A MULTIPLE MYELOMA CLASSIFICATION SYSTEM THAT ASSOCIATES NORMAL B-CELL SUBSET PHENOTYPES WITH PROGNOSIS

Authors:

*Julie Støve Bødker¹; *Rasmus Froberg Brøndum¹; *Alexander Schmitz¹; Anna Amanda Schönherz¹²; Ditte Starberg Jespersen¹; Mads Sønderkær¹; Charles Vesteghem¹²; Hanne Due Rasmussen¹; Caroline Holm Nørgaard¹; Martin Perez-Andres¹²; Mehmet Kemal Samur³; Faith Davies⁴; Brian Walker⁴; Charlotte Pawlyn⁵; Martin Kaiser⁵; David Johnson⁵; Uta Bertsch⁶; Annemiek Broyl⁷; Mark van Duin⁷; Rajen Shah⁸; Preben Johansen⁹; Martin Agge Nørgaard¹⁰; Richard Samworth⁸; Pieter Sonneveld⁷; Hartmut Goldschmidt⁶; Gareth J. Morgan⁴; Alberto Orfao²; Nikhil Munshi³; Tarec El-Galaly¹¹¹²; **Karen Dybkær¹¹¹²; and **Martin Bøgsted¹¹¹²

*Shared first authorship **Shared senior authorship.

Affiliations:

¹Department of Haematology, Aalborg University Hospital, Aalborg, Denmark; ²Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain; Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA; ⁴UAMS Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; ⁵Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom; ⁶National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany; ⁷Department of Haematology, Erasmus MC, Rotterdam, Netherlands; ⁸Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom; ⁹Department of Haematopathology, Aalborg University Hospital, Aalborg, Denmark; ¹⁰Department of Cardiothoracic Surgery, Aalborg University Hospital, Denmark; ¹¹Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark, ¹²Department of Clinical Medicine, Aalborg University, Denmark.
ABSTRACT

Diagnostic tests for multiple myeloma reflect the criteria from the updated WHO classification based on biomarkers and clinicopathologic heterogeneity. Here we propose a new subtyping of myeloma plasma cells from diagnostic samples, assigned by normal B-cell subset associated gene signatures (BAGS).

For this purpose, we combined fluorescence-activated cell sorting and gene expression profiles from normal bone marrow PreBI, PreBII, immature, naïve, memory, and plasma cell subsets to generate BAGS for assignment of normal bone marrow subtypes in diagnostic samples. The impact of the subtypes was analyzed in eight available data set from 1772 patients’ myeloma plasma cell samples.

The resulting tumor assignments in available clinical datasets exhibited similar BAGS subtype frequencies in four cohorts from de novo multiple myeloma patients across 1296 individual cases. The BAGS subtypes were significantly associated with progression-free and overall survival in a meta-analysis of 916 patients from three prospective trial cohorts with high-dose melphalan as first line therapy. The major impact was observed within the PreBII and memory subtypes, which had a significantly inferior prognosis compared to other subtypes. A multiple Cox proportional hazard analysis documented that BAGS subtypes added significant, independent prognostic information to the TC classification. BAGS subtype analysis of patient cases identified transcriptonal differences, including a number of differentially spliced genes.

We identified subtype differences in myeloma at diagnosis, with prognostic impact, supporting an acquired B-cell trait and phenotypic plasticity as a pathogenetic hallmark of multiple myeloma.
INTRODUCTION

Despite the extensive insight into multiple myeloma (MM) pathogenesis, as outlined in the
WHO classification1,2, a number of questions remain unanswered regarding the origin,
initiation, and developing myeloma cells, including its association with the normal B-cell
hierarchy in the bone marrow (BM)3–6. We hypothesize that considering MM as a disease of
differentiation by identifying it’s cell of origin (COO) could lead to novel biological insight and
development of new treatment options as described by Boise and coauthors7.

MM develops from a pre-malignant monoclonal gammopathy of unknown significance (MGUS),
by a stepwise oncogenesis to intramedullary early smoldering or evolving \textit{de novo} myeloma
because of acquired genetic deregulation8–10. The primary translocations implicating the 14q32
locus involve a series of promiscuous target genes, with \textit{CCND1} and \textit{FGFR3/MMSET} being the
most frequently present at the MGUS stage11. Furthermore, the larger part of breakpoints
occurs in the switch regions, suggesting the early translocation happens during IgH class-
switch recombination in the germinal center12–14. The existence of early translocations and the
overexpression of \textit{CCND} genes form the translocations and cyclin D (TC) classification
generated from early events9,11. Later incidences include a spectrum of mutations and
dysregulations occurring in advanced disease with poor prognosis14–19.

