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ABSTRACT  24 

Diagnostic tests for multiple myeloma reflect the criteria from the updated WHO classification 25 

based on biomarkers and clinicopathologic heterogeneity. Here we propose a new subtyping of 26 

myeloma plasma cells from diagnostic samples, assigned by normal B-cell subset associated 27 

gene signatures (BAGS).  28 

For this purpose, we combined fluorescence-activated cell sorting  and gene expression profiles 29 

from normal bone marrow PreBI, PreBII, immature, naïve, memory, and plasma cell subsets to 30 

generate BAGS for assignment of normal bone marrow subtypes in diagnostic samples. The 31 

impact of the subtypes was analyzed in eight available data set from 1772 patients’ myeloma 32 

plasma cell samples.  33 

The resulting tumor assignments in available clinical datasets exhibited similar BAGS subtype 34 

frequencies in four cohorts from de novo multiple myeloma patients across 1296 individual 35 

cases. The BAGS subtypes were significantly associated with progression-free and overall 36 

survival in a meta-analysis of 916 patients from three prospective trial cohorts with high-dose 37 

melphalan as first line therapy. The major impact was observed within the PreBII and memory 38 

subtypes, which had a significantly inferior prognosis compared to other subtypes. A multiple 39 

Cox proportional hazard analysis documented that BAGS subtypes added significant, 40 

independent prognostic information to the TC classification. BAGS subtype analysis of patient 41 

cases identified transcriptonal differences, including a number of differentially spliced genes.  42 

We identified subtype differences in myeloma at diagnosis, with prognostic impact, supporting 43 

an acquired B-cell trait and phenotypic plasticity as a pathogenetic hallmark of multiple 44 

myeloma.  45 
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INTRODUCTION 46 

Despite the extensive insight into multiple myeloma (MM) pathogenesis, as outlined in the 47 

WHO classification1,2, a number of questions remain unanswered regarding the origin, 48 

initiation, and developing myeloma cells, including its association with the normal B-cell 49 

hierarchy in the bone marrow (BM)3–6. We hypothesize that considering MM as a disease of 50 

differentiation by identifying it’s cell of origin (COO) could lead to novel biological insight and 51 

development of new treatment options as described by Boise and coauthors7.  52 

MM develops from a pre-malignant monoclonal gammopathy of unknown significance (MGUS), 53 

by a stepwise oncogenesis to intramedullary early smoldering or evolving de novo  myeloma 54 

because of acquired genetic deregulation8–10. The primary translocations implicating the 14q32 55 

locus involve a series of promiscuous target genes, with CCND1 and FGFR3/MMSET being the 56 

most frequently present at the MGUS stage11. Furthermore, the larger part of breakpoints 57 

occurs in the switch regions, suggesting the early translocation happens during IgH class-58 

switch recombination in the germinal center12–14. The existence of early translocations and the 59 

overexpression of CCND genes form the translocations and cyclin D (TC) classification 60 

generated from early events9,11. Later incidences include a spectrum of mutations and 61 

dysregulations occurring in advanced disease with poor prognosis14–19.  62 

Myeloma plasma cells (PCs) are class-switched, freezing the initiating cell at the post-63 

germinal B-cell maturation stage, refuting that the disease is initiated in earlier B-cell subsets, 64 

as have been proposed before20. The earliest IgH clonotypic cell we have identified with a class-65 

switched isotype is in the myeloma memory B-cell compartment21,22, but its clonogenic and 66 

malignant potential is a controversial issue23–26. Recent studies have concluded that they are 67 

remainings of a neoplastic cell with no malignant potential27,28, contrasting the myeloma PC 68 
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compartments. 69 

 The myeloma stem cell concept has been reviewed in detail by us and others29,30. We 70 

proposed an operational definition of COO to allow for acquisition of data supporting the 71 

existence of the myeloma stem cell, where a normal B-cell that achieve the first myeloma 72 

initiating mutation is not necessarily linearly connected to the myeloma stem cell. These results 73 

underpin the hypothesis that myeloma generating cells are present in the malignant PC 74 

compartment, but the COO is a normal counterpart of a germinal-center B cell that evolves via 75 

differentiation into a premalignant PC compartment already present in MGUS populations.  76 

