (2000) and Buja and Stuetzle (2000a,b) have carried out investi-
gations into the theoretical properties of bagging in contexts other than classification
problems. In Friedman and Hall (2000), smooth estimators are decomposed into
linear and higher order parts and it is argued that bagging reduces the variance
of the nonlinear component, without affecting the linear part. Buja and Stuetzle
(2000a) concentrate on U-statistics, and show that bagging has a second-order effect
on variance, squared bias and mean squared error; Buja and Stuetzle (2000b) examine

statistical functionals and give the von Mises expansions of the bagged functionals.

Biihlmann and Yu (2002) do discuss the performance of bagging in prediction prob-
lems, including bagging with smaller resample sizes than the original sample sizes, but
their focus is on decision trees (Hastie, Tibshirani and Friedman, 2001, pp. 266-279)
rather than nearest-neighbour methods. Their theoretical results show that bagging
smoothes such hard decisions, reducing the variance and mean squared error, and
they provide simulations to suggest it can also reduce the error rate, or risk, in clas-

sification.

The literature on nonparametric methods of classification is also extensive, including
techniques which converge to the Bayes rule. An example in the univariate case is
the approach of Stoller (1954), which is based on the empirical distribution function.
In multivariate settings, methods founded on nonparametric density estimation are
sometimes used; these are discussed by Hand (1981). Marron (1983) finds such a
classification rule whose risk converges to the Bayes risk at the optimal rate (which

depends on the dimension of the inputs and the smoothness of the underlying den-
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sities). In the univariate case, Cover (1968) showed that the risk of the nearest-

2 where m is the sample size,

neighbour classifier converges to its limit at rate m~
under smoothness conditions. The limit here generally exceeds the risk of the Bayes
classifier. Fukunaga and Hummels (1987) gave a heuristic argument to suggest a rate
of m~2/% in d-variate settings, and this was later proved, again under smoothness

assumptions, by Psaltis, Snapp and Venkatesh (1994).

The rest of this chapter is organised as follows. In Section 3.2 we introduce the
Bayes, nearest-neighbour and bagged nearest-neighbour classifiers, define the risk of
a classifier and give an informal derivation of the large-sample risk of the nearest-
neighbour classifier using a marked Poisson process argument. This argument is
developed in Section 3.3 to study the asymptotic risk of the bagged nearest-neighbour
classifier. In these two sections we work with Euclidean data, and assume the existence
of population densities, which aids intuition. Section 3.4 shows how to extend the
ideas of Sections 3.2 and 3.3 to cover cases where only relative densities exist. This
section also contains a statement of the main theorem, Theorem 3.4.1, concerning the
convergence of the bagged nearest-neighbour classifier to the Bayes classifier, under
these relaxed assumptions and in the case where the simulated training-sample sizes
are asymptotically negligible in comparison with the actual training-sample sizes. The
problem of choosing the simulated training-sample size is studied in Section 3.5 using
the technique of cross-validation. Finally, the Appendix in Section 3.6 is devoted to
formal justification of the heuristic methods of Sections 3.2 and 3.3, and the proof of

Theorem 3.4.1.
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3.2 Definitions of classifiers, and basic properties

3.2.1 The nearest-neighbour, bagged nearest-neighbour and

Bayes classifiers

Assume there are two populations, I1x and Iy, from which we have random samples
X and Y. Suppose X is of size m and ) is of size n. The nearest-neighbour classifier,
based on X and ), assigns a new data value, z, to [Ix or IIy according as z is nearest
to an element of X or ), respectively. Now draw resamples X* and )*, of sizes
my; < m and n; < n, by resampling randomly, with or without replacement, from X
and ) respectively. The bagged version of the nearest-neighbour classifier allocates
z to IIx if the nearest-neighbour classifier, based on independent realisations of X*
and Y*, assigns it more often to IIx than to IIy. For the sake of definiteness we
shall always treat the version of the bagged nearest-neighbour classifier which uses

an infinite number of simulations in the ‘majority-vote’ step.

Breiman (1996) provides the following simple explanation as to why bagging the
nearest-neighbour classifier with full-size resamples does not change its performance.
The probability that X* U Y* contains the nearest-neighbour to an arbitrary z is at
least 1—1/e ~ 0.632 > 1/2. It follows that, with probability one, the bagged nearest-
neighbour classifier agrees with its unbagged counterpart. By reducing the resample
sizes, however, we can ensure the probability that the nearest-neighbour belongs to
X* U Y* falls below 1/2. It is in these circumstances that we may expect bagging to
improve the nearest-neighbour classifier, through its ability to ‘explore’ more of the

data in the vicinity of z.

Of course, nearest-neighbour classification requires a measure of distance, so we would

generally assume that the data in A and ) take values in a space on which a met-
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ric, or norm, has been defined. We will exploit this generality in Section 3.4 and
Theorem 3.4.1, but for the remainder of this section we work with data in R¥, and
assume that the populations IIx and Ily have densities f and g respectively, which

are continuous almost everywhere.

If the prior probabilities of the populations IIx and Ily are p and 1 — p respectively,
where p € (0, 1), then the ‘ideal’ Bayes classifier Crayes assigns z to IIx or Ily- according
as p f(z) — (1 — p) g(z) is positive or negative. Equivalently, z is assigned to IIx if

the probability
o(2) = pf(2)
pf(z)+ (1 -p)g(2)

exceeds 1/2, and to Ily if ¢(z) < 1/2. We may choose to classify z arbitrarily if
pf(z) = (1-p)g(2).

(3.1)

3.2.2 Error rates of Bayes and nearest-neighbour classifiers

We write, for example, {C(z) = X} for the event that a general classifier C assigns the

data value z to the population IIx. The average error rate, or risk, of the classifier C

is defined by
Risk(C) = p / P(C(z) = ) f(z)dz + (1 - p) / P(C(2) = X) ¢(2) d=.
Rk Rk
In the language of decision theory, Risk(C) is the Bayes risk of the decision rule C
with respect to 0-1 loss and the prior which places probabilities p and 1 — p on IIx
and IIy respectively. The Bayes classifier defined in Section 3.2.1 above derives its
name from the fact that it is the Bayes decision rule for this problem. It is only an

ideal classifier, because in practice f and g are unknown.
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The risk of the Bayes classifier is

Risk(Chayes) = p /R Lpre<a-neey f(2) dz + (1= p) /R Lpre>0-nge 9(2) dz

= /. min{p f(z), (1 —p) g(2)} dz. (3.2)
A heuristic derivation of the large-sample limit of risk of the nearest-neighbour clas-
sifier Cyy can be deduced by a point-process approximation, as follows. Provided
m/(m +n) — p as m — oo, the distribution of data in the neighbourhood of z
converges to that of a marked Poisson process, P, in which each point has one of
two marks, chosen independently of the marks for all other points (see e.g. King-
man, 1993, Chapter 5). The probability that the mark at a given point of P equals
X is the same as the proportion of points from Ilx, relative to points from either
[Ix or Iy, that occur in an infinitesimal neighbourhood of z. That is, it equals ¢(z),
defined at (3.1), and likewise the probability that the mark at the given point of P is
Y, equals 1 — ¢(z). It follows that the point in P that is nearest to z will be of type
X with probability ¢(z). Hence, as m — oo,

Risk(Cxn) — p /Rk{l —q(2)} f(z)dz+ (1 —p) /Rk q(2) g(2) dz

L 1) 9(2)
=2r(1-p) /Rkpf(z)+<1—p>g<z>

Observe that if p f(z) > (1 — p) g(z), then

2p(1-p) f(2)9(2) _ p(1—p)f(2)g(x) +(1—p)g(2)°
pf(z)+(1—p)g(z) ~ pf(z)+ (1 —p)g(z)

so that

dz. (3.3)

= (1-p)g(2),

lim RlSk(CNN) 2 RiSk(CBayes).

m—0oQ
The inequality is strict except in the pathological case where p = 1/2 and f = ¢

almost everywhere.
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The expression (3.3) for the asymptotic risk of the nearest-neighbour classifier has
been known since the work of Cover and Hart (1967), who derived it using a different
method. We include the derivation above because the marked Poisson process ar-
gument will allow us to deduce the asymptotic risk of the bagged nearest-neighbour

classifier in the next section. The argument above is formalised in the Section 3.6.1.

3.3 The bagged nearest-neighbour classifier

In this section we again work informally, postponing rigorous argument to Sec-
tion 3.6.2. Recall that bagging involves drawing resamples X* uniformly at random
from X, and Y* uniformly at random from ). The resample sizes are m; and nq,
respectively. Both with- and without-replacement resampling are possible, so that in
the with-replacement resampling case, X* and Y* may contain repeats. Recall the
marked Poisson process, P, introduced in Section 3.2.2. It represents a large-sample
approximation to the data in the neighbourhood of z. The mark of each point in P
is either X or Y, and the nearest-neighbour classifier allocates z to the population

indicated by the mark of the point in P that is nearest to z.

The bagged nearest-neighbour classifier Cp,ee applies the majority-vote rule to the
outcomes of the nearest-neighbour classifier based on independent resamples P* drawn
from P. In the case of with-replacement resampling, P* will typically involve repeated
data, but the number of repeats of any given data value is not used by the bagged
classifier. Therefore we may disregard repeats, and view P* as simply a randomly

chosen subset of P.

Hence we may consider P* as having been obtained from P by the point-process

operation of ‘thinning’. That is, to produce P*, each point in P is ‘killed” with a
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certain probability p and ‘kept’ with probability 1—p, where 0 < p < 1, independently
of all other points. This is true for either with-replacement or without-replacement

resampling.

The value of p depends on the large-sample limit of the ‘sampling ratios’ m;/m and
ni/n, and on whether the resampling is done with or without replacement. In order
to make this statement more precise, we now assume m/(m +n) — p € (0,1) as
m — oo, and study the case where m;/m and n;/n both converge to £ as m — oo.
Non-degenerate results are obtained when the limit ¢ € [0,1] for with-replacement
resampling, and ¢ € [0, 1) for without-replacement resampling. We also suppose that
either with-replacement bagging, or without-replacement bagging, is used throughout;
we do not, for example, resample with-replacement for one type of data and without-

replacement for the other.

With these assumptions, the thinning probability p is identical for type X and type Y
data. For with-replacement resampling, p = e ¢, reflecting the fact that the limiting

probability that a resample of size m; excludes d specified data points in X is

lim (1 — i>ml = p?.

m—00 m

If resampling is without replacement then we take p = 1 — £. To appreciate why,
note that the limiting probability that a resample of size m,, drawn from X" without

replacement, excludes d specified data points in X, is

g (1) (-55) ()
=t (1=00) (=5mg) - (i) =

Let T; = Tj(z) denote the type, either X or Y, of the point in P that is jth nearest

to z. In either the with- or without-replacement case, if p < 1, it follows from the
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definition of the thinned point process P* that

7(P) = P(the point in P* that is nearest to z, has mark X | P)
= Z Pt p) Lirj=x3-

The marks of the points of P are independent and identically distributed as X or Y,
the former having the probability ¢(z) defined in (3.1). Thus the random variables
I; = 1yr;—x) are independent and identically distributed, taking the value 1 with
probability ¢(z) and 0 with probability 1 — ¢(z).

