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1 Introduction

Let me begin by congratulating the authors on the substantial progress that they have

made on an important and challenging problem in classification. They provide penetrating

insight into the reasons why the most obvious methods for constructing confidence intervals

for the test error have poor coverage properties, and propose an innovative and effective

solution that can readily be adopted in practice.

The focus of the paper is on linear classifiers. While this is certainly an important

family, it of course has limitations in terms of the complexity of the boundaries that can

be handled. Here, we make a first attempt at extending the scope of the methodology in

the paper to other types of classifiers.

2 Weighted nearest neighbor classifiers

In this section, we consider weighted nearest neighbor classifiers, which are especially at-

tractive here because of their relative simplicity to compute (an important feature in the

context of constructing computationally intensive confidence intervals). We will also see

that they illustrate the important issues in attempting to generalize the Adaptive Con-

fidence Intervals to other classifiers. We retain the notation used in the paper, but in

addition define the following quantities. Let PY denote the marginal distribution of Y , and

let PY (Y = 1) = π = 1 − PY (Y = −1). Suppose further that the conditional distribution
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of X given that Y = r has a p-dimensional Lebesgue density fr for r = −1, 1. Let ‖ · ‖

denote an arbitrary norm on Rp, and for a fixed x ∈ Rp, let (X(1), Y(1)), . . . , (X(n), Y(n))

denote the permutation of the pairs in T such that ‖X(1) − x‖ ≤ . . . ≤ ‖X(n) − x‖. Note

that the inequalities here are strict with probability 1. If (wni)
n
i=1 denotes a set of weights

satisfying
∑n

i=1wni = 1 (we shall also assume throughout that wni ≥ 0), then the weighted

nearest neighbor classifier is

ĉwnn(x) = sign

( n
∑

i=1

wni1{Y(i)=1} −
1

2

)

. (2.1)

This classifier was first studied by Royall (1966); see also Devroye, Györfi and Lugosi

(1996). Of course, an important special case is the celebrated k-nearest neighbor classifier

(Fix and Hodges, 1951; Cover and Hart, 1967; Hall, Park and Samworth, 2008), where

wni = 1
k
1{i≤k}. Recently, Samworth (2011) has shown that, under regularity conditions,

the asymptotically optimal weighting scheme is to choose k∗ = ⌊B∗n4/(p+4)⌋, and then set

w∗
ni =

{

1
k∗

[

1 + p
2
− p

2(k∗)2/p {i
1+2/p − (i− 1)1+2/p}

]

for i = 1, . . . , k∗

0 for i = k∗ + 1, . . . , n.
(2.2)

An explicit expression for B∗ is given in Samworth (2011). The discrete distribution on

{1, . . . , n} defined by the asymptotically optimal weights decreases in a concave fashion

when p = 1, in a linear fashion when p = 2 and in a convex fashion when p ≥ 3.

Let S = {x ∈ Rp : ψ(x) = 0}, where ψ = πf1 − (1− π)f−1, so S represents the decision

boundary of the Bayes classifier. Provided that the derivative of ψ does not vanish on S,

the set S is a (p− 1)-dimensional sub-manifold of R
p (Guillemin and Pollack, 1974, p.21).

Notice that this assumption ensures that the condition PX(X ∈ S) = 0 is satisfied.

The key insight of Laber and Murphy is that, due to the inability of asymptotic theory

or the bootstrap to adequately capture the additional variability of the test error across

training samples caused by its non-smoothness, one should bound the empirical process of

the test error on the set of points close to the decision boundary of the Bayes classifier.

To determine an appropriate partition of the domain of X into points close to, and far

from, this decision boundary in our context, we seek a hypothesis test of H0 : x ∈ S

against H1 : x /∈ S. Writing Sn(x) =
∑n

i=1wni1{Y(i)=1} and s2
n =

∑n
i=1w

2
ni, we have that

Var{Sn(x)} ≤ 1
4
s2

n, and the bound is good when x ∈ S. We therefore propose to reject H0

2



if

Tn(x) :=
{Sn(x) − 1/2}2

1
4
s2

n

>
1

an
.

An alternative, less conservative test, would reject H0 if

T̃n(x) :=
{Sn(x) − 1/2}2

Sn(x){1 − Sn(x)}
>

1

an
.

The choice of an is entirely analogous to the corresponding choice in the paper since, under

mild regularity conditions on the weights, Sn(x) is asymptotically normal.