The plasticity potential of myeloma cells, perhaps caused by interaction with the tumor 77 

microenvironment, also plays an important role in development and maintance of MM30.   78 

The present study takes a COO approach, where we refer to an expanding compartment 79 

initiated by a differentiation specific oncogene hit31. The terms COO and cancer stem cells have 80 

been used interchangeably. However, it is important to differentiate between them as in 81 

contrast to our phenotypic COO studies, it is our perception that cancer stem cell research 82 

depends on single cell studies in the frame of the classical stem cell definition29. 83 

The deregulated myeloma cells are under influence by the host as well as the 84 

microenvironment may be key in the emergence of myeloma and it’s related phenotypic 85 

changes. This phenomenon coined plasticity is defined as a changed cellular phenotype or 86 

function during deregulated differentiation32. More specific, this refers to malignant mature 87 

plasma cells that share properties of different maturation steps, including precursors. The 88 

phenomenon facilitates a new tool for providing insight into the observed clonal plasticity33,34 89 

associated with oncogenesis8–12,17,35–38. The mechanisms of deregulated differentiation and 90 

myeloma-cell plasticity ought to be investigated and their clinical significance assessed.  91 
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Recently, we have documented a procedure to identify and study gene expression of flow-92 

sorted human B-cell subsets from normal lymphoid tissue39–42. These subsets can be profiled 93 

and by proper statistical modeling define specific B-cell associated gene signatures (BAGS), 94 

recently introduced for DLBCL43–45. Here we have applied BAGS from normal BM subsets to 95 

assign individual MM subtypes and correlate them with prognosis to delineate their 96 

pathogenetic impact. 97 

  98 
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PATIENTS, MATERIAL, AND METHODS 99 

The subtyping method based on normal BM has previously been briefly outlined in Nørgaard 100 

et al.46 and applied to Chronic Lymphocytic Leukemia patients. In this paper we will describe it 101 

in more detail and with provide more profound quality controle of the normal samples. 102 

Ethical statement and tissue analysis 103 

All normal tissue samples were collected in accordance with the research protocol (MSCNET, 104 

N-20080062MCH) accepted by the North Denmark Regional Committee on Health Research 105 

Ethics.  106 

Normal BM was harvested from either sternum (n = 7) during cardiac surgery or taken as 107 

aspirates from the iliac crest of healthy volunteers (n = 14). The normal B-cell subsets were 108 

phenotyped by multiparametric flow cytometry (MFC) and fluorescence-activated cell sorting 109 

(FACS) into six distinct B-cell subsets (PreBI, PreBII, immature (Im), naïve (N), memory (M) B-110 

cells, and PCs) using a monoclonal antibody panel44. Gene expression profiles (GEP) for the 111 

sternal samples were generated using Affymetrix Exon 1.0 ST while GEP for the iliac crest 112 

samples were generated using either Affymetrix Exon 1.0 ST (n = 8) or U133 plus 2.0 (n = 6) 113 

arrays. Details on MFC, FACS, and GEP  are described in the Supplementary text 1  114 

Clinical myeloma data sets  115 

Data originated from Affymetrix microarray analysis of PC-enriched myeloma samples, from 116 

four controlled trials: UAMS, HOVON65/GMMG-HD4, MRC Myeloma IX (all U133 plus 2.0), and 117 

APEX (U133A arrays)35,36,47–50 as well as a preclinical study: IFM-DFCI37,51 (Human Exon 1.0 ST 118 

arrays) as described in Supplementary text 1. 119 

Statistical analysis  120 

All statistical analyses were performed with R version 3.4.3 using Bioconductor packages52,53. 121 
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Below is a summary of the statistical analysis; for full documentation see Supplementary text 1 122 

and detailed session information provided as a Knitr document54 in the Supplementary text 2.  123 