Suppose we generate P* a total of B independent times, on each occasion starting
from the same P. If n(P) # 1/2, then by the weak law of large numbers, the
conditional probability, given P, that for the majority of resampled point processes
P* the nearest point in P* to z has mark X, converges to 1{x(p)>1/2} as B — oo.
Therefore, since P(7(P) = 1/2) = 0, and since we always treat the infinite-simulation

case of bagging, we have that as m — oo,

P(Cragg () = X) = P(fj SR IR (3.4
= P(p,q(2)),
say. 1t also follows that
Risk (Cagg) —)p/Rk{l ~P(pa(2)} f(2) de + (1 — )/Rk P(p.a(2)) 9(2) d= (3.5)
as m — 0.

The value of P(p,q(z)) when p = 1, corresponding to ¢ = 0 under either resampling
scheme, is defined by taking the limit as p 1 in (3.4). We have

(pr A1) =4
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and

<
Il
-

as p /1. Hence, by Chebychev’s inequality,

P(p,q(2)) = Lig)>1/2}

as p /1, provided g(z) # 1/2, so we take P(l,q(z)) = Lg)>1/2y if q(2) # 1/2.

In order for the bagged nearest-neighbour classifier to converge to the Bayes classifier,
it is necessary and sufficient that the probability at (3.4) should equal 1 if ¢(z) > 1/2,
and equal 0 if ¢(z) < 1/2; see Section 3.2.1. From (3.4) and the argument in the
previous paragraph, we see that this property holds if and only if p = 1; that is,
if and only if m;/m and n;/n both converge to 0. Provided this constraint holds,
the risk of the bagged nearest-neighbour classifier converges to the risk of the Bayes

classifier, defined at (3.2). This is also the limit, as p /1, of the risk at (3.5) above.

A number of properties can be deduced from (3.4). For example, if p € [0,1/2] then

P(p,q(z)) = P(I, = 1) = ¢(2).

It follows that the asymptotic risk of the bagged nearest-neighbour classifier is the
same as that for the regular nearest-neighbour classifier if p € [0,1/2], and is generally
reduced if p > 1/2. Since, in the cases of with- and without-replacement bagging, the
respective values of p are the limits of e=™/™ and 1 — (m;/m), bagging the nearest-
neighbour classifier asymptotically improves performance if m; < m log2 ~ 0.69m
in the with-replacement case, and if m; < m/2 in the without-replacement case, but

not otherwise. Therefore, reducing the sampling ratio, m;/m, does not immediately
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Figure 3.1: Panel (a) plots P(p,q(z)) against ¢(z) for fixed p; in (b), P(p,q(2)) is
plotted against p, with ¢(z) ranging from 1/8 (bottom) to 7/8 (top) in steps of 1/8.

lead to a reduction in risk; it has to be reduced below the threshold, 0.69 or 0.5, in

the cases of with- or without-replacement bagging, respectively.

3.3.1 Numerical studies

Figure 3.1(a) shows P(p, q(z)) as a function of ¢(z), for p = 0.5, 0.7 and 0.9. For
p = 0.5, this corresponds to the probability that the nearest-neighbour classifier
assigns z to Ilx, namely ¢(z). The other two curves were obtained by simula-
tion, and show the convergence of the large-sample approximation of the bagged
nearest-neighbour classifier to the Bayes classifier defined in the last paragraph of
Section 3.2.1. Figure 3.1(b) gives the complementary plot of P(p,q(z)) as a func-

7

g

tion of p, for q(z) = % (3) 5. Contrary, perhaps, to first appearances, P(p,q(z)) is
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continuous at p = 1/2 for each value of ¢(z). To see this, define
pi(T') = P(zp]_l (1 —p)lj > T‘),
j=i

where, as above, I, 5, ... are independent and identically distributed Bernoulli (q(z))

random variables. Then, for p € [1/2,1), we have

p1(1/2) = q(2) p2(p — 1/2) + (1 — q(2)) p2(1/2)

=q(z)p (p _p1/2> + (1 —q(2)) pl(%)

— q(2)
as p \,1/2.

To demonstrate the asymptotic improvement in risk of the bagged nearest-neighbour
classifier over its nearest-neighbour counterpart, we study two examples. In the first,
we choose f(z) = ¢(z), the standard normal density, and set g(z) = é(z — p),
for p € [0,3]. In Figure 3.2(a) we plot the asymptotic risk of the bagged nearest-
neighbour classifier, given by (3.5), as a function of y, for p = 0.5, 0.7, 0.9 and 1.
Recall that the cases p = 0.5 and p = 1 correspond to the asymptotic risks of the
nearest-neighbour classifier, given at (3.3), and the Bayes classifier, given at (3.2),
respectively. The asymptotic risks in these cases are found by numerical integration
of (3.3) and (3.2) respectively, while simulation can be used in the other two cases.
In this problem, the graphs of the functions y = f(z) and y = g(z) cross at only
one point, so we expect classification to be relatively straightforward, provided u is
not too small. In the second of these two examples we choose f to have the mixture

density
f&) =5 3 bz —40), (3.
1=0

and set g(z) = f(z—p) for p € [0, 2]. For these versions of f and g, Figure 3.2(b) again

plots the asymptotic risk of the bagged nearest-neighbour classifier as a function of p,



CHAPTER 3. THE BAGGED NEAREST-NEIGHBOUR CLASSIFIER 89

-] _— -]
LBz o
. -- p=09 .
% —pr=11 4
o= o=
2 T 2 T
IS IS
EN EC\] -p=0.5
£ 7 £ 7 - p=0.7
5 = -- p=0.9
< _ < _ —p=1
S 7 S 7
o o -
I I
0 0
I
(a) (b)
0 0
S S
q:q 0 500000000 ¢ °
Q ° o
d_ oo° _o 0000000
) o°” ™ e 0600°°
=) 00000 @:_ (:zu°°°°°
= s
Z =
S =
;_
o o -
| 1 2 3 | 1 2
0 0
mg my
() (d)
0
S
~
o
50 100 150 200 50 100 150 200

Figure 3.2: Panels (a) and (b) show the asymptotic risk of the bagged nearest-
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for the same values of p. Here the densities cross at nine points, and classification is
therefore much more difficult. In both examples, we observe that the bagged nearest-
neighbour classifier can provide considerable asymptotic improvement in risk over the

nearest-neighbour classifier.

To ascertain the extent of the possible improvement in practice, we studied both ex-
amples above with ;4 = 2 and simulated training samples of size m = n = 200. The
risks of the bagged nearest-neighbour classifier as functions of m; are given in panels
(c) and (d) of Figure 3.2. Resampling was done without-replacement in Figure 3.2(c),
and with-replacement in Figure 3.2(d), in order to show that the risk becomes flat
at different points, specifically at m; =~ 0.5m and m; ~ 0.7m in panels (c) and (d)
respectively. Behaviour for relatively small m; is virtually identical for either re-
sampling scheme. Two further points are worthy of note: (i) in both examples, the
optimal choice of m; is much smaller than m; and (ii) while the optimal choice ap-
pears to be m; = 1 in the first example, this is a poor choice in the more complicated

second example. There, m; = 14 is optimal.

3.4 Relative densities

One of the major attractions of classifiers based on nearest-neighbour methods is that
they only require a notion of distance on the sample space. This opens up the pos-
sibility of studying the bagged nearest-neighbour classifier in general circumstances,
extending beyond FEuclidean-data models. Up to this point, we have assumed the
existence of densities f and g for the populations IIx and IIy. However, standard
definitions of f and g, requiring differentiable distribution functions, are not mean-
ingful in some cases, for example when the generic elements X and Y of X and Y

respectively are random functions. Significant progress can nevertheless be made un-
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der less restrictive assumptions, involving little more than the existence of relative
densities rather than actual densities, and continuity, as a function of ball radius, of

the probability that X or Y lies in a ball.

To appreciate how this is done, suppose X and Y take values in a common sample
space, B, which we take to be a separable Banach space equipped with a norm, || - ||.

We make the following continuity assumption on balls:

(A1): Forall z € B, and for Z = X and Z =Y/, the function 7 (d|2) = P(||Z—z|| <)

is continuous in ¢ € [0, 00), with 7wz (0|z) = 0.

We define relative density in terms of ratios of probabilities that X and Y lie in balls.
Specifically, given n > 0 let Sx (1) denote the set of z € B such that, for all 6 € (0, n],

prx (9]
A-pmm " -7

Similarly, define Sy (7)) to be the set of z € B such that, for all § € (0, 7],

(1 —p) 7y (9]2)
pmx(d]z)

7y (0|z) >0 and

mx(0]z) >0 and >1+n. (3.8)

Thus, if z € Sx(n) then we can fairly say that the distribution of X has greater density
than that of Y in the neighbourhood of z, weighted by the prior probabilities p and
1 — p, without having to specify what we mean by the densities of the distributions

of XorY.

It is possible to construct realistic, non-Euclidean examples where (A1) holds and
the definitions of the relative densities in (3.7) and (3.8) are meaningful. When B
denotes a function space, || - || might be an L, norm for some r > 1. However, it
is easier to construct examples in the case of a component-wise supremum norm, as
follows. Assume X and Y may be represented as

X:Zajijj and Y:Zaj‘/}wj,

j=1 j=1
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where «q, o, ... is a sequence of nonnegative constants satisfying Z;”;l Jjoy < 00,
U U, U,,...and V, V1, V5, ... are sequences of independent and identically distributed
random variables with finite variance, and 1, 1o, ... is a sequence of bounded, or-
thogonal functions. In this model, the distance between the distributions of X and

Y expresses the distance between the distributions of U and V. Given functions
o0 o0
u = Zajujwj and v = Zajvjwj
=1 7j=1
in the common sample space of X and Y, define
u—v|| = maxa; |u; — v;l.
Ju = vl = maxa u; - o
Then, for example,

had )
P(|X —ull < 6) = EP(M ] < a—,.)-

Using this formula and its analogue for P(||Y — u|| < §), we may determine whether
u € Sx(0) or u € Sy(0), where for both Z = X and Z =Y, we define
S2(0) = | Sz(n).
>0
We conclude this section by illustrating the theory that can be developed when the
distributions of X and Y are smooth in the sense of (A1), and relative densities are
defined using (3.7) and (3.8). Theorem 3.4.1 below asserts that the bagged nearest-
neighbour classifier, applied to z € B, converges to the generalised Bayes classifier,

which assigns z to IIx or IIy according as z € Sx(0) or z € Sy (0) respectively.

We define
Sz(n,€) ={z € Sz(n) : P(|Z — z[| < n) > e}.
Restricting attention to z € Sz(n, €) for some € > 0, rather than just to z € Sz(n),

ensures that the density of the distribution of Z is not too small in the neighbourhood

of z. Our assumptions on the resample sizes are:
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(A2): The resample sizes m; and n; satisfy

. my Ny my p
min(my,n;) - 00, max{—,—) =0 and — — ——
m - n m 1—p

as m — Q.

Before we can state the main theorem, we need one final technical condition on
the asymptotic independence of the two types of mark on the points. Order the
distances of the training-sample points from z as Wi(z) < ... < Wy,4,(2), so that

W; =||Z; — z||, for some Z; = Z;j(2) € Z=XUY,and for j=1,...,m+n.

(A3): For each n,e > 0, we have

Cov(1yz, 1z — 0
s Sutne) L<i<ISmtn v(lizexy, Liziex)

Cov(1lyg, 1z, —0
zez}ylgl,e) ISiLI;%)fan OV( {ziev}s {Zjey})

as m — 0oQ.