We now require appropriate upper and lower bounds for the empirical process of the test

error on the set where we do not reject H0. This is challenging because, unlike classifiers

based on empirical risk minimization such as the linear classifiers of the paper or support

vector machines (Cortes and Vapnik, 1995; Blanchard, Bousquet and Massart, 2008), the

form of the classification boundary is not specified in advance. Nevertheless, the spirit of the

bounds in the paper is that we should consider bounds over classifiers of the same type. We

therefore propose to bound the empirical process over asymptotically optimally weighted

nearest neighbor classifiers as the number of positive weights varies over a range of possible

values. More precisely, we write ĉwnn
k for the weighted nearest neighbor classifier (2.1), with

the weights given by (2.2) but with k replacing k∗. Then

n1/2{τ̂(ĉwnn) − τ(ĉwnn)} = Gn1{Y sign{Sn(X)−1/2}<0}

≤ sup
k=k0,...,k1

Gn1{Tn(X)≤1/an}1{Y ĉwnn
k <0} + Gn1{Tn(X)>1/an}1{Y sign{Sn(X)−1/2}<0}

=: u(Gn, T , an).

Similarly, for the lower bound,

n1/2{τ̂(ĉwnn) − τ(ĉwnn)}

≥ inf
k=k0,...,k1

Gn1{Tn(X)≤1/an}1{Y ĉwnn
k <0} + Gn1{Tn(X)>1/an}1{Y sign{Sn(X)−1/2}<0}

=: ℓ(Gn, T , an).

The minor problem with the standard bootstrap approximation caused by the repeated

observations (which will typically lead to ties in computing distances) can be alleviated

by subsampling – that is, sampling without replacement rather than with replacement.

A subsample size of ⌊n/2⌋ mimics the bootstrap most closely (Freedman, 1977). Writing
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u1−δ/2 for the 1 − δ/2 quantile of the subsampling distribution of u(Gn, T , an) and ℓδ/2

for the δ/2 quantile of the subsampling distribution of ℓ(Gn, T , an), our analogue of the

100(1 − δ)% Adaptive Confidence Interval is given by

[

Pn1{Y sign{Sn(X)−1/2}<0} − n−1/2u1−δ/2 , Pn1{Y sign{Sn(X)−1/2}<0} − n−1/2ℓδ/2

]

.

3 Other classifiers and outlook

Generalizing our discussion from the previous section, it seems that the most important

questions to be answered in attempting to provide an Adaptive Confidence Interval for the

test error for other types of classifiers are the following:

(a) Can we devise a suitable hypothesis test to determine whether or not a point is close

to the decision boundary of the Bayes classifier?

(b) Is there a suitable class of classifiers, of the same type as the original, which we can

use to construct bounds on the empirical process of the test error on the set of points

which are close to the Bayes decision boundary (in the sense that we do not reject the

null hypothesis above)?

In order to be able to answer (a) in the affirmative, we need to have an understanding

of the sampling properties of our classifier (at least asymptotically, and under the null

hypothesis), since bootstrap tests do not seem obvious, and would add yet another layer of

computational complexity. Such tests are available for the linear classifiers studied in the

paper, the weighted nearest neighbor classifers in Section 2 above, or for classifiers based on

kernel density estimates of the class conditional densities (Hall and Kang, 2005). However,

for classifiers that require an iterative algorithm for computation, such as various empirical

risk minimization methods or, for example, the smoothed log-concave classifiers of Chen

and Samworth (2011), such a test seems less clear.

Regarding (b), again the answer appears to depend on the context. For instance, with

the Hall and Kang (2005) kernel classifiers, if the bandwidth matrix is a scalar multiple

h2I of the identity matrix, then choosing a range of values of h to contruct the bounds on

the empirical process would seem appropriate. For more complicated bandwidth matrices,

though, this could lead to a very computationally expensive procedure. Typically, an affir-

mative answer to (b) seems more obvious for methods based on empirical risk minimization,

where the class of decision boundaries is pre-specified.
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In this ground-breaking paper, Laber and Murphy have established a paradigm for

performing statistical inference in a difficult, non-regular problem of clear scientific impor-

tance. The desire to understand the extent to which the methodology can be extended and

developed sets a clear research agenda for the future. I look forward to witnessing, and

perhaps even contributing to, this development in the coming years.
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