The arrays were cohort-wise background corrected, normalized, and summarized by Robust 124 

Multichip Average55. 125 

BAGS subtyping was build on median-centered gene expression profiles from the sternal 126 

BM data summarized at ENSG gene IDs, using regularized multinomial regression, with five 127 

discrete outcomes one for each B-cell subset and elastic net penalty56. The number of features 128 

available in the training of the classifier was prefiltered to only include genes probed by all 129 

microarray platforms used in the clinical validation data. Penalization parameters were tuned 130 

by leave one out cross validation. To compensate for cohort-wise technical batch effects, each 131 

clinical cohort was probe-set-wise median-centered and adjusted to have the same variance as 132 

in the sternal BM data. Each patient was BAGS classified according to the class with the highest 133 

predicted probability score above 0.40 or otherwise unclassified (Figure S1). The robustness 134 

of the probability cut-off were thoroughly tested (Supplementary text 2, Section 11.1). TC 135 

classification was done directely on the RMA normalized samples according to Bergsagel et al.’s 136 

algorithm9. 137 

Kaplan–Meier curves, log-rank tests, and simple and multiple Cox proportional hazards 138 

regression were used for survival analsyis. The cohorts ivolving patients from three 139 

prospective trial cohorts with high-dose melphalan as first line therapy were amalgamated into 140 

a meta-dataset to increase the power of the study. BAGS subtypes as an independent 141 

explanatory variable was investigated in the meta-dataset by a Cox proportional hazards 142 

regression analysis with BAGS subtypes, TC classes, and cohort as potential confounders. 143 

Harell’s C-statistic for overall survival was calculated from predicted values from the 144 
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multivariate Cox model with and without inclusion of the BAGS classes to asses the prognostic 145 

utility. 146 

The samples were assigned resistance probabilities for the drug melphalan by resistance 147 

gene signature (REGS) classifiers57–61.  148 

The significance level was set throughout to 0.05, and effect estimates were provided with 149 

95% confidence intervals. P-values for the differential gene expression and alternative splice 150 

analyses were adjusted by Holm’s method62. 151 

RESULTS 152 

BAGS classifier generation and clinical sample assignment  153 

The data quality of the differentiating B-cell subset compartments of the sternal BM was 154 

individually validated as illustrated by density plots from MFC analysis (Figure 1A) and 155 

principal component analysis (Figure 1B) of the mean fluorescence intensities (MFIs) of the 156 

CD markers used for FACS; unsupervised cluster analysis was also conducted for the gene 157 

expression values of the membrane CD markers used for FACS (Figure 1C, previously shown 158 

in Nørgaard et al.46) and 45 classical B-cell markers summarized from a literature search 159 

(Figure 1D). Subset-specific segregation was further documented by principal component 160 

analysis (Figure S2A-B). 161 

The BAGS classifiers with the smallest deviance determined by cross validation consisted 162 

of 184 genes, for details see Supplementary text 1 and Figure S3. Each B-cell subset signature 163 

contained 27–54 genes, ensuring comparable gene representation for all subsets in the BAGS 164 

classifier. The selected genes and associated coefficents for the BAGS signatures are shown in 165 

Table S1 (previously shown in Nørgaard et al.46). The expressed signatures included 51 genes 166 

associated with specific B-cell functions, 79 specific genes with more fundamental biological 167 
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associations, and 24 probes with unknown gene functions (Table S2A-F). 168 

We subsequently validated the BAGS classifier, which was trained using GEP data from 169 

Human Exon 1.0 ST Arrays, on independent normal B-cell subsets from BM aspirates from the 170 

iliac crest profiled using either Human Exon 1.0 ST or U133 plus 2.0 arrays, and found 171 

concordant assignments for both platforms (Table S3). This documented the cross-platform 172 

validity of the classifier, allowing it’s use in clinical data with GEP originating from other 173 

platforms. 174 

Microarray data from four independent cohorts (n = 1296) of de novo MM patients were 175 

assigned for BAGS subtypes. Table 1 shows the resulting assignment of the tumors and 176 

exhibited BAGS subtype frequencies and average percentage for PreBI = 1%, PreBII = 6%, Im = 177 