Myeloma plasma cells (PCs) are class-switched, freezing the initiating cell at the post-
germinial B-cell maturation stage, refuting that the disease is initiated in earlier B-cell subsets,
as have been proposed before20. The earliest IgH clonotypic cell we have identified with a class-
switched isotype is in the myeloma memory B-cell compartment21,22, but its clonogenic and
malignant potential is a controversial issue23–26. Recent studies have concluded that they are
remainings of a neoplastic cell with no malignant potential27,28, contrasting the myeloma PC
compartments.

The myeloma stem cell concept has been reviewed in detail by us and others29,30. We proposed an operational definition of COO to allow for acquisition of data supporting the existence of the myeloma stem cell, where a normal B-cell that achieve the first myeloma initiating mutation is not necessarily linearly connected to the myeloma stem cell. These results underpin the hypothesis that myeloma generating cells are present in the malignant PC compartment, but the COO is a normal counterpart of a germinal-center B cell that evolves via differentiation into a premalignant PC compartment already present in MGUS populations.

The plasticity potential of myeloma cells, perhaps caused by interaction with the tumor microenvironment, also plays an important role in development and maintenance of MM30.

The present study takes a COO approach, where we refer to an expanding compartment initiated by a differentiation specific oncogene hit31. The terms COO and cancer stem cells have been used interchangeably. However, it is important to differentiate between them as in contrast to our phenotypic COO studies, it is our perception that cancer stem cell research depends on single cell studies in the frame of the classical stem cell definition29.

The deregulated myeloma cells are under influence by the host as well as the microenvironment may be key in the emergence of myeloma and its related phenotypic changes. This phenomenon coined plasticity is defined as a changed cellular phenotype or function during deregulated differentiation32. More specific, this refers to malignant mature plasma cells that share properties of different maturation steps, including precursors. The phenomenon facilitates a new tool for providing insight into the observed clonal plasticity33,34 associated with oncogenesis8-12,17,35-38. The mechanisms of deregulated differentiation and myeloma-cell plasticity ought to be investigated and their clinical significance assessed.
Recently, we have documented a procedure to identify and study gene expression of flow-sorted human B-cell subsets from normal lymphoid tissue39–42. These subsets can be profiled and by proper statistical modeling define specific B-cell associated gene signatures (BAGS), recently introduced for DLBCL43–45. Here we have applied BAGS from normal BM subsets to assign individual MM subtypes and correlate them with prognosis to delineate their pathogenetic impact.
PATIENTS, MATERIAL, AND METHODS

The subtyping method based on normal BM has previously been briefly outlined in Nørgaard et al. and applied to Chronic Lymphocytic Leukemia patients. In this paper we will describe it in more detail and with provide more profound quality controle of the normal samples.

Ethical statement and tissue analysis

All normal tissue samples were collected in accordance with the research protocol (MSCNET, N-20080062MCH) accepted by the North Denmark Regional Committee on Health Research Ethics.

Normal BM was harvested from either sternum (n = 7) during cardiac surgery or taken as aspirates from the iliac crest of healthy volunteers (n = 14). The normal B-cell subsets were phenotyped by multiparametric flow cytometry (MFC) and fluorescence-activated cell sorting (FACS) into six distinct B-cell subsets (PreBI, PreBII, immature (Im), naïve (N), memory (M) B-cells, and PCs) using a monoclonal antibody panel. Gene expression profiles (GEP) for the sternal samples were generated using Affymetrix Exon 1.0 ST while GEP for the iliac crest samples were generated using either Affymetrix Exon 1.0 ST (n = 8) or U133 plus 2.0 (n = 6) arrays. Details on MFC, FACS, and GEP are described in the Supplementary text 1.

Clinical myeloma data sets

Data originated from Affymetrix microarray analysis of PC-enriched myeloma samples, from four controlled trials: UAMS, HOVON65/GMMG-HD4, MRC Myeloma IX (all U133 plus 2.0), and APEX (U133A arrays) as well as a preclinical study: IFM-DFCI (Human Exon 1.0 ST arrays) as described in Supplementary text 1.