This condition may be loosely expressed as ‘knowing the mark on one point in the
combined sample gives negligible information about the mark on any other point in
the limit as the sample sizes tend to infinity’. It is highly plausible, and may be
redundant, but we were unable to prove the theorem below without it.
Theorem 3.4.1. Assume (A1), (A2) and (A3). Then, for each n,e > 0,

inf P(Cga =X)—>1 d inf P(Cga, =Y)—1

el F(Crae() = X) and -l ) PCruge(z) =)

as m — 0o.
Corollary 3.4.2. In addition to (A1), (A2) and (A3), assume that

P(X € Sx(0)USy(0)) =1 and P(Y € Sx(0) USy(0)) = 1.

Then
Risk(Chagg) — pPP(X € Sy (0)) + (1 — p) P(Y € Sx(0))

as m — Q.
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3.5 Choice of sampling ratio by cross-validation

Let X; = X\ {X;} and ); = Y \ {Y;} denote the two samples after the ith data
value has been dropped, where 1 < ¢ < m or 1 < ¢ < n in the respective cases.
Write Cgagg,—x; and Cgagg,—v; for the bagged nearest neighbour classifiers based on the
sample pairs (X;,)) and (X)), respectively, rather than on (X,)). The classifier
CBagg,—x; 1s constructed by sampling m; data from X; and n; data from ), using either
with- or without-replacement sampling; and analogously for Cpage,—v;- To simplify
optimisation we shall put » = my/m and take ny = |rn|, the integer part of rn, so that
optimisation is over only a single parameter. Both with- and without-replacement
resampling could be used, and cross-validation methods employed to minimise risk
over both approaches as well as over r. However, for simplicity we shall assume that
just one of the two types of resampling is employed, and that optimisation over r is

attempted for just that type.

A cross-validation based estimator of risk is

RISk Z {CBagg -X; }+ Z {CBagg y(Y }

We suggest that r be chosen so as to minimise @((r)

3.5.1 Numerical properties

Panels (a) and (b) of Figure 3.3 show plots of @((T’) against » = my/m for two
typical datasets, with the same distribution pairs as were used in panels (a) and (b),
respectively, of Figure 3.2. The sample size is m = n = 200, as in the case of panels
(c) and (d) of Figure 3.2. Panels (c) and (d) give the frequencies with which different

values of m; are selected by cross-validation. The results reflect very closely the fact,
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Figure 3.3: Sample sizes are m = n = 200, and the densities are as in the respective
panels in Figure 1.2, but with 4 = 2. Panels (a) and (b) plot the cross-validation
criterion for two typical samples. Panels (c) and (d) give the frequencies, from 100
simulations, with which cross-validation selects different values of m,. Resampling is

without-replacement in panels (a) and (c), and with-replacement in (b) and (d).
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Classifier Risk

Example 1 Example 2
CBayes 0.158 0.283
CBagg With optimal m, 0.160 0.300
CRagg With CV 0.163 0.311
CnN 0.224 0.379

Table 3.1: Risks of the four classifiers. Sample sizes are m = n = 200. Resampling is

without-replacement in Example 1, and with-replacement in Example 2.

indicated in Figure 3.2, that m; = 1 and m; = 14 are optimal in the respective cases
of panels (a) and (b). Analogously to the case of panels (c) and (d) of Figure 3.2,
resampling is without-replacement for panels (a) and (c) and with-replacement for

panels (b) and (d) of Figure 3.3.

Not only does cross-validation (CV) lead to an appropriate choice of my, it also results
in only a small increase in risk over that of the bagged nearest-neighbour classifier
with the optimal choice of m;. Table 3.1 compares these risks with those of the Bayes
and nearest-neighbour classifiers in the context of the two numerical examples treated

in panels (c¢) and (d) of Figure 3.2.

3.6 Appendix

3.6.1 Asymptotics of the nearest-neighbour classifier

In this section we formalise the remarks made in Section 3.2.2 leading to the deriva-

tion of the large-sample risk of the nearest-neighbour classifier. First we establish
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some notation and discuss the convergence of the distribution of the data in the

neighbourhood of z € R* to that of a marked Poisson process.

Let X = {X1,..., X} and Y = {V3,...,Y,} be independent random samples in
R, with densities f and ¢ which are continuous almost everywhere. Suppose that

m/(m+n) — pe€ (0,1) as m — oo.

Let 2!,..., 2% be distinct continuity points of f and g with f(2*) > 0 and g(z*) > 0,
and let \',...,\? be arbitrary, positive real numbers. For i = 1,...,d, choose a
decreasing sequence of closed balls (Bf,)m>1 centred at z' such that, for sufficiently
large m,
. A\ .
P(X € B)) = — =p.,,
m

say, and write ¢}, = IP’(Y € B}n) For Borel sets B € R¥, we write

m n

sz(B) :Z]]‘{XjEB} and N};(B) = ZH{YJEB}
7j=1 7j=1

for the number of elements in B from X and ) respectively.

We shall need to make extensive use of the following elementary lemma:

Lemma 3.6.1. Suppose x > 0 and z,, - © as m — o0o. Then

(1 - x_m)m — e
m

as m — oo, uniformly for x € (0, K|, for each K > 0.

Proof. The argument in Burkill (1962), p. 179, shows that for z € (0, K] and suffi-

T\m _
(-2
m

Moreover, if € € (0,1), then

(1+ %)m -1= i (T) (%)t = iwfl 1 —66/2 s 2e.

ciently large m,

x2e " K2
< < .
“m—1z2 " m-— K?
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Thus, we can choose mg large enough such that, for all m > my,

K? \m
5 <¢ |rm—z[<e and (1-1——) <14 2e.
m— K m

Then, for all m > mgy and z € (0, K],

0-22)" < - 220" (1 2o -2
m m m m

< 2e+ € = 3e.
U
Suppose r1,...,7qg € Nsatisfy r1 +...+rg < mand let mg=m—r; —... —rg.
Then for sufficiently large m (in particular, large enough such that B}, ... B2 are
disjoint), we have
X (pl X (pd m! 1\ d : i\
_ — — T Td _
IP)(]\/vm (Bm) =T1y.---, Nm (Bm) - Td) - mO! Tl! B -Td! (pm) s (pm) (1 me)

i=1

— exp <— Z_Zl )\i) ();11)!” e (A%

’f'd!

as m — oo, uniformly for A!,... A € (0, K], for each K > 0. Thus, in this sense, the
number of elements from X in each infinitesimal neighbourhood has an asymptotic
Poisson distribution, and the numbers in disjoint neighbourhoods are asymptotically
independent. Before we can deduce the corresponding result for the Y-sample, we

need the following lemma:

Lemma 3.6.2. For eacht=1,...,d,

4 9(#)
i, f(@)

as m — oo, uniformly for \* € (0, K], for each K > 0, and uniformly for continuity

points 2° of f and g such that f(2*) € [1/C,C] and g(z*) € [1/C,C], for each C > 1.
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Proof. Fix i € {1,...,d}, C > 1 and K > 0. Choose a decreasing sequence of closed

balls (By;)m>1 centred at z* such that, for sufficiently large m,
K
IP’(X € Bm) = —.
m
Given € > 0 small enough such that f(2*) > 2¢, choose mg such that, for all m > my,

sup [f(2) — f(z)| <e and sup [g(2) — g(=')] < e.
zEBm 2€EBm

Note that B!, C B,, for each m € N and \* € (0, K]. Now, for all m > my,

Vol(B?,) (f(2") — €) < pl, < Vol(BL)(f(2") +¢)
and Vol(B.,)(g(z") —€) < qi, < Vol(B!,)(g(2") + ).

Hence, for all m > my,

o) —c _dh gl e
) +e ™ ph, ~ f(z) —e€
so that .
7 1 2 7 7
9| _ e(f(2") 2g( ) < e
P f(Z) f(#
O
Now suppose si,...,55 € Nsatisfy s1 +...+s4<n,and let ng =n—s1 —... — sq4.
For sufficiently large m, we have
P NY Bl NY Bd n! 1 d : i \"°
I ca) = e (-4
(N (B) = 51, NY(BR) = 50) = ooy—r(an)” - (a)* >
. (1=p)g(z)AL ) ! (1=p)g(z2)A? ) *¢
R exp(_(l —p) zd: 9(2") Ai) ( pf(1) ) ( pf(7) )
p = f(7) 5! 84!
as m — oo, uniformly for A!,... A% € (0, K], for each K > 0, and uniformly for

continuity points 2, ..., 2% of f and g such that f(z%) € [1/C,C] and g(2*) € [1/C,C],
for each C > 1.
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We now discuss the asymptotic probability of each of the two types of mark, for
which it suffices to consider neighbourhoods of a single point. Let z € R¥ be a
continuity point of f and g, set U; = || X; — z|| for j =1,...,m and V; = ||Y; — 2||
for j = 1,...,n. As prior to Theorem 3.4.1, we order Uy,...,U,, and Vi,...,V, as
Wi(z) < ... < Wpnin(z), so that for j =1,...,m+ n, we may write W; = ||Z; — 2|,
say, for some Z; = Z;(z) € Z=XU)Y. Fix 0 < A < ... < X% Analogously to the
above situation of d distinct points, for : = 1,...,d, choose a decreasing sequence of

closed balls (B,)m>1 centred at z and of radius 8¢, such that, for sufficiently large m,

P(X € B}) =2 =7,

say. Write g, = P(Y € B,).

Denote the common density of Uy, ..., U,, by hy and the common density of V4,...,V,
by hy. We will need the following result, the proof of which is almost identical to
that of Lemma 3.6.2 and is omitted.

Lemma 3.6.3. For eacht=1,...,d,
hy(dr,) . 9(2)
— —
hy(5,)  f(2)
as m — oo, uniformly for \* € (0, K], for each K > 0, and uniformly for continuity
points z of f and g such that f(z) € [1/C,C] and g(z) € [1/C,C|, for each C > 1.

Recall from Section 3.2.1 that we define
p f(2)

q(z) = .
&= i@+ -
We study the asymptotic probability of the points having each type of mark by first

conditioning on their distances from z:

Lemma 3.6.4. For each d € N and (e, ...,€4) € {0,1}%, we have

d
P(:ﬂ_{zlex}=61, ey I]-{ZdEX}:6d|W1 = 5'r1n’ ey Wd = 5gn) — H{Q(Z)E’(]. — Q(Z))liei}

=1
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as m — oo, uniformly for \* € (0, K], X% € (0,\%),..., A} € (0,\%), for each
K > 0, and uniformly for continuity points z of f and g such that f(z) € [1/C,C]
and g(z) € [1/C,C], for each C > 1.

Proof. In this proof, all sums and products without specified ranges are assumed to

run from i =1,...,d, and Z is shorthand for 3" .. 3°F . For sufficiently large

m=0- 1a=0

m, we have

]P(H{ZIGX} = €1y ﬂ{ZdeX} = €4 | W1 = 51 .. Wd = (Sd)

_ z >'{Hhv(5” )5 (1= )™ i { T v (6,) (1= g2
S ([T} (=) = et ([Th ) ) (=)
7

1
—
2)\ 2o (ei—mi
S

as m — oo, uniformly for A% € (0, K], \4~t € (0, \9),..., A\ € (0, )\2), for each K > 0,
and uniformly for continuity points z of f and g such that f(z) € [1/C,C] and
g(z) € [1/C,C], for each C > 1. But
1 _ {pf (2)}2”
Zfz 7h -
{5 {a- p)g(z)}zfiZ(d){ ey
_ {pf(Z)}E“
- ) 2 d
{(1-p)g(2)}T {1+ 2o}

= [[{a()“(1 = a(x))" “},

as required. O

The following theorem shows that the marks on the points are asymptotically inde-

pendent, each point having mark X with probability ¢(z) and mark Y with probability

1—q(2).
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Theorem 3.6.5. For each d € N and (1, ..., ¢5) € {0,1}¢, we have

d
P(E{Zlez’\?} =€1,---, IL{ZdEX} = ed) — H{q(z)q(l _ q(z))l—ei}
=1

as m — 0o, uniformly for continuity points z of f and g such that f(z) € [1/C,C]
and g(z) € [1/C,C], for each C > 1.