11%, N = 23%, M = 41%, and PC = 4%, with no significant variation between the cohorts from 178 

different geographical regions, time periods, or sampling methods (P = 0.9). We allow 15% of 179 

cases within each cohort to be unclassified, resulting in a probability cut-off of approximately 180 

0.40. The distribution of the TC classes within the BAGS subtypes is given in Table 1, with 181 

significant association identified (P < 0.001). There was also significant correlation with ISS 182 

staging (P = 0.032), with increased numbers of the PreBII and M subtypes associated with ISS 183 

stage III, as shown in Table 1. BAGS, proliferation index, and melphalan resistance assignments 184 

for all samples used in the analyses are provided in Supplementary data, Table S4A-H. 185 

Prognostic impact of assigned BAGS subtypes  186 

Figure 2A-B illustrates the results from a meta-analysis of the 916 patients included in the 187 

three prospective trial cohorts with high-dose melphalan as first line therapy (UAMS, 188 

HOVON65/GMMG-HD4, and MRC Myeloma IX) with the Affymetrix U133 plus 2.0 microarray 189 

data available, documenting that the assigned BAGS subtypes were significantly associated with 190 



B-cell subset phenotype classification of MM subtypes 

10 

 

progression-free (PFS) and overall survival (OS) (PFS, log-rank test, P <  0.001; OS, log-rank test P 191 

<  0.001). Major impact was observed within patient cohorts with the PreBII and M subtypes, 192 

which had a significantly inferior prognosis compared to the patients with Im, N, and PC 193 

subtypes. 194 

The robustness of the BAGS association with outcome was successfully evaluated for a 195 

wide range of probability cut-offs for the percentage of unclassified cases (Supplementary text 196 

2, Section 11.1). The BAGS-assigned MM subtypes in the individual clinical trial data sets 197 

UAMS/TT2&3, HOVON/GMMG-HD4, and MRCIX, all including HDM and a variety of new drugs, 198 

were also separately analyzed for outcome following treatment as illustrated in Figure S4A-H. 199 

Results from the individual datasets were in accordance with the above described meta-200 

analysis illustrated in Figure 2A-B.  201 

Cox proportional hazard meta-analysis results, as shown in Table 2 and Harell’s C-202 

statistic, giving the concordance between observed survival and predicted risk scores from the 203 

a multivariate cox model with (C = 0.65) and without (C = 0.59) BAGS classes, demonstrated 204 

that the BAGS subtypes added significant and independent prognostic information to the 205 

already well-established TC classification. In addition, we found significant correlation between 206 

the BAGS subtypes and the proliferation index (PI) risk profiling (P <  0.001), melphalan 207 

resistance probability (P < 0.001), and beta-2 microglobulin plasma level (P <  0.001) as 208 

illustrated in Figure 3A-C, respectively. Results in these figures are done on a combined dataset 209 

adjusted for differences in individual datasets, while results for individual datasets may be 210 

found in Supplementary text 1,  Figure S5A-C.  211 

BAGS assignment of MGUS, smoldering myeloma, MM, extramedullary MM, and 212 
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myeloma cell lines 213 

Available data sets were used for BAGS assignment of associated myeloma diseases, as shown 214 

in Table S5A. Of interest, five of six plasma cell leukemia cases were M subtypes, indicating a 215 

subtype evolution or selection for advanced disease. In contrast, MGUS cases had a significantly 216 

high frequency (> 50%) of N subtypes, which was different from smoldering myeloma and 217 

newly diagnosed and relapsed MM. The distribution of M component isotypes showed no 218 

significant differences across BAGS subtypes, except for a tendency for LCD to be 219 

overrepresented in the post germinal subtypes as shown in Table S5B. Frequencies of BAGS 220 

subtypes in relapsed MM patients from the APEX dataset (Table S5C) were similar to the 221 