Statistical analysis

All statistical analyses were performed with R version 3.4.3 using Bioconductor packages.
Below is a summary of the statistical analysis; for full documentation see Supplementary text 1 and detailed session information provided as a Knitr document54 in the Supplementary text 2.

The arrays were cohort-wise background corrected, normalized, and summarized by Robust Multichip Average55.

BAGS subtyping was built on median-centered gene expression profiles from the sternal BM data summarized at ENSG gene IDs, using regularized multinomial regression, with five discrete outcomes one for each B-cell subset and elastic net penalty56. The number of features available in the training of the classifier was prefiltered to only include genes probed by all microarray platforms used in the clinical validation data. Penalization parameters were tuned by leave one out cross validation. To compensate for cohort-wise technical batch effects, each clinical cohort was probe-set-wise median-centered and adjusted to have the same variance as in the sternal BM data. Each patient was BAGS classified according to the class with the highest predicted probability score above 0.40 or otherwise unclassified (Figure S1). The robustness of the probability cut-off were thoroughly tested (Supplementary text 2, Section 11.1). TC classification was done directly on the RMA normalized samples according to Bergsagel et al.’s algorithm9.

Kaplan–Meier curves, log-rank tests, and simple and multiple Cox proportional hazards regression were used for survival analysis. The cohorts involving patients from three prospective trial cohorts with high-dose melphalan as first line therapy were amalgamated into a meta-dataset to increase the power of the study. BAGS subtypes as an independent explanatory variable was investigated in the meta-dataset by a Cox proportional hazards regression analysis with BAGS subtypes, TC classes, and cohort as potential confounders. Harell’s C-statistic for overall survival was calculated from predicted values from the
multivariate Cox model with and without inclusion of the BAGS classes to assess the prognostic utility.

The samples were assigned resistance probabilities for the drug melphalan by resistance gene signature (REGS) classifiers\(^57-61\).

The significance level was set throughout to 0.05, and effect estimates were provided with 95% confidence intervals. P-values for the differential gene expression and alternative splice analyses were adjusted by Holm's method\(^62\).

RESULTS

BAGS classifier generation and clinical sample assignment

The data quality of the differentiating B-cell subset compartments of the sternal BM was individually validated as illustrated by density plots from MFC analysis (Figure 1A) and principal component analysis (Figure 1B) of the mean fluorescence intensities (MFIs) of the CD markers used for FACS; unsupervised cluster analysis was also conducted for the gene expression values of the membrane CD markers used for FACS (Figure 1C, previously shown in Nørgaard et al.\(^46\)) and 45 classical B-cell markers summarized from a literature search (Figure 1D). Subset-specific segregation was further documented by principal component analysis (Figure S2A-B).

The BAGS classifiers with the smallest deviance determined by cross validation consisted of 184 genes, for details see Supplementary text 1 and Figure S3. Each B-cell subset signature contained 27–54 genes, ensuring comparable gene representation for all subsets in the BAGS classifier. The selected genes and associated coefficients for the BAGS signatures are shown in Table S1 (previously shown in Nørgaard et al.\(^46\)). The expressed signatures included 51 genes associated with specific B-cell functions, 79 specific genes with more fundamental biological
associations, and 24 probes with unknown gene functions (Table S2A-F).

We subsequently validated the BAGS classifier, which was trained using GEP data from Human Exon 1.0 ST Arrays, on independent normal B-cell subsets from BM aspirates from the iliac crest profiled using either Human Exon 1.0 ST or U133 plus 2.0 arrays, and found concordant assignments for both platforms (Table S3). This documented the cross-platform validity of the classifier, allowing it's use in clinical data with GEP originating from other platforms.

Microarray data from four independent cohorts (n = 1296) of de novo MM patients were assigned for BAGS subtypes. Table 1 shows the resulting assignment of the tumors and exhibited BAGS subtype frequencies and average percentage for PreB1 = 1%, PreBII = 6%, Im = 11%, N = 23%, M = 41%, and PC = 4%, with no significant variation between the cohorts from different geographical regions, time periods, or sampling methods (P = 0.9). We allow 15% of cases within each cohort to be unclassified, resulting in a probability cut-off of approximately 0.40. The distribution of the TC classes within the BAGS subtypes is given in Table 1, with significant association identified (P < 0.001). There was also significant correlation with ISS staging (P = 0.032), with increased numbers of the PreBII and M subtypes associated with ISS stage III, as shown in Table 1. BAGS, proliferation index, and melphalan resistance assignments for all samples used in the analyses are provided in Supplementary data, Table S4A-H.