Proof. Fix € > 0 and K > 0. Define a decreasing sequence of closed balls centred at

z and of radius K, such that, for sufficiently large m,

K
P([|X —z|| < Kp,) = —.
(1X = 2l < ) =

Observe that, for sufficiently large m,

d-1 . » d-1 ;.5
P(Wy > Kpn) < P(Us > Kp) = 3 <7]n> (%y(l _ %m i 22%6—1{.
. 2y

But Zj;é %je*K — 0 as K — oo, so we can choose our value of K above such that
PW; <Kp)>1—c¢
for all m > myg, say. By Lemma 3.6.4, there exists m; such that, for all m > mq, all

0 < A <... < )\ < K and all continuity points z of f and g such that f(z) € [1/C, C]
and g(2) € [1/C, C],

‘P(]]-{ZIEX} =€, Lzexy =€a | Wi =6,,,... W= 5m)

- [Ha@ (1 - a(2)) ™}

For i = 1,...,d, let H;(§) = P(W; < 6). Then, for all m > max(my, m;) and all
continuity points z of f and g such that f(z) € [1/C,C] and ¢(z) € [1/C, C],

<e.

d
]P(]].{Zle)(} = €1,..., ]l{ZdEX} = Gd) _ H{q(z)éz (1 . q(z))l—ﬁz’}
=1

Km pod 82,
Se—{—/ / / e dH1(9)...dHy(d) < 2e.
0 0 0
]
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Setting d = 1 in the Theorem 3.6.5, the following corollary is immediate:
Corollary 3.6.6. As m — oo,
P(Cxn(z) = X) — q(2),

uniformly for continuity points z of f and g with f(z) € [1/C,C] and g(z) € [1/C,C],
for each C' > 1.

Finally, we can establish the asymptotic risk of the nearest-neighbour classifier, as

given in (3.3).

Theorem 3.6.7. As m — oo,

RiskC) > 29 0-9) [ e s

Proof. By the monotone convergence theorem,

/ ) f(2) Lipoen/oon dz — 1
R

as C' — oo, and the same result holds if f is replaced by g. Thus, given € > 0, there
exists C > 1 such that

/k f(2) Ligen/ocp dz > 1 —€  and / 9(2) Lgen/ccp dz > 1 —e.
R

Rk

By Corollary 3.6.6, we can choose mg large enough such that

‘]P’(CNN(z) =X) - q(z)| <e,

for all m > my and all continuity points z of f and g such that f(z) € [1/C, C] and
g(z) € [1/C,C]. Since the set of points where either f or g is not continuous has

Lebesgue measure zero, we have
k|P(CNN(Z) ZY) 1 —q ‘f ]l{f(z 1/Cc}dz

+(1—-p) Rk‘P(CNN(Z) = X) — q(z)| 9(2) Ligz)en/con dz < €,
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for all m > my. Recalling that

p [ -a@s@ s -n) [ a@ae e =2-p) [ SEIO g,
it follows that for all m > my,
RisiC) ~2p(1-p) [ o] <2
U

3.6.2 Asymptotics of the bagged nearest-neighbour classifier

The arguments of Section 3.6.1 were developed mainly in order to study the corre-
sponding properties of the bagged nearest-neighbour classifier, which is the purpose
of this section. It consists of formalising the remarks made in Section 3.3, the first

step of which concerns the thinned marked Poisson process.

We retain the notation and assumptions of the previous section, and also denote by
X = {X7,..., Xy, } and Y* = {Y",..., Y, } the resamples obtained by sampling
uniformly at random from X and )Y respectively, either with- or without-replacement.

For Borel sets B € Rf, we write

mi n1
N, (B) = Z lixrepy and N, (B) = Z Livyeny
7j=1 7j=1

for the number of elements in B from X* and Y* respectively.

Suppose ri,...,r5 € Nsatisfy r{ + ... +7; < my, and let m{ =m; —r] — ... — 1.

Write
d d
r= g r; and 7r*= E ry.
i=1 i=1

We deal first with the case of with-replacement resampling:
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Proposition 3.6.8. Suppose mi/m — £ € (0,1], and let p=e*. Then

(1= pA)" }

x|
;-

P(NX"(BL) =15,...,NA (BL) =13) — H{exp(—(l —p)\)

=1

as m — oo, uniformly for \',...,\% € (0, K], for each K > 0.

Proof. In this proof, and that of Proposition 3.6.9 below, all sums and products
without specified ranges are assumed to run from ¢ = 1,...,d, and > denotes the

reR
sum over all d-tuples (ry,...,rq) of integers r; such that

ri €{ri,ri+1,...,m},

foreachi =1,...,d, and r = m —mg, where my > 0. First note that, by the principle

of inclusion-exclusion,

P(Np (By) =ri,...,No (By) =g | Np(By) =ri,..., Ny (Bp) = ra)

NS e () e-=22m)

Thus,
PV (1) = - NG (B1) =)
SIS ()6 s

(3.9)

We wish to take the limit as m — oo of each term in (3.9). This is justified by

the dominated convergence theorem, since each term of the outer sum in (3.9) is no

2 exp(— > Ai) H{ (:}) %}’
e SNTI{S () 2} = T )

gk 1
ri=r}

greater than

and
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Thus, uniformly for !, ..., A\ € (0, K], as m — oo,

P(Ny (Bp) =11, . Npy (Bp) =17)

as required. O

Proposition 3.6.9 below gives the corresponding result for without-replacement re-

sampling.

Proposition 3.6.9. Suppose m;/m — £ € (0,1), and let p=1— L. Then

d .
* * . ]- - AZ ¢
BN (B1) =i, Y (B9) = 13) > [T {esp(-(1 - o) =X }
i=1 i’
as m — oo, uniformly for \',...,\% € (0, K|, for each K > 0.

Proof. By a combinatorial argument,

P(NX(BL)=rf,... N (BY)=r | NX(BL)=r,...,NX(BY) =1y
m m 1 m m d m m m

mal ri—1 mg—1 my—1 1
1-

el I — (i —t)} (mo — 1) —
rll...rd!mO!H{g ! g gm—t

*_1 mg—1

()T T

t t=0

(=31
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Thus,
]P(Nr)rf* (Brln) - 7‘{: . ,NT),f* (Bgn) - T;;)
Congpy TF—1 mg—1
ri) (P))" (ml—t) (m—r—t>m!( i>m°
= 1 —
Z{H(T:> ril } m—t H m —r* —t/ mg! me
reR t=0 t=0

(3.10)

Now, in order to apply the dominated convergence theorem again, note that each

term of the outer sum in (3.10) is no greater than

o (- ) T (1) 47"}

which can be summed as in the proof of Proposition 3.6.8. Continuing to mimic the

proof of Proposition 3.6.8, it suffices to show that
r*—1 my—1

(=) I (G==3) » T -

as m — o0o. Now,
r*—1

m _t *
(=) "
=0 VT
as m — 00, so it remains to prove that
mg—1 "
m—T— *
I (22t s a-or
o T — r* —1

as m — oo. But,
mgy—1

1og{ 11 (%ﬁ‘_i)} = log(l - ﬁ)

t=0

_ _i@ z_: m (3.11)
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To show that the sum of the terms in (3.11) with s > 2 is negligible, observe that for

sufficiently large m,

as m — 00. To find the limit as m — oo of the s =1 term in (3.11), we write

a

1
Y7 =loga+y+ea),

t=1
where 7y is Euler’s constant, and €(a) — 0 as a — oo. Thus

*
my—1

—(r =17 ; ﬁ = —(r — ) {log(m — r*) — log(m — my1 +1)
+em—1")—e(m—my +1)}
— (r—r")log(1—¢)
as m — 00, as required. O

Recall that m/(m +n) — p € (0,1) as m — oo. We state below the corresponding
Poisson limits for the )*-sample in both the with- and without-replacement cases.
The proofs mirror those for the X*-sample, taken in conjunction with Lemma 3.6.2,

and are omitted.

Corollary 3.6.10. In the with-replacement case, suppose that ni/n — £ € (0,1] as
m — 0o, and set p = e~*. In the without-replacement case, supposeni/n — £ € (0,1)

as m — 00, and set p=1—£. Then
P(Ny (By) = 81, Ny (Bf) = 53) =

ﬁ{eXp(—(l —Al —p>g(zi>”) () }

Pf () 57!

=1
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as m — oo, uniformly for \',..., 4 € (0, K], for each K > 0, and uniformly for
continuity points 2', ..., 2% of f and g such that f(2*) € [1/C,C] and g(2*) € [1/C,C],
for each C' > 1.

We now wish to study the conditional probability, given the original samples, that
the nearest element of either resample to z is from X. Recalling the definition of
Z1y ...y Zoman prior to Lemma 3.6.3, and with Z2* = X*U)Y*, and, for j = 1,..., m+n,
define

pj =P(Z; ¢ Z*|Zv,...Z;1 ¢ Z"; X,))).

With this notation,

m+n

P(Nearest element of Z* to z has mark X|X,)) = Z pr---pj1(1— pj)lizexy
= 7(2|2),

say. Our study of the asymptotic behaviour of this random variable begins with the

following lemma:

Lemma 3.6.11. In the with-replacement case, suppose both m;/m and ni/n converge

to £ € (0,1] as m — oo, and set p = e *

. In the without-replacement case, suppose
both my/m and ny/n converge to £ € (0,1) as m — oo, and set p=1—£L. Let d € N,

and let I, ..., I; be independent Bernoull: (q(z)) random variables. Then

d

d
Zpl pi1(L= p)Lizyexy > D _ P (1= p)I;

j=1
as m — oo uniformly for continuity points z of f and g such that f(z) € [1/C,C]
and g(z) € [1/C,C], for each C > 1.

Proof. Forj € {1,...,m+n},let R; = {r € {0,1,...,5—1}: r <m, j—1—r <n}.
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In the with-replacement case, for r € R;, we have

j-1
]P’(Zl, o Zi 20 2,€ 2| Lgery =7 and Z; € X)
s=1

{0 -y

= (0" =) T = (1= p)

as m — 00. In the without-replacement case, for r € R,

Jj—

Z 1iz,exy =7 and Z; EX)

s=1

-G ) ) ()

1-— —1— j—1—
X(l_J 7“)(1_] T)...(l_u>
n n—1 n—n;+1

(21,2 1§ 22 € 2

= (1= p)

as m — 0o, by the same method as was used in the proof of Proposition 3.6.9. Note
that the limit is identical for both types of resampling, and does not depend upon 7.