frequencies in first line patients shown in Table 1. Finally, we observed that 9 out of 12 human 222 

myeloma cancer cell lines were classified as PC subtypes (Table S6).  223 

Characterization of BAGS subtypes  224 

Differential expression analysis of BAGS subtypes with poor prognosis (Pre-BII or Memory vs 225 

the rest) identified hundreds of genes with a highly significant differential expression as given 226 

in Table S7A-B for the Pre-BII and Memory subtypes, respectively. GO enrichment of 227 

significant genes showed that the Pre-BII subtype myelomas are enriched for the categories 228 

mitotic cell cycle, nuclear division and DNA-dependent DNA replication (Table S8A), and 229 

Memory subtype myelomas are enriched for the categories cell-cell signaling, synaptic 230 

transmission, multicellular organismal process (Table S8B). For more detail see 231 

Supplementary text 1. 232 

Finally, in order to detect whether the Pre-BII and Memory subtypes showed alternative 233 

splicing patterns associated with oncogenesis, we investigated alternative exon usage in the 234 

IFM-DFCI data set. Results suggested Pre-BII-specific alternative exon usage for 16 genes 235 
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(Table S9A), which were especially associated with biological processes involved in cell cycle 236 

regulation (Table S10A). In Memory subtype cases, we only identified 2 candidate genes with 237 

potential alternative exon usage (Table S9B) associated with basic cell functions including 238 

regulation of programmed cell death, metabolism, and signaling transduction (Table S10B). 239 

Comparison to alternative exon usage patterns detected in non-malignant samples (Table 240 

S11) indicated that the majority of events were specific to malignant samples, suggesting 241 

association to oncogenesis.  242 
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DISCUSSION 243 

We have phenotyped distinct cellular subsets of B-cells in the normal BM to generate a BAGS 244 

classifier and have documented that the assigned subtypes have prognostic impact.  245 

A probability estimate for each sample to be assigned to each of the six BAGS subtypes was 246 

provided. Samples with very low classification probabilities were labeled as unclassified. The 247 

frequency of unclassified samples in other gene expression–based COO classifications is around 248 

15%17. A pragmatic probability cut-off of 0.40 was used, which is well above the random 249 

assignment probability of one out of six, to ensure that 85% of the samples would be BAGS-250 

subtypes. The robustness of the BAGS association with outcome was successfully assessed for 251 

a wide series of probability cut-offs.  252 

The present study was whenever possible conducted according to guidelines of –omics-253 

directed medicine, e.g. McShane et al.63, REMARK64, and MIAME65. However, it is worth noting 254 

that the BAGS classifier used cohort-based normalization, which implies that it cannot 255 

practically be used in a clinical set-up where patients show up one at a time. Remedies to this 256 

problem have been proposed elsewhere66 and were not further pursued here.  257 

The assignment of BAGS subtypes to MM may explain an inter-individual disease heterogeneity, 258 

which could reflect the association between cellular differentiation and oncogenesis27,67–69. A 259 

standardized flow cytometry immunophenotyping of hematological malignancies, illustrates 260 

the potential clinical application of surface expressed markers to identify diagnostic tumor 261 

clones70. Such a strategy has allowed new studies of normal PC heterogeneity by 262 

differentiation6,10,71.  263 

MM is an example of a malignant disease that has been studied intensively with 264 

microarrays. Many peer-reviewed papers have documented new classification systems based 265 
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on gene expression profiles to correlate with biology and prognosis1,8–12. The present work 266 

addresses a need to study a new diagnostic platform defined by the molecular classification of 267 

BAGS in MM, as for DLBCL43,72. In accordance with our studies in DLBCL, where we applied the 268 

whole lymphoid differentiation compartment from tonsils or normal lymph nodes, we 269 

prospectively analyzed the lymphoid subset–defined compartments from normal BM to 270 

generate six BAGS for MM assignment. The idea was that the COO concept would hold true also 271 

for MM and assign subtypes from the post-germinal differentiation pathway. To our surprise, a 272 

major fraction of patient tissues were assigned a PreBII, Im, or N subtype, disproving the 273 

subtyping to be true reminiscence of the origin from a germinal or post germinal phenotype. 274 