Prognostic impact of assigned BAGS subtypes

Figure 2A-B illustrates the results from a meta-analysis of the 916 patients included in the three prospective trial cohorts with high-dose melphalan as first line therapy (UAMS, HOVON65/GMMG-HD4, and MRC Myeloma IX) with the Affymetrix U133 plus 2.0 microarray data available, documenting that the assigned BAGS subtypes were significantly associated with
progression-free (PFS) and overall survival (OS) (PFS, log-rank test, \(P < 0.001\); OS, log-rank test \(P < 0.001\)). Major impact was observed within patient cohorts with the PreBII and M subtypes, which had a significantly inferior prognosis compared to the patients with Im, N, and PC subtypes.

The robustness of the BAGS association with outcome was successfully evaluated for a wide range of probability cut-offs for the percentage of unclassified cases (Supplementary text 2, Section 11.1). The BAGS-assigned MM subtypes in the individual clinical trial data sets UAMS/TT2&3, HOVON/GMMG-HD4, and MRCIX, all including HDM and a variety of new drugs, were also separately analyzed for outcome following treatment as illustrated in Figure S4A-H. Results from the individual datasets were in accordance with the above described meta-analysis illustrated in Figure 2A-B.

Cox proportional hazard meta-analysis results, as shown in Table 2 and Harell’s C-statistic, giving the concordance between observed survival and predicted risk scores from the a multivariate cox model with (C = 0.65) and without (C = 0.59) BAGS classes, demonstrated that the BAGS subtypes added significant and independent prognostic information to the already well-established TC classification. In addition, we found significant correlation between the BAGS subtypes and the proliferation index (PI) risk profiling (\(P < 0.001\)), melphalan resistance probability (\(P < 0.001\)), and beta-2 microglobulin plasma level (\(P < 0.001\)) as illustrated in Figure 3A-C, respectively. Results in these figures are done on a combined dataset adjusted for differences in individual datasets, while results for individual datasets may be found in Supplementary text 1, Figure S5A-C.

BAGS assignment of MGUS, smoldering myeloma, MM, extramedullary MM, and
myeloma cell lines

Available data sets were used for BAGS assignment of associated myeloma diseases, as shown in Table S5A. Of interest, five of six plasma cell leukemia cases were M subtypes, indicating a subtype evolution or selection for advanced disease. In contrast, MGUS cases had a significantly high frequency (> 50%) of N subtypes, which was different from smoldering myeloma and newly diagnosed and relapsed MM. The distribution of M component isotypes showed no significant differences across BAGS subtypes, except for a tendency for LCD to be overrepresented in the post germinal subtypes as shown in Table S5B. Frequencies of BAGS subtypes in relapsed MM patients from the APEX dataset (Table S5C) were similar to the frequencies in first line patients shown in Table 1. Finally, we observed that 9 out of 12 human myeloma cancer cell lines were classified as PC subtypes (Table S6).

Characterization of BAGS subtypes

Differential expression analysis of BAGS subtypes with poor prognosis (Pre-BII or Memory vs the rest) identified hundreds of genes with a highly significant differential expression as given in Table S7A-B for the Pre-BII and Memory subtypes, respectively. GO enrichment of significant genes showed that the Pre-BII subtype myelomas are enriched for the categories mitotic cell cycle, nuclear division and DNA-dependent DNA replication (Table S8A), and Memory subtype myelomas are enriched for the categories cell-cell signaling, synaptic transmission, multicellular organismal process (Table S8B). For more detail see Supplementary text 1.

Finally, in order to detect whether the Pre-BII and Memory subtypes showed alternative splicing patterns associated with oncogenesis, we investigated alternative exon usage in the IFM-DFCI data set. Results suggested Pre-BII-specific alternative exon usage for 16 genes
B-cell subset phenotype classification of MM subtypes

(Table S9A), which were especially associated with biological processes involved in cell cycle regulation (Table S10A). In Memory subtype cases, we only identified 2 candidate genes with potential alternative exon usage (Table S9B) associated with basic cell functions including regulation of programmed cell death, metabolism, and signaling transduction (Table S10B). Comparison to alternative exon usage patterns detected in non-malignant samples (Table S11) indicated that the majority of events were specific to malignant samples, suggesting association to oncogenesis.
DISCUSSION

We have phenotyped distinct cellular subsets of B-cells in the normal BM to generate a BAGS classifier and have documented that the assigned subtypes have prognostic impact.