Hence, using Theorem 3.6.5 and Slutsky’s theorem, we have

pr---pj—1(1 = pj)liziexy =P(Z1,...,Zj_1 ¢ 2%, Z; € Z°|X, V) Liz,ex}
d i—
= (1= p)

as m — oo, uniformly for continuity points z of f and g such that f(z) € [1/C,C]
and g(z) € [1/C, (], for each C' > 1. In fact, though, Theorem 3.6.5 yields that

(I]'{ZIEX}a ERI) ]]-{ZdEX}) i) (Il, .. 'aId)

as m — oo, uniformly for continuity points z of f and g such that f(z) € [1/C, C] and
g(z) € [1/C,C], for each C > 1. Applying the multidimensional version of Slutsky’s
theorem (Pollard, 2002, p. 175), we deduce the required result. O
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Lemma 3.6.11 is not quite strong enough to deduce the asymptotic probability that

the bagged nearest-neighbour classifier assigns z to Ilx. For this, we need a further

piece of machinery:

Lemma 3.6.12. Suppose {A,q: m € Nyd = 1,...,d,} is a triangular array of
random variables satisfying the following three conditions:
(i) Ama N Aq, say, as m — oo, for each d € N;
(i1) Ag 4 A, say, as d — oo;
(1ii) given € > 0, there exists dy € N such that
P(|Amg — Ama,| > €) <,

for all sufficiently large m and d = d, ..., dp,.

Then A, 4, A A as m — oo.
Proof. Suppose 1 : R — R is a uniformly continuous function, bounded by Cy. Given
€ > 0, choose § > 0 such that
[Y(z) —¥(y)| < e
for all |z — y| < §. Now, by condition (4i7), choose dj € N and m{, € N such that
P(|Amd — Ama,| = 0) <€
for all m > my and d = dj, ..., d,,. Then, for such m and d,

[E(v(Ana) = E(¥(Ana)) | < [B{ (¢(Ama) = 9 (Ama)) Liapa-a,, 1<}
+ [E{ (¥(Am.a) — w(Am,d()))1{\Am,d—Am,d6\>5}}‘

<e+2Che=(2C)+1)e.
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Now, by condition (ii), choose do > df such that |E(¢(Aq)) —E(1(A))| < eford > dy,
and by condition (i), choose mg > my, such that |E(¢(Apm.q,)) — E(¢(Ag))| < € for

m > mgy. Then, for m € N such that m > mg and d,,, > dp,

E(v(Aman)) —E(¥(A))]
< [E(v¥(Aman)) = B(4(Ama))| + [E(d(Ama)) = E(v(Ama))]
+[E(¢(Aman)) — E(4(Ad)) | + [E(¥(Ag)) — E(¥(4))]
<(2C)+1)e+(2C)+1)e+e+e
=4(Co+1)e.

O

Theorem 3.6.13. In the with-replacement case, suppose both mi/m and ny/n con-

L

verge to £ € (0,1] as m — oo, and set p = e “. In the without-replacement case,

suppose both my/m and ny/n converge to £ € (0,1) as m — oo, and set p =1 — L.

Let I, I, ... be independent Bernoull: (q(z)) random variables. Then

P(Chagg(?) = X) — P(Zp] %)

as m — 0o, uniformly for continuity points z of f and g such that f(z) € [1/C,C]
and g(z) € [1/C,C], for each C > 1.

Proof. Since
m+n 1
]P(CBagg( (Z pr---pj-1(1 = pj)liz;exy > 5),

and P( Y22, p/~'(1 - p)I; = 1/2) =0, it suffices to show that

m+n

Y o= p)Lgzreny = Y PN
7j=1

=1
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as m — oo, uniformly for continuity points z of f and g such that f(z) € [1/C,C]
and ¢(z) € [1/C, C], for each C > 1. We apply Lemma 3.6.12 with

md—zpl pi—1(1 = pj) Liz;exy

Ay = Zﬂi_l(l - p);
A= prfl

and d,,, = m + n. Condition (7) of Lemma 3.6.12 was proved in Lemma 3.6.11, (47) is
immediate, and it remains to prove (7i7). Given € € (0, ), there exists my € N such
that
‘@—4 <e and ‘E—E‘ <e
m n
for all m > myg. It is this part of the proof which breaks down when ¢ = 0, since in

that case ¢ — € is not positive. Let m > my, d, € Nandd € {d; +1,...,m+n}. In

the with-replacement resampling case,

Z P1---Pj1 1_pj)]l{Z]eX}
Jj=dgy+1
max [({(1- )" = (1= 50) " (-7
ITERJ‘ m m n
1
ma{(1-0)" (1 -7) )
TER,; m n

< max (e~ (E-9-(=1-1)(E=0)
TERj

M=

<

J=d

o
+

M=

j=djy+1

a S

=dp+1
e—do(t—¢)

1—6—(—6)_)0

IN
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as dj — oo. Similarly, in the without-replacement case,

d .
mq T\ J—=1l—-r\m
> nnti=pimen < 3 () mef (- £)" (-5

j=dy+1 j=dy+1
_do( 5)
ST ewo 0

as dy — oo. This proves a slightly stronger version of (ii¢), and the theorem therefore

follows. O

The asymptotic risk of the bagged nearest-neighbour classifier is given below for the
case where the sampling ratios both converge to the same, non-zero limit. It is derived
from Theorem 3.6.13 in the same way as the asymptotic risk of the nearest-neighbour
classifier was obtained in Theorem 3.6.7 from Theorem 3.6.6. The proof is therefore

omitted.

Theorem 3.6.14. In the with-replacement case, suppose both mi/m and ny/n con-

verge to £ € (0,1] as m — oo, and set p = e=*

. In the without-replacement case,
suppose both my/m and ny/n converge to £ € (0,1) as m — oo, and set p =1 — £.

Let I, I, . .. be independent Bernoulli (q(z)) random variables, and define

P(p,q(2)) = P(Zp"‘l (1—p) ;> %)
Then

Risk(Couse) > | {1 P(p.0())} 1) a2+ (1 =p) [ P(poal2) ()2

RE

as m — 0Q.

It only remains to deal with the ¢ = 0 case. This was the content of Theorem 3.4.1.
Proof of Theorem 3.4.1.
Recall that

P(Cpagg(2) = X) =P(n(2|2) > 1/2),
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where
m+n

Z p1---pi-1(1 = pj)Lizex},
and p; and Z; are defined prior to Lemma 3.6.11. Recall also from the proof of
Lemma 3.6.11 that R; = {r €e{0,1,...,j—=1}:r<m, j—1—-r< n} We prove
the first part of Theorem 3.4.1; the second part follows analogously. The first step
is to prove that Var(m(z|Z)) — 0 as m — oo, uniformly for z € Sx(n,€), for each

n,e > 0.

Fix n,e > 0. Since a random variable bounded between 0 and a, for some a > 0, has
variance no greater than a?, we have in the with-replacement case,

m-+n

Z Var(,o1 copia(l = Pj)ﬂ{ZjeX})

m+n

< m[{(-0)"- (-5 -7

Jj=

<3 e oo oo(-61 ) 1 ()

§{1—(1—%)m1}22exp( 2(3—1) +2(j — 1);—%)

To deal with the term outside the sum, observe that, for m > 2,

] (1 1) 1 _m 1+§: L m1(1+ ! )
—my lo —— ) =m — < — — | =— — ).
1108 m ltzltmt_m mt m m—1

t=1

Now, given § € (0,1), we can find mg € N such that, for m > my,

my (1 _ e—(1+5)m1/m)2
>(1- 5)H and [ o2y m < 4.
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Then, for m > my,

m-+n

> Var(pi ... pjimi(1 = )Lz ey)
7j=1

< {1 — exp(—(l + 5)%) }2 ieXP(_Q(j -1 - 5)@)

m
(1 _ e—(1+6)m1/m)2

1 — e—2(1=0)m1/m

< 4.

Similarly, in the without-replacement case, given ¢ € (0, 1), we can find mgy € N such

that, for m > my,

n1 mp Ny mi\ 2 1
ol a0 and () e <6
In this case,
m+n
Z Var(ﬂl ceepja(l = Pj)]l{zjeX})
j=1
m+n 9 11— 9
<2 () mf (- 0)" (- )"
- m TER; m n
7j=1
— my\? . ni . my m
< (—) exp(—Q(J —D—+20—-1)|——— )
o m n m n
< mq 2 1
— (E) 1 — e—2(1=0)m1/m
<é

Therefore, to show that Var(r(z|Z)) — 0 as m — oo, uniformly for z € Sx(n, €), it

remains to prove that

ZCOV(Pla .. 'api—l(l - Pi)ﬂ{ZieX} » Py - - '7pj—1(1 - pj)]]‘{ZjEX}) —0
i£]
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as m — oo, uniformly for z € Sx (7, €). But, for each z € Sx(n, €),

Z‘COV(PM copia(1 - Pi)ﬂ{ziex} s Py P (1 = Pj)ﬂ{zjex})‘
i#]

< {mln min Cov 1 1 max p. max min Z'min }
Z reER; sER p]| {ziex} 247 EX})‘ + reR; p SER; p7 reR; Pr SER; pg
where, in the with-replacement case,

= {027 (-2 - Sy

Now observe that, given § € (0, 1), for sufficiently large m, we have

Z{max pr max p7 min p min p7}

rER; SER; rcR; = | sCR;
i#£]

INY2 iy
< Z [{1 _ (1 _ E)} o~ (i=1+j—1)(1=0)m1 /m

— min mln{e rmi/m __ e—(r—l—l)ml/m}{e—sml/m _ e—(s—l—l)ml/m}e—(i—l—r—l—j—1—s)(1—|—5)n1/ni|

rE€R; sER;
< Z{ —(1+(5 ml/m)Qe—(z 14+j—1)(1—-8)m1/m __ e—(i—1+j—1)(1+26)m1/m(1 _ e—ml/m)Q}
i#j
{1 e —(1+9) m1/m}2 (1 _ 5)(1 _ efml/m)Q (1 _ 5)(1 _ efml/m)Q
>~ {1 e (1-9) ml/m} (1 _ e_(1+2(5)m1/m)2 - 1— e—2(1+26)m1/m .
But
{1-e02 (151 -e"’ (1-51—e?) @482 (1-9)
{1 _ 6_(1_6)“”}2 (1 _ 6—(1-1—26)10)2 1— 6—2(1—1—26)30 (1 _ 5)2 (1 + 25)2’

as ¢ — 0, and this limit may be made arbitrarily close to zero by choosing 6 > 0
sufficiently small. Moreover,
Zmln D, mln p7|COV Liziexy, Lz ex})‘ 0

- T€ER;
i#]

as m — 0o, uniformly for z € Sx (7, €), by assumption (A3) and the fact that
Zmln p, min p7 <1.

- TER; SER;
i#]
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The without-replacement case may be handled similarly. The next part of the proof

consists of showing that

liminf inf E(7w(z|2)) >

m—0o0 ZESX (7776)

N | —

Let M and N be the number of distinct values in X* and Y*, respectively. For
example, in the case of without-replacement resampling, M = m; and N = n;. Now,

E(m(z|Z)) = E(Q(z|M, N)), where
Q(z|M, N) = P(Nearest element of Z* to z is in X|M, N).
Writing
M N
Fx(8|z) =1— (1 —mx(6]z))" and Fy(d|z) =1— (1 —my(8]2))

for the distribution functions of the nearest element of X'* to z and the nearest element

of V* to z respectively, we have
Q(2|M, N) = / (1= Fy(6]2)) dFx (6]2)

_ /0 T =7 (012)) Y (1= 7 (812) M drx (812)

1
= 5 +Q1(Z|M3N)a

where

N

(1 — 7TY(5|Z))M _ 1} dﬁx(5|2)

(1—mx(8]2))

The distributions of M and N depend only on m, n, m; and n;, not on z or on the

Qi(zIM, N) = M /000(1 - 7TX(5IZ))2M1{

distributions of X or Y. Moreover, we can write M = (1—A;)m; and N = (1—-Ay)n,,
where A; and A, are independent random variables satisfying P(0 < A; < 1) =1
and P(A; > v) — 0, as m — oo, for each v > 0 and for j = 1,2. Observe that, for
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any v > 0,

sup  E{|Q1[(1 = L{a,<y,20<7}) }

2€8x (n,€)

< sup ]E{QM /0 (1= 7x(612)) ™" drx (5]2) (1—1{A1§%A29})}

2€8x (0,€)
1
= ]E{ 2M / yM dy (1 - 1{A1§%A2§7})}
0

= 2E(1 — 1{a, <y, A0<r})
N (3.12)

as m — 0o. Moreover, if A; <y and A, < 7, then

(1—my(5]2))"
lo 7
g((1 o (0]2))

) > nylog(1 — my(8]2)) — (1 —7)malog(1 — mx (5]2)).