Given the phenotypic variation among MGUS, smoldering myeloma, MM, MM relapse, 275 

extramedullary MM, plasma cell leukemia, and human myeloma cancer cell lines, it is more 276 

likely that BAGS assignment does classify MM cases based on reversible phenotypic plasticity33.  277 

The BAGS classification is correlated to the well-established TC classification; however, 278 

we found that the poor prognosis for PreBII and memory subtypes correlated with the myeloma 279 

cell PI and the beta-2 microglobulin plasma, but not gene expression level. PI and beta-2 280 

microglobulin is historically the most important and persistent biomarker in different trials, 281 

independent of the evolving therapy. The mechanisms behind these prognostically useful 282 

markers are unknown but should now be studied to understand their pathogenetic impact.  283 

Our detection of alternative exon usage suggested subtype specific patterns, supporting 284 

that the BAGS phenotyping is based on biological processes. Alternatively spliced candidate 285 

genes detected in the Pre-BII subtype revealed an overrepresentation of genes involved in cell 286 

cycle regulation and increased proliferation, such as GTSE1, PKMYT1, BIRC5, and AURKB , 287 

suggesting an association with altered cell cycle regulation and proliferation. However, 288 
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detected alternative exon usage of candidate genes needs to be experimentally validated and 289 

confirmed.  290 

HDM forms the basis of MM treatment73. However, patients with refractory or relapsed 291 

diseases represent a large unmet need for drug-specific predictive tests and precise companion 292 

diagnostics57–61. This need can be exemplified by REGS and BAGS classification with predictive 293 

information to guide therapy. The current analyses indicate that such information is available 294 

at diagnosis (Figure 3B and Figure S5B) and could be used for identification of candidates for 295 

more precise strategies. Collectively, this result indicates BAGS subtypes experiences different 296 

clinical tracks and drug resistant mechanisms, and maybe even different molecular 297 

pathogenesis. We believe our results support the future inclusion of gene expression profiling 298 

in randomized prospective clinical trials aimed at improving MM treatment.  299 

BAGS classification divided de novo MM patients into so-far-unrecognized, differentiation-300 

dependent prognostic groups. These prognostic analyses and observations support the idea 301 

that BAGS classification in MM may contribute with pathogenetic information, especially in 302 

attempts to understand the biology behind the classical and still meaningful biomarkers PI and 303 

beta-2 microglobulin. Most importantly, the classification included pregerminal subtypes, 304 

pointing at a reversible phenotypic plasticity in myeloma PCs. Prospective future studies are 305 

needed to prove the concept using clinical endpoints, including prediction of therapeutic 306 

outcome. 307 
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TABLES AND FIGURE LEGENDS 515 

 516 

Table 1 BAGS defined subtype analysis. 

Frequencies across data sets (P= 0.90). 

Group PreBI 

(%) 

PreBII 

(%) 

Im (%) N (%) M (%) PC (%) UC (%) Sum 

UAMS 3 (1) 29 (5) 58 (10) 143 (26) 219 (39) 23 (4) 84 (15) 559 

Hovon 65 2 (1) 19 (6) 45 (14) 61 (19) 134 (42) 11  48 (15) 320 

Myeloma IX 1 (0) 14 (6) 23 (9) 59 (24) 105 (43) 8 (3) 37 (15) 247 

IFM-DFCI 2 (1) 11 (6) 21 (12) 38 (22) 68 (40) 4 (2) 26 (15) 170 

Sum* 8 (1) 75 (6) 147 (11) 302 (23) 528 (41) 46 (4) 196 (15) 1296 

 

Association with the TC classification (P< 0.001). 