A probability estimate for each sample to be assigned to each of the six BAGS subtypes was provided. Samples with very low classification probabilities were labeled as unclassified. The frequency of unclassified samples in other gene expression–based COO classifications is around 15%17. A pragmatic probability cut-off of 0.40 was used, which is well above the random assignment probability of one out of six, to ensure that 85% of the samples would be BAGS-subtypes. The robustness of the BAGS association with outcome was successfully assessed for a wide series of probability cut-offs.

The present study was whenever possible conducted according to guidelines of –omics-directed medicine, e.g. McShane et al.63, REMARK64, and MIAME65. However, it is worth noting that the BAGS classifier used cohort-based normalization, which implies that it cannot practically be used in a clinical set-up where patients show up one at a time. Remedies to this problem have been proposed elsewhere66 and were not further pursued here.

The assignment of BAGS subtypes to MM may explain an inter-individual disease heterogeneity, which could reflect the association between cellular differentiation and oncogenesis27,67–69. A standardized flow cytometry immunophenotyping of hematological malignancies, illustrates the potential clinical application of surface expressed markers to identify diagnostic tumor clones70. Such a strategy has allowed new studies of normal PC heterogeneity by differentiation6,10,71.

MM is an example of a malignant disease that has been studied intensively with microarrays. Many peer-reviewed papers have documented new classification systems based
on gene expression profiles to correlate with biology and prognosis1,8–12. The present work addresses a need to study a new diagnostic platform defined by the molecular classification of BAGS in MM, as for DLBCL43,72. In accordance with our studies in DLBCL, where we applied the whole lymphoid differentiation compartment from tonsils or normal lymph nodes, we prospectively analyzed the lymphoid subset–defined compartments from normal BM to generate six BAGS for MM assignment. The idea was that the COO concept would hold true also for MM and assign subtypes from the post-germinal differentiation pathway. To our surprise, a major fraction of patient tissues were assigned a PreBII, Im, or N subtype, disproving the subtyping to be true reminiscence of the origin from a germinal or post germinal phenotype. Given the phenotypic variation among MGUS, smoldering myeloma, MM, MM relapse, extramedullary MM, plasma cell leukemia, and human myeloma cancer cell lines, it is more likely that BAGS assignment does classify MM cases based on reversible phenotypic plasticity33.

The BAGS classification is correlated to the well-established TC classification; however, we found that the poor prognosis for PreBII and memory subtypes correlated with the myeloma cell PI and the beta-2 microglobulin plasma, but not gene expression level. PI and beta-2 microglobulin is historically the most important and persistent biomarker in different trials, independent of the evolving therapy. The mechanisms behind these prognostically useful markers are unknown but should now be studied to understand their pathogenetic impact.

Our detection of alternative exon usage suggested subtype specific patterns, supporting that the BAGS phenotyping is based on biological processes. Alternatively spliced candidate genes detected in the Pre-BII subtype revealed an overrepresentation of genes involved in cell cycle regulation and increased proliferation, such as \textit{GTSE1, PKMYT1, BIRC5, and AURKB}, suggesting an association with altered cell cycle regulation and proliferation. However,
detected alternative exon usage of candidate genes needs to be experimentally validated and confirmed.

HDM forms the basis of MM treatment73. However, patients with refractory or relapsed diseases represent a large unmet need for drug-specific predictive tests and precise companion diagnostics57–61. This need can be exemplified by REGS and BAGS classification with predictive information to guide therapy. The current analyses indicate that such information is available at diagnosis (Figure 3B and Figure S5B) and could be used for identification of candidates for more precise strategies. Collectively, this result indicates BAGS subtypes experiences different clinical tracks and drug resistant mechanisms, and maybe even different molecular pathogenesis. We believe our results support the future inclusion of gene expression profiling in randomized prospective clinical trials aimed at improving MM treatment.