Now, for any 7y € [0, ], where £ < 1, we have

log(l —7y) = —my (1 +0y), where |fy|= ‘Z Z’Tl
=1

< Ty < S
T 2(1-my) T 21-8)

Thus, since —log(1 — ) > z for all x > 0,

(0] (1 — 7TY(5|Z))N - T z - mam z
o8 ([ ) = e )+ (1= i 12

—my 7y (62)

:mm(a\z){ (1+ey)+1_7}.

mymx (9]2)
Since my/ny — p/(1 — p) as m — oo, we can find mg € N such that

mimx (6]2) n
ArxVE s 14 !
mmy (6]z) — Ty

forall 0 € (0,7], all z € Sx(n, €) and all m > mg. Now choose £ € (0,1) and v € (0,1)

small enough such that

1+n/2(1+ 20— 0)

)+1—7=C1,
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for some ¢; > 0. Then, for z € Sx(n,¢) and ¢ € (0, n| satisfying 7wy (0|z) € [0,&], and

m2m07

(1- WY((S‘Z)):’I L exp{log( (1 -7y (8]2))" )} 1

(1 - 7x(3]2)) (1 —7mx(8]2))"
> exp{mlﬁx(5|z)cl} -1

> mymx(d]z)c.

Choose 9, such that my(6}|2) = &, set 6, = min(d}, n) and set

a=pi+n) )
p ’ 7

& = min(

so that mx(9,]2) > & for z € Sx(n,€). Then, for m > my,

inf ]E[M /OJZ (1- 7rX((5|z))2M_1{ (=m(0l2)" 1} drx (5]2) H{A@,Am}]

2€8x (n,€) (1 _7TX(5|Z))M

o
> micy E{M/ (1—-y)*" 1y dy]l{A1S’Y}}P(A2 <)
0

MG . . oM 1 _ 2M+1 1 <

=5 E{ (60— 0™ - g T gy ) Liaren fP(2 <)
C1

> 2 (3.13)

for sufficiently large m. Moreover,

1—my(d]2)"
((1 Ty 6||Z ))M _ 1} drx (6]2) L{a;<y, As<y}
_ 7TX

1
(1—y)™ 'dy H{AIS’Y}}

sup IE‘M /:(1 —WX(5|Z))2M1{

2€8x (n,€)

< E{ 2M
o

=E{2(1 — &) 1ja, <1 }
o (3.14)

as m — 0o. Combining (3.12), (3.13) and (3.14) yields

[\Dl?—‘

1
liminf inf ]E(7r(z|Z))=§+liminf inf E(Q:(z|M,N)) >

m—00 2€Sx(n,¢) m—00 2€8x(n,e)
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To complete the proof, given § > 0, choose m' € N and o > 0 such that

inf E(n(z|2)) — % >« and sup Var(m(z|2)) < o®6.

2€8x (,€) 2€8x (n,€)

for m > m!. Then, by Chebychev’s inequality, for m > m!,

inf P(Cpagg(z) =X) = inf P(n(2]2)>1/2)

2E€8x (1,€) Z€8x (n€)
Var((z| Z))
sup 2
2€8x(n,€) {]E(’]T(Z|Z)) - 1/2}
>1-6.

>1—

Proof of Corollary 3.4.2.

We may write

RiSk(CBagg)
= pP(Crage(X) =Y, X € Sx(0)) + pP(Chage(X) =Y, X € Sy(0))

121

4+ (1—p)P(Chagg(Y) = X, Y € 8x(0)) + (1—p)P(Chage(Y) = X, Y € Sy (0)).

Given 6 > 0, choose 7y > 0 such that

P(X € Sx(0)) — P(X € Sx(m)) <6 and P(Y € Sy(0)) —P(Y € Sy(n)) < 4.

Now choose ¢; > 0 such that

P(X € Sx(m0))—P(X € Sx(no, €)) <& and P(Y € Sy(ny))—P(Y € Sy (m, €)) <6,

so that

Risk(CBagg) < PP(Chags(X) =Y, X € Sx(m,€)) + pP(X € Sy(0))

+ (1=p)P(Y € Sx(0)) + (1 — p)P(Cpage(Y) = X, Y € Sy (1m0, €)) + 20.
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By Theorem 3.4.1, we can find m' € N large enough such that, for all m > m/f,

sup  P(Cpage(z) =Y) <4 and sup  P(Cpage(z) = X) < 0.

2E€8x(1n0,€0) 2€S8y (M0,¢€0)

Thus
Risk(Chage) < PP(X € Sy (0)) + (1 — p)P(Y € Sx(0)) + 36

for all m > mft.



Chapter 4

Some asymptotic results for the
bootstrap distribution of the

sample mean

4.1 Introduction

In Chapter 1, we argued that Edgeworth expansions and saddlepoint approximations
have provided much of the theoretical underpinning for the bootstrap. They give a
mathematical basis for assessing its properties and comparing its performance with

other techniques.

Edgeworth expansions provide the order of magnitude (in probability) of the absolute
error between a bootstrap distribution and the true distribution it estimates. Results
are now known for many statistics of practical interest, such as smooth functions of

a multidimensional sample mean (Hall, 1992) and M-estimators (Lahiri, 1992, 1994),

123
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and are often cited in support of the bootstrap.

Saddlepoint approximations offer a different form of evidence, namely the order of the
relative error in a bootstrap approximation. This information is particularly relevant
when the magnitude of the feature of the underlying population of interest, such as
a tail probability, may be very small. Statistics studied from this perspective include
sample means (Jing, Feuerverger and Robinson, 1994) and smooth functions of sample

means (Robinson and Skovgaard, 1998).

However, these are not the only aspects of bootstrap performance which merit con-
sideration. In this chapter, we take a different approach, as a first attempt to answer
the basic question, ‘What is the probability that the bootstrap performs badly?’.
A mathematical formulation of this problem involves appropriate choices both of a
statistic and of a distance between distributions. We work with the univariate sample
mean, and the Mallows distance (Mallows, 1972), whose properties were exploited ef-
fectively in a bootstrap context by Bickel and Freedman (1981). The main objective
is to study the rate of decay of the probability that the distance between the true
distribution of the normalised sample mean and its bootstrap approximation exceeds

a given threshold.

In Sections 4.2 and 4.3, we review the Mallows distance and show how to reduce our
bootstrap problem to one of studying the Mallows distance between a distribution and
the empirical distribution of a sample. The main essence of the results in Sections 4.4
and 4.5 is that rate of decay of the probability of poor bootstrap performance depends
on the tail of the underlying population. In Section 4.4, we give an explicit bound on
the probability of the Mallows distance exceeding a threshold, and show that, under
certain tail and smoothness conditions, this bound may decay exponentially in the
sample size; that is, the bound is no more than e ™, for some § > 0 and sufficiently

large sample sizes n. This may be interpreted as a mathematical statement that
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in such cases the probability of poor bootstrap performance decays satisfactorily.
However, by choosing a distribution with a sufficiently heavy tail, we can ensure the

bound decays no faster than exp(—n?), for any given 3 € (0, 1).

Section 4.5 provides further supporting evidence. For example, where the underlying
population is of bounded support, it is shown that a large deviations upper bound
exists on the probability of the Mallows distance exceeding a threshold. However, for
distributions with heavy (polynomial) tails, the empirical distributions fail to satisfy
a large deviations principle in the Mallows topology. This shows the delicacy of
Sanov’s theorem, which says that the empirical measures do satisfy a large deviations
principle in the (coarser) weak topology. Results are not known for populations with
infinite but light tails, such as the exponential and normal distributions, and these
remain interesting topics for further research. The proofs omitted in the main text

are given in Section 4.6.

4.2 The Mallows distance on the real line

Let F denote the set of all distribution functions on the real line and, for r > 1, let
Fo={F e F: [Z |z|"dF(z) < co}. For F,G € F,, the Mallows metric d,(F,G) is
defined by

1/r

d.(F,G) = 7i_nf {EX -Y|} ",
X, Y

where Tx y is the set of all joint distributions of pairs of random variables X and Y
whose marginal distributions are F' and G respectively. In a slight abuse of notation,
we also write d,.(X,Y) for d.(F, G), where this will cause no confusion. The following

results about d, are proved in Bickel and Freedman (1981) and Major (1978).

(a) If (F,) € F and F € F, then d,.(F,, F) — 0 as n — oo if and only if, for every
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(d)

bounded, continuous function g : R — R, we have

| @ ir@ -~ [~y ir@

as n — 0o, and also

/oo 2] dFy(z) — /Z 2 dP (z)

o0

as n — 00. Thus, convergence in the Mallows metric d, is equivalent to conver-

gence in distribution together with convergence of the rth absolute moments.

If a € R and X, Y are random variables with finite rth absolute moments, then

d,(aX,aY) = |ald.(X,Y).

The infimum in the definition of the Mallows metric is attained by the following
construction: let U ~ U(0,1), and define X = F~}(U), Y = G~1(U). Here,
F~! and G~! are the left-continuous versions of the respective inverse functions,

so that, for example, F~'(p) = inf{x € R : F(z) > p}. Thus
1 1/r
ar.6) = ([ 170 -6 wra) .
0
It is therefore more convenient in much of what follows to work with the set
1
Gr = {G :(0,1) = R : G is left-continuous, increasing and / |G(p)|"dp < oo}
0
equipped with the L,.-norm restricted to this set:

1= ([ 16 a) "

The map from (F,,d,) to (G, || - ||;) which sends a distribution function to its

left-continuous inverse is a distance-preserving bijection.
Suppose X and Y have distributions in F,. Then

dy(X,Y)? = do(X —E(X), Y —E(Y))* + (E(X) — E(V))”.
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(e) Suppose Xi,...,X, are independent, Y7,...,Y, are independent, that all the
distributions are in F;, and that E(X;) = E(Y;) for i = 1,...,n. Then

n n 2 n
ds (ZXZ-, Zn) <Y do(XG, V)R
=1 i=1 =1

Equality is attained if X;, ..., X,, are independent N(u,0%) random variables
and Y, ...,Y, are independent N(u,o%) random variables, for some y € R and

2 2
o%x,0y > 0.

We add two further properties in Proposition 4.2.1 below. The completeness of the
Mallows metric on a separable metric space is already known (Dobrushin, 1970), but

we can give a much simpler argument for the case of distributions on the real line.

Proposition 4.2.1. The metric space (F,,d,) is separable and complete.

Proof. To show separability, consider the set
H,={He€G :H(p)€Qforallpe Qn(0,1)}.

Note that any function in G, is determined by its values at the rational points in
(0,1), and that #, is countable. Moreover, given ¢ > 0 and any G € G,, we can
choose values H(p) for p € QN (0, 1) such that

H(p) —G(p)| <€

and H(p,) < H(p,) whenever p; < py. Extending H to a left-continuous function on

(0,1) (which is necessarily increasing), we have |H(p) — G(p)| < e for all p € (0, 1), so
I1H = Gll: <,

and moreover,

1H]» < Gl +1H = Gl <Gl + ¢,
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so H € H,. Hence H, is dense in G,, for each r. Consequently, the distribution

functions corresponding to the functions in H, are dense in F,.