Group PreBI 

(%) 

PreBII 

(%) 

Im (%) N (%) M (%) PC (%) UC (%) Sum 

4p16 1 (1) 21 (12) 7 (4) 45 (25) 78 (44) 3 (2) 22 (12) 177 

MAF 2 (2) 4 (5) 12 (15) 25 (30) 31 (38) 1 (1) 7 (9) 82 

6p21 1 (1) 2 (2) 12 (14) 19 (22) 36 (42) 2 (2) 14 (16) 86 

11q13 0 (0) 3 (2) 11 (7) 46 (29) 81 (51) 4 (2) 15 (9) 160 

D1 2 (0) 11 (3) 63 (15) 89 (21) 157 (37) 19 (5) 81 (19) 422 
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D1plusD2 0 (0) 4 (20) 2 (10) 2 (10) 9 (45) 0 (0) 3 (15) 20 

D2 1 (1) 16 (13) 12 (10) 15 (12) 53 (44) 7 (6) 17 (14) 121 

Unclassifie

d 1 (0) 12 (5) 28 (12) 60 (26) 81 (36) 10 (4) 36 (16) 228 

Sum 8 (1) 73 (6) 147 (11) 301 (23) 526 (41) 46 (4) 195 (15) 

129

6 

 

ISS stage III with increased frequencies in  the PreBII and M subtypes. (P= 0.032). 

Group PreBI 

(%) 

PreBII 

(%) 

Im (%) N (%) M (%) PC (%) UC (%) Sum 

Stage I 2 (0) 8 (2) 51 (12) 115 (28) 149 (36) 18 (4) 72 (17) 415 

Stage II 1 (0) 18 (7) 25 (9) 65 (24) 105 (39) 15 (6) 39 (15) 268 

Stage III 2 (1) 19 (10) 22 (11) 33 (17) 89 (46) 5 (3) 23 (12) 193 

NA 1 (0) 17 (7) 28 (11) 50 (20) 115 (46) 4 (2) 35 (14) 250 

Sum 6 (1) 62 (6) 126 (11) 263 (23) 458 (41) 42 (4) 169 (15) 1126 

The BAGS-defined subtype analysis was performed across 4 different clinical cohorts (N = 1296 517 

cases) following assignment of the data sets according to the restricted multinomial classifier.  518 

  519 
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 520 

Table 2 Cox proportional hazards regression analysis. 

Combined PFS, n = 642, number of events = 311 

 Hazard ratio 95% CI P value Hazard ratio 95% CI P value 

Pre-BII 1 - - 1 - - 

Immature 0.45 (0.26-0.76) 0.0032 0.48 (0.28-0.83) 0.0085 

Naive 0.41 (0.25-0.66) < 0.001 0.39 (0.24-0.63) < 0.001 

Memory 0.61 (0.39-0.95) 0.027 0.58 (0.37-0.92) 0.02 

Plasmacell 0.28 (0.13-0.6) < 0.001 0.3 (0.14-0.64) 0.0018 

4p16 1 - - 1 - - 

MAF 0.47 (0.29-0.77) 0.0026 0.53 (0.32-0.86) 0.011 

6p21 0.23 (0.07-0.73) 0.013 0.17 (0.05-0.54) 0.0027 

11q13 0.36 (0.26-0.52) < 0.001 0.31 (0.22-0.45) < 0.001 

D1 0.35 (0.26-0.47) < 0.001 0.3 (0.22-0.41) < 0.001 

D1plusD2 0.27 (0.12-0.63) 0.0024 0.27 (0.12-0.62) 0.0021 

D2 0.38 (0.25-0.57) < 0.001 0.25 (0.16-0.39) < 0.001 

Hovon65 1 - - 1 - - 

MyelomaIX 1.16 (0.84-1.6) 0.38 1.15 (0.83-1.59) 0.41 

UAMS 0.37 (0.29-0.48) < 0.001 0.33 (0.26-0.42) < 0.001 

       