BAGS classification divided \textit{de novo} MM patients into so-far-unrecognized, differentiation-dependent prognostic groups. These prognostic analyses and observations support the idea that BAGS classification in MM may contribute with pathogenetic information, especially in attempts to understand the biology behind the classical and still meaningful biomarkers PI and beta-2 microglobulin. Most importantly, the classification included pregerminal subtypes, pointing at a reversible phenotypic plasticity in myeloma PCs. Prospective future studies are needed to prove the concept using clinical endpoints, including prediction of therapeutic outcome.

\textbf{Acknowledgments}

We acknowledge the tremendous perseverance by the late Professor Hans Erik Johnsen (May 13, 1948 – May 17, 2018) in driving the project behind this publication. Unfortunately, he did not experience the final outcome of the work.
This study was supported by research funding from the EU 6th FP to MSCNET (LSHC-CT-2006-037602), the Danish Cancer Society, the Danish Research Agency to CHEPRE (#2101-07-0007), and the KE Jensen Foundation (2006-2010) to HEJ and KD.

Technicians Louise Hvilshøj Madsen and Helle Høholt participated in several aspects of the laboratory work.

Author contributions

M.B. and K.D. designed, collected data, and lead the study; J.S.B., R.F.B., A.S., M.B., and K.D. wrote the manuscript; R.F.B. and M.B. performed statistical analysis; Biological and clinical interpretation was provided by J.S.B., K.D., A.A.S., D.SJ, T.E.G. and H.E.J.; M.P.A., A.O., A.S., R.F.B., A.A.S., M.S., C.V., H.D.R., C.H.N., D.SJ, P.J., M.A.N., R.S., and R.S. contributed vital technology or analytical tools; M.K.S., N.M., F.D., B.W., C.P., M.K., D.J., G.J.M., U.B., H.G., A.B., M.v.D., and P.S. delivered clinical and expression data. All authors read and approved the final version of the manuscript before submission. Hans Erik Johnsen, Department of Hematology, Aalborg University Hospital, Denmark lead the project before his death and therefore contributed in designing the study and drafting the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondance: Martin Bøgsted, Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, DK-9000 Aalborg, Denmark; E-mail: martin.boegsted@rn.dk
REFERENCES

13. Chesi M, Nardini E, Brents LA, et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of

49. Morgan GJ, Davies FE, Gregory WM, et al. Cyclophosphamide, thalidomide, and dexamethasone as induction therapy for newly diagnosed multiple myeloma patients destined for autologous stem-cell transplantation: MRC Myeloma IX randomized trial

487 1979;6(2):65–70.
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
Table 1 BAGS defined subtype analysis.

Frequencies across data sets (P = 0.90).

<table>
<thead>
<tr>
<th>Group</th>
<th>PreBI (%)</th>
<th>PreBII (%)</th>
<th>Im (%)</th>
<th>N (%)</th>
<th>M (%)</th>
<th>PC (%)</th>
<th>UC (%)</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAMS</td>
<td>3 (1)</td>
<td>29 (5)</td>
<td>58 (10)</td>
<td>143 (26)</td>
<td>219 (39)</td>
<td>23 (4)</td>
<td>84 (15)</td>
<td>559</td>
</tr>
<tr>
<td>Hovon 65</td>
<td>2 (1)</td>
<td>19 (6)</td>
<td>45 (14)</td>
<td>61 (19)</td>
<td>134 (42)</td>
<td>11</td>
<td>48 (15)</td>
<td>320</td>
</tr>
<tr>
<td>Myeloma IX</td>
<td>1 (0)</td>
<td>14 (6)</td>
<td>23 (9)</td>
<td>59 (24)</td>
<td>105 (43)</td>
<td>8 (3)</td>
<td>37 (15)</td>
<td>247</td>
</tr>
<tr>
<td>IFM-DFCI</td>
<td>2 (1)</td>
<td>11 (6)</td>
<td>21 (12)</td>
<td>38 (22)</td>
<td>68 (40)</td>
<td>4 (2)</td>
<td>26 (15)</td>
<td>170</td>
</tr>
<tr>
<td>Sum*</td>
<td>8 (1)</td>
<td>75 (6)</td>
<td>147 (11)</td>
<td>302 (23)</td>
<td>528 (41)</td>
<td>46 (4)</td>
<td>196 (15)</td>
<td>1296</td>
</tr>
</tbody>
</table>

Association with the TC classification (P < 0.001).