Now suppose (F,) is a Cauchy sequence in (F,,d,). Let U ~ U(0,1), and for each
n € N, let X, = F;'(U). Then X, has distribution function F,, and for each

n

m,n € N, we have

dy(Fo, Fo) = (B[ X, — X))

Thus (X,,) is a Cauchy sequence in L,. But L, is complete (Billingsley, 1995, p. 243),

so there exists a random variable X € L, such that
EX,-X|"—0
as n — 0o. Hence if F' is the distribution function of X, then
d,(Fp, F) < (B[ X, — X|)'" 50

as n — oo. ]

4.3 The Mallows distance and the bootstrap

Suppose X1, ..., X, are independent random variables, each having distribution func-
tion F with mean y and finite variance. Let X, = n 'Y | X, denote the sample
mean. If we are interested in making inference about pu, a natural root to consider
is n'/2(X,, — p), whose sampling distribution under F' we denote by H,(F). Con-
ditional on Xi,...,X,, let X},..., X* be independent and identically distributed
random variables drawn from the empirical distribution of the sample, whose distri-

bution function, Fn, is given by

. 1 —
Fa(@) == Tixi<a)
=1
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for x € R. The nonparametric bootstrap approximates the sampling distribution of
n'/2(X, — p) by that of n'/2(X? — X,,), where X} = n~'Y""  X7. In other words,
conditional on X7, ..., X, we approximate H, (F) by H, (ﬁ’n) The calculation below,
which follows Shao and Tu (1995), shows how the properties of the Mallows distance d
outlined in Section 4.2 make it suitable for studying the performance of the bootstrap

approximation in this context:

(o (F) Ha(F) = 5 DO = X i S0 )

< do(X7,X4)

= dy(F,,, F).

Thus, in particular, the distance between the distribution of the root of interest,

H, (F), and its bootstrap approximation, H,(F},), is stochastically dominated by the

distance between the true and empirical distributions.

It follows immediately by property (a) in Section 4.2 and the strong law of large
numbers that dy(F,, F) — 0 almost surely as n — oo. In straightforward cases,
we can give a limiting distribution for n'/2dy(F,, F), as in Theorem 4.3.2 below.
Let D = DJ0, 1] denote the space of left-continuous, real-valued functions on [0, 1]
possessing right limits at each point. We may equip D with the uniform norm, so
that for xz,y € D, we define
[z = ylloe = sup |z(p) —y(p)|.
pe[0,1]
A technical complication in Theorem 4.3.2 arises from the fact that the normed space

(D, ]| - ||so) is non-separable, and the o-algebra, D, generated by the open balls is
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strictly smaller than the Borel o-algebra, Dggre, generated by the open sets. This
creates measurability problems, as explained in Chibisov (1965), which lead us to
work with the space (D, D, |- ||s). A consequence of using the ball o-algebra is that
we must make a slight modification to the notion of weak convergence, in line with

Billingsley (1999), p. 67:

Definition 4.3.1. If (Y,)n>0 is a sequence of random elements of (D, D, || - ||c), we

. & .
write Y, = Yy as n — oo if

E(f(Ya)) = E(f(Y0))

as n — oo, for all bounded, continuous functions f : D — R which are D-measurable.

Recall that a Brownian bridge B = (B(p)) is a zero mean Gaussian process with

0<p<1
Cov(B(p), B(q)) = p(1 — q)
for p < ¢. For p € (0,1), let &, = inf{x € R : F(z) > p}.

Theorem 4.3.2. Suppose that the limits § = limy,\0 &, and & = limy, ~ &, exist in R,
and that F has a density f such that f(&,) is positive and continuous for p € [0, 1].

Let B = (B(p)) denote a Brownian bridge. Then

0<p<1

1 2 1/2
n 2( ’ ) — 0 f2(§p) p

as n — Q.

Proof. Theorem 1 on pp. 640641 of Shorack and Wellner (1986), together with Corol-
lary 1 on p. 48 of the same book, give that

A d°

FE)n 2 (E7 (p) — &) S B(p)
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on (D,D,| - |le), as n — oco. Now, with probability one, B belongs to the space
(C[0,1],]|-||co) of continuous real-valued functions on [0, 1] equipped with the uniform
norm, and moreover this space is separable. We can therefore apply the version of
the continuous mapping theorem for “ convergence (Billingsley, 1999, pp. 67-68) to
a composition map h(p) = hs(hi(p)) from (D, D, || - |ls) to R. The individual maps
hi:(D,D, | |lo) = (D,D, ]| - ||o) and hy : (D, D, || - ||c) — R are defined by

2 1 1/2
hl(G)(p):?;(Z)) and hQ(G)z( /0 G(p)dp> .

Observe that the continuity of h; follows from the fact that f(&,) attains its (positive)
infimum for some p € [0, 1]. We conclude that

as n — oo. The result follows on noting that any bounded, continuous function from

R to R is (Borel) measurable. O

4.4 An exponential bound?

The inequality below, derived in Serfling (1980), pp. 75-76, from a lemma of Hoeffding

(1963), is crucial for obtaining the main bound of this section in Theorem 4.4.3.

Lemma 4.4.1. Let F € F, and suppose p € (0,1) is such that there ezists a unique
z € R such that F(z_) < p < F(x), where F(z_) = limy ~, F'(y). Then, for any
e>0,

P(|E,  (p) — & > ) < 272,

where §e = min{F({, +¢) —p,p—F(&§ —€)}.

Let B = {p € (0,1): there exist zy < z; satisfying F(zy) = F(z1) = p}. If p € B,

then F' is constant in a right-neighbourhood of &,, so B is countable.
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F(z)
1

P4

P3

D2

P17

Figure 4.1: A plot of a distribution function F' and the construction used in the proof

of Theorem 4.4.2.

Theorem 4.4.2. Let F' € F5, 0 > 0 and n € N. Suppose p1,...,p, are such that
pi € ((i —1)/n,i/n] and p; ¢ B fori=1,...,n. Let

n—1 1

P1
€= /0 (& +0— fp)Q dp + Z(ng—l — & + 20)2(pi+1 —pi) +/ (gp — (&n — U))2 dp.

Then
]P(dZ(Fna F)’>¢) < 2267%%@1)2,

i=1
where §,(p) = min{F(§, +0) —p,p— F(&§ —0)}.

Proof. See Figure 4.1. We write

do(Fy, F)? = / (E7(p) — &) dp

Pi+1

- /Opl(ﬁ,:l(p)—fp)QdNZ/ (B0 &) dpt / (B 0) = &) dp.
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Observe that F*(p) is constant for p € (0,p;), so that if £,, —o < ., 1(py) < &, +0,
then

/ (B ) - &) dp < / (e + 0 — &) dp.
0 0

A similar argument applies for the interval (p,, 1), and since FE,isa increasing func-

tion, it follows that for i =1,...,n — 1,

[ ) - 6) b < (G — 6+ 20011 — 90,

Pi

whenever

fpi —o< An_l(pi) < fpi +o0 and §p¢+1 —o0< An_l(pi-H) < £Pi+1 +o.

Fori=1,...,n,let
B; = {gpi —0< An_l(pi) < &, +0}'

Then by Lemma 4.4.1,

n

P(dy(Fn, )’ > €) < P(U By) < 3 B(BY) <2 $ e

i=1 i=1 i=1
where 0,(p) is as stated in the theorem. O
We are particularly interested in values of py, ..., p, satisfying

(a) p1 € (1/(2n),1/n], p, € (1 —1/n,1 —1/(2n)] and p; € (i/n, (i + 1)/n] for

1=2,...,n—1;
(b) pp¢ Bfori=1,...,n.

Theorem 4.4.3. Given any € > 0, there exists o > 0 such that for sufficiently large

n, and all py, ..., pn satisfying conditions (a) and (b) above, we have

P(do(F, F)? > €) <2 e i), (4.1)

=1
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Proof. The proof is a matter of showing that the positive ¢ in Theorem 4.4.2 can
be made arbitrarily small by choosing ¢ > 0 suitably small and n sufficiently large.

Observe that for z > 0,

PU-F@) = [ dar@) < [ Pdr),

and since F' € F,, we may apply the dominated convergence theorem to conclude
that 1 — F(z) = o(z~2) as z — oo, and similarly F(z) = o(z?) as £ — —oo. Thus
(I1-p)é; = 0asp—1and p§ — 0 as p— 0. Hence, given € > 0, we may choose

ng large enough such that

0 en ) en
Syen) < 7 ad Sayen) < 76
as well as
1/n ) € 1 ) €
| @n-era<g amd [ (G-eomrdr< g
0 8 1-1/n 8
for n > ng. For such n, and for py,. .., p, satisfying conditions (a) and (b),
n—1
> G = &) (i1 —p) < max (pins — pi) (&, — &)’

=1
2
< 5(5171/(211) - fl/(2n))2
< (& 1/m) T Eemy)

<

TR NS

Finally, choose ¢ > 0 small enough such that, for all n > ny,

1

1/n
[ enro-ara<s [ (G- wsg,

—1/n

and
n—1

Z(gpi+l - é-pi + 20’)2(pi+1 — pz) S %

i=1

Theorem 4.4.2 now completes the proof. U
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Remark: Since do(F}, F) is stochastically dominated by dy(H,(Fp), Ha(F)), the
same bound (4.1) holds for P{d,(H, (F), Hn(F))2 > ¢} under the conditions of the

theorem.

Although the bound (4.1) appears at first sight to give a very satisfactory math-
ematical answer to the original question posed in the introduction concerning the
probability of poor bootstrap performance for the sample mean, it is in fact not al-
ways the case that (4.1) is a genuine exponential bound in n. For instance, if for

x > 1 and some m > 3,
1

am—1 ’

F(r)=1-

so that F has density f(z) = (m —1)/z™ for x > 1, and &, = (1 — p)" /™= then

26_2”5"(1’”2 > =20 [*(€1-1/m) = exp(—2(m — 1)202n(m_3)/(m_1)).
i—1

Note that the power of n may be made arbitrarily close to zero by choosing m suffi-
ciently close to 3. The problems here are caused by the heavy tails in the underlying
distribution. The following result, however, gives simple conditions under which the

bound (4.1) decays exponentially in n.

Corollary 4.4.4. Suppose that the limits §o = limy\ o &, and § = limy, ~ &, exist in R,
and that F' has a density f such that f(&,) is positive and continuous for p € [0, 1].
Then given any € > 0, there exists § = d(e) > 0 such that, for all sufficiently large

n €N,
P(dg(ﬁ’n, F)? > 6) <e™™,
Proof. Let
— inf
« péI[}),l] f(fp)a

so that & > 0. Then by the mean value theorem, J,(p) > ao for each p € [0,1].

By Theorem 4.4.3 therefore, given € > 0, there exists 0 = o(e) > 0 such that, for
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sufficiently large n,

P(do(Fy, F)? > €) < 2ne 2ne%7",

Hence the result holds for any § € (0, 2a0?). O

4.5 A Large Deviations Principle?

In the light of Section 4.4, it is natural to ask whether the sequence of empirical
distribution functions (Fn) satisfies a large deviations principle (LDP) in the topology
generated by the Mallows metric. The answer is in general negative, though it is true
under certain conditions which are described in this section. First, we recall some

standard definitions and results on large deviations, which may be found in Dembo

and Zeitouni (1995).