Combined OS, n= 642, number of events= 236 

 Hazard ratio 95% CI P value Hazard ratio 95% CI P value 

Pre-BII 1 - - 1 - - 

Immature 0.31 (0.18-0.51) < 0.001 0.36 (0.21-0.62) < 0.001 

Naive 0.19 (0.12-0.3) < 0.001 0.19 (0.12-0.31) < 0.001 

Memory 0.33 (0.22-0.5) < 0.001 0.34 (0.23-0.52) < 0.001 
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Plasmacell 0.1 (0.03-0.28) < 0.001 0.11 (0.04-0.32) < 0.001 

4p16 1 - - 1 - - 

MAF 0.53 (0.3-0.93) 0.027 0.59 (0.34-1.05) 0.072 

6p21 0.43 (0.13-1.36) 0.15 0.51 (0.16-1.65) 0.26 

11q13 0.48 (0.33-0.71) < 0.001 0.51 (0.35-0.76) < 0.001 

D1 0.37 (0.26-0.51) < 0.001 0.39 (0.28-0.55) < 0.001 

D1plusD2 0.41 (0.17-1.02) 0.056 0.31 (0.12-0.78) 0.013 

D2 0.53 (0.34-0.83) 0.0056 0.47 (0.3-0.75) 0.0014 

Hovon65 1 - - 1 - - 

MyelomaIX 1.23 (0.81-1.85) 0.33 1.24 (0.82-1.88) 0.31 

UAMS 0.91 (0.68-1.21) 0.5 0.87 (0.65-1.17) 0.35 

Cox proportional hazards regression analysis in the meta data set for BAGS subtypes based on 521 

PFS and OS, demonstrating added independent significance to the TC classification staging 522 

system. Columns on the left show results for a univariate analysis with each of the covariates, 523 

while columns on the right show results from the multivariate model. The Pre-BI class was 524 

dropped from the analysis due to, too few observations in this group. 525 

  526 
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FIGURE LEGENDS  527 

Figure 1A-D Expression of membrane markers, transcription factors, and B-cell subset-528 

specific genes in normal BM tissue. 529 

A) B-cells of the BM were defined by flow cytometry as CD19+, CD45+, and CD3− and were 530 

additionally divided by surface marker expression of CD10, CD20, CD27, CD38, and CD34, 531 

published in detail previously44.  532 

The data quality of the differentiating B-cell subset compartments was validated as illustrated 533 

by normalized histograms of (A) the mean fluorescence intensities (MFIs) CD markers based 534 

on merged MFC reanalysis of pure sorted populations resulting from seven independent sorting 535 

procedures. Broken lines represents MFI values for each sorted B-cell subset.  536 

B) Principal component analysis of the MFI values for each sorted cell in all samples. The cells 537 

are coded with a color according to their original subset. The dots represents mean values for 538 

each sorted B-cell subset.  539 

C) The most variable probe sets were used in unsupervised hierarchical clustering analysis of 540 

the surface markers MME = CD10, CD34, CD38, CD27, PTPRC = CD45, MS4A = CD20 and CD19 541 

used for FACS. 542 

D) B-cell differentiation–specific genes (n = 45), summarized from a literature review of 543 

transcriptional regulation of B lymphopoiesis. The colors at the top of D indicate the relative 544 

gene expression for each sample, with blue representing high and brown representing low.  545 

  546 
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Figure 2A-B Meta-analysis of the prognostic impact of assigned BAGS subtypes.  547 

Progression-free (A) and overall survival (B) were compared between BAGS subtypes for high-548 

dose melphalan–treated patients in published clinical trials. P-values are results from log-rank 549 

tests. The subtypes numbers given as n are the numbers of events/number of assigned patients 550 

with the subtypes in the meta data set. The BAGS subtypes are color coded as in Figure 1A-D. 551 

 552 

 553 

Figure 3A-C: BAGS subtype boxplots with correlation to proliferation, melphalan 554 

resistance, and beta-2 microglobulin. 555 

The individual adjusted proliferation index (PI) risk profiling (A), melphalan drug resistance 556 

probability (index) (B), and beta-2 microglobulin plasma level (C), respectively per BAGS 557 

subtype cases from analysis of the meta dataset. The BAGS subtypes are color coded as in 558 

Figure 1A-D. 559 

 560 
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