<table>
<thead>
<tr>
<th>Group</th>
<th>PreBI (%)</th>
<th>PreBII (%)</th>
<th>Im (%)</th>
<th>N (%)</th>
<th>M (%)</th>
<th>PC (%)</th>
<th>UC (%)</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4p16</td>
<td>1 (1)</td>
<td>21 (12)</td>
<td>7 (4)</td>
<td>45 (25)</td>
<td>78 (44)</td>
<td>3 (2)</td>
<td>22 (12)</td>
<td>177</td>
</tr>
<tr>
<td>MAF</td>
<td>2 (2)</td>
<td>4 (5)</td>
<td>12 (15)</td>
<td>25 (30)</td>
<td>31 (38)</td>
<td>1 (1)</td>
<td>7 (9)</td>
<td>82</td>
</tr>
<tr>
<td>6p21</td>
<td>1 (1)</td>
<td>2 (2)</td>
<td>12 (14)</td>
<td>19 (22)</td>
<td>36 (42)</td>
<td>2 (2)</td>
<td>14 (16)</td>
<td>86</td>
</tr>
<tr>
<td>11q13</td>
<td>0 (0)</td>
<td>3 (2)</td>
<td>11 (7)</td>
<td>46 (29)</td>
<td>81 (51)</td>
<td>4 (2)</td>
<td>15 (9)</td>
<td>160</td>
</tr>
<tr>
<td>D1</td>
<td>2 (0)</td>
<td>11 (3)</td>
<td>63 (15)</td>
<td>89 (21)</td>
<td>157 (37)</td>
<td>19 (5)</td>
<td>81 (19)</td>
<td>422</td>
</tr>
</tbody>
</table>
The BAGS-defined subtype analysis was performed across 4 different clinical cohorts (N = 1296 cases) following assignment of the data sets according to the restricted multinomial classifier.
Table 2 Cox proportional hazards regression analysis.

Combined PFS, n = 642, number of events = 311

<table>
<thead>
<tr>
<th></th>
<th>Hazard ratio</th>
<th>95% CI</th>
<th>P value</th>
<th>Hazard ratio</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-BII</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Immature</td>
<td>0.45</td>
<td>(0.26-0.76)</td>
<td>0.0032</td>
<td>0.48</td>
<td>(0.28-0.83)</td>
<td>0.0085</td>
</tr>
<tr>
<td>Naive</td>
<td>0.41</td>
<td>(0.25-0.66)</td>
<td>< 0.001</td>
<td>0.39</td>
<td>(0.24-0.63)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Memory</td>
<td>0.61</td>
<td>(0.39-0.95)</td>
<td>0.027</td>
<td>0.58</td>
<td>(0.37-0.92)</td>
<td>0.02</td>
</tr>
<tr>
<td>Plasmacell</td>
<td>0.28</td>
<td>(0.13-0.6)</td>
<td>< 0.001</td>
<td>0.3</td>
<td>(0.14-0.64)</td>
<td>0.0018</td>
</tr>
<tr>
<td>4p16</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MAF</td>
<td>0.47</td>
<td>(0.29-0.77)</td>
<td>0.0026</td>
<td>0.53</td>
<td>(0.32-0.86)</td>
<td>0.011</td>
</tr>
<tr>
<td>6p21</td>
<td>0.23</td>
<td>(0.07-0.73)</td>
<td>0.013</td>
<td>0.17</td>
<td>(0.05-0.54)</td>
<td>0.0027</td>
</tr>
<tr>
<td>11q13</td>
<td>0.36</td>
<td>(0.26-0.52)</td>
<td>< 0.001</td>
<td>0.31</td>
<td>(0.22-0.45)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>D1</td>
<td>0.35</td>
<td>(0.26-0.47)</td>
<td>< 0.001</td>
<td>0.3</td>
<td>(0.22-0.41)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>D1plusD2</td>
<td>0.27</td>
<td>(0.12-0.63)</td>
<td>0.0024</td>
<td>0.27</td>
<td>(0.12-0.62)</td>
<td>0.0021</td>
</tr>
<tr>
<td>D2</td>
<td>0.38</td>
<td>(0.25-0.57)</td>
<td>< 0.001</td>
<td>0.25</td>
<td>(0.16-0.39)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Hovon65</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MyelomaIX</td>
<td>1.16</td>
<td>(0.84-1.6)</td>
<td>0.38</td>
<td>1.15</td>
<td>(0.83-1.59)</td>
<td>0.41</td>
</tr>
<tr>
<td>UAMS</td>
<td>0.37</td>
<td>(0.29-0.48)</td>
<td>< 0.001</td>
<td>0.33</td>
<td>(0.26-0.42)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Combined OS, n = 642, number of events = 236