Definition 4.5.1. Let X be a topological space. A function I : X — [0, 00] is called
a rate function if it is lower semi-continuous; that is, if for each «a € [0, 00), the level
set {x € X : I(z) < a} is closed. A good rate function is a rate function for which

the level sets are compact subsets of X .

Let A and A° denote the closure and interior, respectively, of a set A, and let B
denote the Borel o-algebra of X'. Write M (X) for the space of probability measures
on X.

Definition 4.5.2. A sequence of probability measures (u,) on (X,B) satisfies an
LDP with rate function I if, for all A C B,

1 1
— inf I(z) < liminf —log u,(A) < limsup — log u,(A) < — inf I(x).

T€EA° n—oc M n—soo N T€A

Remark: If X = R, and (p,) satisfies an LDP, we may also say that (F,) satisfies

an LDP, where F}, is the distribution function corresponding to p,. Similarly, if (X,,)
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is a sequence of random elements of X such that X, is distributed according to u,,

we may also say (X,,) satisfies an LDP in X.

If 4 and v are probability measures, we write v < p if v is absolutely continuous with
respect to p. In this case, we also write dv/du for the Radon—-Nikodym derivative of
v with respect to u. If ¢ : X — R is a bounded, continuous function, x € R and

d > 0, define an open set in M (X) by

Uss = {1/ e M(X): ‘/Xqﬁ(y) dv(y) — :1:‘ < 5}.

The collection {Uy , 5} generates the weak topology, and the Borel o-algebra in M (X'),
equipped with the weak topology, is the o-algebra generated by the open sets in the
weak topology.

Theorem 4.5.3 (Sanov’s Theorem). Let X be a complete, separable metric space,
and let u be a probability measure on X. If X4, ..., X, are independent and identically
distributed according to u, and fi, denotes their empirical measure, then the sequence
(i) satisfies an LDP in M(X), equipped with the weak topology, with good rate
function

[ G (@) log (4 (@) du(z) if v < p

o0 otherwise.

I(v) =

Proposition 4.5.4 (Contraction Principle). Let X and Y be Hausdorff spaces,
and let f : X — Y be a continuous function. If (X,,) satisfies an LDP in X with good
rate function I, then (f(Xn)) satisfies an LDP in Y with good rate function

J(y) = inf{l(z) : f(z) = y}.

Proposition 4.5.5 (Inverse Contraction Principle). Let X and Y be Hausdorff
spaces, and let f : X — Y be a continuous bijection. Suppose (X,) is a sequence of

random elements of X such that the following two conditions hold:
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(a) (f(Xn)) satisfies an LDP in Y with rate function J(y);
(b) for all o € [0,00) there exists a compact set K, in X such that

1
limsup —log P(X,, ¢ K,) < —a.
n

n—00

Then (X,) satisfies an LDP in X with good rate function I(z) = J(f(z)).

Remark: Condition (b) is usually known as exponential tightness. Since (Fy,ds) is
complete and separable, it follows from Lemma 2.6 of Lynch and Sethuraman (1987),
that exponential tightness is a necessary condition for the sequence of empirical dis-

A~

tribution functions (F},) to satisfy an LDP with a good rate function.

In trying to strengthen the topology in which we hope an LDP will hold, we therefore
first need to characterise the compact sets in (Fj,dz). This task is complicated by

the following lemma, whose proof is given in Section 4.6.

Lemma 4.5.6. For each r > 1, each F' € F, and every ¢ > 0, the closed ball
B(F,e) ={G € F, : d.(F,G) < €} is not compact.

Nevertheless, the next two lemmas, whose proofs are also deferred to Section 4.6,
provide enough compact sets to study exponential tightness in (F3,dy). In fact, we
work with compact sets in (Ga, || - ||2) for convenience. We let H denote the set of
pairs (Hy, Hs) of functions H; : (0,1) — [0,00) and Hj : (0,1) — [0,00) such that

Hi(e) > 0ase—0,and Hy(1 —€¢) - 0as e — 0.

Lemma 4.5.7. For (Hy, Hy) € H, let

€ 1
Ku, o, = {G € Gy :/ G*(p) dp < H?(€) and / G*(p) dp < HZ(1 —€) Ve € (0, 1)}
0 1—¢

Then Ky, m, is compact in (G, || - ||2)-



CHAPTER 4. THE BOOTSTRAP AND THE SAMPLE MEAN 139

Lemma 4.5.8. If K is a compact subset of (Go,| - ||2), then there exists a pair
(Hi, Hy) € H such that K C Ky, g, .

A

Theorem 4.5.9. If F' has bounded support, then the sequence (Fy) of empirical dis-

tribution functions is exponentially tight in (Fs, ds).

Proof. Tt suffices to find a pair (Hy, Hy) € H such that P(F' ¢ Ky, g,) = 0 for all
n € N. If F' has bounded support, then § = lim,\ o &, and & = lim, ~ &, exist in R.
For € € (0,1), let

Hi(€) = € max(|&), |€1]) and  Ha(e) = Hi(1 —e).
Then (Hy, Hs) € H, and
[ (@) b < emax(é e = i),

and similarly fllfe(ﬁ’gl(p))zdp < HZ(1 —€). Hence P(E; ' ¢ Ky, p,) = 0 for all
n e N O

Corollary 4.5.10. If F' has bounded support, then ds (Hn(ﬁ’n),Hn(F)) satisfies the
large deviations upper bound for semi-infinite intervals with a good rate function. In

other words, there exists a good rate function I such that, for every e > 0,

limsup%logP{dg(Hn(ﬁ’n),Hn(F)) > e} < —infI(x).

n—00 T>€

Proof. By Sanov’s theorem, Theorem 4.5.9 and the Inverse Contraction Principle, the

sequence (F,) satisfies an LDP in (F,, ds) with good rate function

7% ) o (i () AF (@) i e < i

o0 otherwise,

L(F) =

where pp and pp are the probability measures corresponding to the distribution

functions F' and F' respectively. Since the function ¢ : (F,d2) — R defined by
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Y(F") = do(F', F) is continuous, the Contraction Principle implies that dy(F},, F)

satisfies an LDP in R with good rate function
I(z) = inf{[,(F') : F' € Fy, do(F', F) = z}.

Since ds (Hn(ﬁn),Hn(F)) is stochastically dominated by dy(F), F), the result for
dy(H,(F},), Hy(F)) follows. O

We say that F' € F, has a polynomial tail if there exists an m > 2 such that
2™ (1 — F(z)) — 00 as £ — 00, or |z|™F(z) — oo as £ — —oc.

A~

Theorem 4.5.11. If F' € F, has a polynomial tail, then the sequence (F,,) of empir-
ical distribution functions is not exponentially tight in (Fz, ds).
Proof. Tt suffices to show that for any (H;, Hy) € H, we have

P ¢ Ky, m,) > e

for sufficiently large n € N. Now, we may assume without loss of generality that

xm(l — F(x)) — 00 as & — 0o, for some m > 2. Let X,y = maxi<j<n X;. Then
P(F ¢ Kuym,) > P(Xmy > n'?Ho(1—1/n)) =1 — F(n'/2Ho(1 - 1/n))".

Choose ny € N large enough such that Hy(1 —1/n) < 1 and 1 — F(n'/?) > n=™/2 for

all n > ng. Then, for n > ny,

1
nm/2

]P’(Fn_l ¢ Kyymy) > 1— F(nl/Q)n >1-— (1 _ )" >1- eXp(—n_(m/Q_l))-
But, for sufficiently large n,

1
ey (—p—(m/2=1) n
1 —exp(—n ) > ST 2 €
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Remark: In view of the remark following the statement of the Inverse Contraction
principle (Proposition 4.5.5), Theorem 4.5.11 shows that the sequence (F},) does not
satisfy an LDP in (F3, ds).

4.6 Appendix

Proof of Lemma 4.5.6.
We prove that the closed ball is not sequentially compact. Fix € > 0, F' € F,, and,
for p € (0,1), let §, = inf{z € R: F(x) > p}. Consider the sequence of distribution

functions (F,) given by

F(z) if £ <&-1/n
Fo(z)=4¢ 1—-1/n if &1/ §m<§1_1/n+6n1/r
F(z —en'/") ifz > Ei—1/n + ent/”.
Thus
& ifp<1—1/n
&+ent/™ ifp>1—1/n.
It follows that

1/r 1 1/r
d.(F,, F) = (/ \E7p) — & dp) = </ erndp> =€
1-1/n

On the other hand, we have |F,,(z) — F(z)| <1/nfor allz € Rand n € N, so if a
subsequence (F),,) satisfied d,(F,,,G) — 0 as k — oo, then we would have to have

G = F. Since d,(F,,, F) = € for all k € N, no convergent subsequence can exist. [J

Proof of Lemma 4.5.7.
Take a sequence (G,) € Kp, g,. For each m € N, choose €, € (0,1/2) such that
Hi(e) < 1/m and Hy(1 —¢€) < 1/m for each € € (0,¢,]. We claim that there exists
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an infinite subset N; of N such that

[ Gt - Gu) ap <

€1

for all ny, ny € Ny. To see why this is the case, observe first that G(e;) > —H; (61)/61/2
and G(1 —¢;) < Hy(1 — 61)/6}/2 for each G € Ky, g,. Now we may partition the
interval [¢;, 1 — €] into d equally spaced divisions and note that given any § > 0, there
exist —Hl(ﬁl)/e}/Q <zop<m <...<z4< Hy(l— 61)/61/2 and an infinite subset N;
of N such that

‘Gn (61 + 2(1 — 261)) —x;
foralli=0,1,...,dand n € N;. Fori=0,1,...,d, let p; = €; +i(1 — 2¢;)/d. Then,

<94

for ny,ny € Ny,

N

/ (G (0) =G () dp

€1

d
=1
1 H2(1—61) H1(€1) 2 H2(1 61) H1(€1) 2
S&{( a7 an ) +49( o7 7 ) 40}
<1

for sufficiently small § > 0, and sufficiently large d € N.

In a similar manner, we may find a sequence of infinite subsets (V,) of N with
N1 D Ny D ..., such that for each m € N,

1

m

/lcm (Gnl (p) - an (p))2 dp <

for all ny,ny € N,,. Now construct the diagonal subsequence (ny), by taking ny to be

the kth smallest element of Ny, for each k£ € N. The sequence (G, ) is a subsequence
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of the original sequence (G,), and is a Cauchy sequence in (G, || - ||2) because, for

k<l

JRCREEA

1
< A(HP(er) + Hy (1= e)) + 4
— 0
as k — oo. But (G, || - ||2) is complete, so (Gy, ) converges in (G, || - ||2), s0 K, m, is
sequentially compact. 0

Proof of Lemma 4.5.8.
Suppose the lemma is false. Then without loss of generality, we may assume there

exist € > 0 and a sequence (G,,) € K such that

1/n
/ G2(p)dp > .
0

Since K is compact, there exist a strictly increasing sequence (n;) € N, G € K and

ko € N such that
1
2 €
| (Gt -G dp<
0
for all k£ > ky. By restricting attention to a further subsequence if necessary, we may

assume

1/7’lk 9 €
>

[Mk+1
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for each k£ € N. But then, by Minkowski’s inequality,

(f @) i) > fj / // &*(p) dp

(/ll/nfc G, (p) dp — /”"k (G (p) — G(p))zdp>

/Nkt1 1/ng41

(-3

2

WE

k

ko

K

=~
Il
>

[=}

I
8

which contradicts the fact that G € (G, || - ||2)- O
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