<table>
<thead>
<tr>
<th></th>
<th>Hazard ratio</th>
<th>95% CI</th>
<th>P value</th>
<th>Hazard ratio</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-BII</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Immature</td>
<td>0.31</td>
<td>(0.18-0.51)</td>
<td>< 0.001</td>
<td>0.36</td>
<td>(0.21-0.62)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Naive</td>
<td>0.19</td>
<td>(0.12-0.3)</td>
<td>< 0.001</td>
<td>0.19</td>
<td>(0.12-0.31)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Memory</td>
<td>0.33</td>
<td>(0.22-0.5)</td>
<td>< 0.001</td>
<td>0.34</td>
<td>(0.23-0.52)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>
Cox proportional hazards regression analysis in the meta data set for BAGS subtypes based on PFS and OS, demonstrating added independent significance to the TC classification staging system. Columns on the left show results for a univariate analysis with each of the covariates, while columns on the right show results from the multivariate model. The Pre-BI class was dropped from the analysis due to, too few observations in this group.
FIGURE LEGENDS

Figure 1A-D Expression of membrane markers, transcription factors, and B-cell subset-specific genes in normal BM tissue.

A) B-cells of the BM were defined by flow cytometry as CD19+, CD45+, and CD3− and were additionally divided by surface marker expression of CD10, CD20, CD27, CD38, and CD34, published in detail previously44.

The data quality of the differentiating B-cell subset compartments was validated as illustrated by normalized histograms of (A) the mean fluorescence intensities (MFIs) CD markers based on merged MFC reanalysis of pure sorted populations resulting from seven independent sorting procedures. Broken lines represents MFI values for each sorted B-cell subset.

B) Principal component analysis of the MFI values for each sorted cell in all samples. The cells are coded with a color according to their original subset. The dots represents mean values for each sorted B-cell subset.

C) The most variable probe sets were used in unsupervised hierarchical clustering analysis of the surface markers MME = CD10, CD34, CD38, CD27, PTPRC = CD45, MS4A = CD20 and CD19 used for FACS.

D) B-cell differentiation-specific genes (n = 45), summarized from a literature review of transcriptional regulation of B lymphopoiesis. The colors at the top of D indicate the relative gene expression for each sample, with blue representing high and brown representing low.
Figure 2A-B: Meta-analysis of the prognostic impact of assigned BAGS subtypes.

Progression-free (A) and overall survival (B) were compared between BAGS subtypes for high-dose melphalan–treated patients in published clinical trials. P-values are results from log-rank tests. The subtypes numbers given as n are the numbers of events/number of assigned patients with the subtypes in the meta data set. The BAGS subtypes are color coded as in Figure 1A-D.

Figure 3A-C: BAGS subtype boxplots with correlation to proliferation, melphalan resistance, and beta-2 microglobulin.

The individual adjusted proliferation index (PI) risk profiling (A), melphalan drug resistance probability (index) (B), and beta-2 microglobulin plasma level (C), respectively per BAGS subtype cases from analysis of the meta dataset. The BAGS subtypes are color coded as in Figure 1A-D.
PCA of Membrane Marker Expressions

Explained variation:
1st PC: 55.7%
2nd PC: 20.2%

Population
- Pre-BI
- Pre-BII
- Immature
- Naive
- Memory
- Plasmacell
A Combined, EFS

B Combined, OS

P−value = 3.05e−06

P−value = 1.06e−11

Survival Probability

Progression Free Survival (Months)

Overall Survival (Months)

Pre−BI, n = 3/5
Pre−BII, n = 28/46
Immature, n = 47/104
Naive, n = 88/221
Memory, n = 208/367
Plasmacell, n = 14/38
Unclassified, n = 64/135

Pre−BI, n = 1/5
Pre−BII, n = 33/46
Immature, n = 38/104
Naive, n = 53/221
Memory, n = 154/367
Plasmacell, n = 7/38
Unclassified, n = 45/135
Adjusted B2M

p < 0.001

Pre-BI Pre-BII Immature Naive Memory Plasmacell Unclassified

Population

pred.b2m