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ABSTRACT

Diagnostic tests for multiple myeloma reflect the criteria from the updated WHO classification
based on biomarkers and clinicopathologic heterogeneity. Here we propose a new subtyping of
myeloma plasma cells from diagnostic samples, assigned by normal B-cell subset associated

gene signatures (BAGS).

For this purpose, we combined fluorescence-activated cell sorting and gene expression profiles
from normal bone marrow PreBI, PreBIl, immature, naive, memory, and plasma cell subsets to
generate BAGS for assignment of normal bone marrow subtypes in diagnostic samples. The
impact of the subtypes was analyzed in eight available data set from 1772 patients’ myeloma

plasma cell samples.

The resulting tumor assignments in available clinical datasets exhibited similar BAGS subtype
frequencies in four cohorts from de novo multiple myeloma patients across 1296 individual
cases. The BAGS subtypes were significantly associated with progression-free and overall
survival in a meta-analysis of 916 patients from three prospective trial cohorts with high-dose
melphalan as first line therapy. The major impact was observed within the PreBIl and memory
subtypes, which had a significantly inferior prognosis compared to other subtypes. A multiple
Cox proportional hazard analysis documented that BAGS subtypes added significant,
independent prognostic information to the TC classification. BAGS subtype analysis of patient

cases identified transcriptonal differences, including a number of differentially spliced genes.

We identified subtype differences in myeloma at diagnosis, with prognostic impact, supporting
an acquired B-cell trait and phenotypic plasticity as a pathogenetic hallmark of multiple

myeloma.
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INTRODUCTION

Despite the extensive insight into multiple myeloma (MM) pathogenesis, as outlined in the
WHO classification?, a number of questions remain unanswered regarding the origin,
initiation, and developing myeloma cells, including its association with the normal B-cell
hierarchy in the bone marrow (BM)3-6. We hypothesize that considering MM as a disease of
differentiation by identifying it’s cell of origin (COO) could lead to novel biological insight and
development of new treatment options as described by Boise and coauthors?’.

MM develops from a pre-malignant monoclonal gammopathy of unknown significance (MGUS),
by a stepwise oncogenesis to intramedullary early smoldering or evolving de novo myeloma
because of acquired genetic deregulation8-10. The primary translocations implicating the 14q32
locus involve a series of promiscuous target genes, with CCND1 and FGFR3/MMSET being the
most frequently present at the MGUS stagell. Furthermore, the larger part of breakpoints
occurs in the switch regions, suggesting the early translocation happens during IgH class-
switch recombination in the germinal centerl2-14, The existence of early translocations and the
overexpression of CCND genes form the translocations and cyclin D (TC) classification
generated from early events®!l. Later incidences include a spectrum of mutations and
dysregulations occurring in advanced disease with poor prognosis14-19,

Myeloma plasma cells (PCs) are class-switched, freezing the initiating cell at the post-
germinal B-cell maturation stage, refuting that the disease is initiated in earlier B-cell subsets,
as have been proposed before20. The earliest IgH clonotypic cell we have identified with a class-
switched isotype is in the myeloma memory B-cell compartment?122, but its clonogenic and
malignant potential is a controversial issue?3-26. Recent studies have concluded that they are

remainings of a neoplastic cell with no malignant potential27.28, contrasting the myeloma PC



69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

B-cell subset phenotype classification of MM subtypes

compartments.

The myeloma stem cell concept has been reviewed in detail by us and others22.30. We
proposed an operational definition of COO to allow for acquisition of data supporting the
existence of the myeloma stem cell, where a normal B-cell that achieve the first myeloma
initiating mutation is not necessarily linearly connected to the myeloma stem cell. These results
underpin the hypothesis that myeloma generating cells are present in the malignant PC
compartment, but the COO is a normal counterpart of a germinal-center B cell that evolves via
differentiation into a premalignant PC compartment already present in MGUS populations.

The plasticity potential of myeloma cells, perhaps caused by interaction with the tumor
microenvironment, also plays an important role in development and maintance of MM30,

The present study takes a COO approach, where we refer to an expanding compartment
initiated by a differentiation specific oncogene hit31. The terms COO and cancer stem cells have
been used interchangeably. However, it is important to differentiate between them as in
contrast to our phenotypic COO studies, it is our perception that cancer stem cell research
depends on single cell studies in the frame of the classical stem cell definition?2°.

The deregulated myeloma cells are under influence by the host as well as the
microenvironment may be key in the emergence of myeloma and it's related phenotypic
changes. This phenomenon coined plasticity is defined as a changed cellular phenotype or
function during deregulated differentiation32. More specific, this refers to malignant mature
plasma cells that share properties of different maturation steps, including precursors. The
phenomenon facilitates a new tool for providing insight into the observed clonal plasticity33.34
associated with oncogenesis8-1217.35-38  The mechanisms of deregulated differentiation and

myeloma-cell plasticity ought to be investigated and their clinical significance assessed.
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Recently, we have documented a procedure to identify and study gene expression of flow-
sorted human B-cell subsets from normal lymphoid tissue3?-42, These subsets can be profiled
and by proper statistical modeling define specific B-cell associated gene signatures (BAGS),
recently introduced for DLBCL#3-45, Here we have applied BAGS from normal BM subsets to
assign individual MM subtypes and correlate them with prognosis to delineate their

pathogenetic impact.



99

100
101
102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

B-cell subset phenotype classification of MM subtypes

PATIENTS, MATERIAL, AND METHODS

The subtyping method based on normal BM has previously been briefly outlined in Ngrgaard
et al.#¢ and applied to Chronic Lymphocytic Leukemia patients. In this paper we will describe it

in more detail and with provide more profound quality controle of the normal samples.
Ethical statement and tissue analysis

All normal tissue samples were collected in accordance with the research protocol (MSCNET,
N-20080062MCH) accepted by the North Denmark Regional Committee on Health Research
Ethics.

Normal BM was harvested from either sternum (n = 7) during cardiac surgery or taken as
aspirates from the iliac crest of healthy volunteers (n = 14). The normal B-cell subsets were
phenotyped by multiparametric flow cytometry (MFC) and fluorescence-activated cell sorting
(FACS) into six distinct B-cell subsets (PreBI, PreBIl, immature (Im), naive (N), memory (M) B-
cells, and PCs) using a monoclonal antibody panel#*. Gene expression profiles (GEP) for the
sternal samples were generated using Affymetrix Exon 1.0 ST while GEP for the iliac crest
samples were generated using either Affymetrix Exon 1.0 ST (n = 8) or U133 plus 2.0 (n = 6)

arrays. Details on MFC, FACS, and GEP are described in the Supplementary text 1

Clinical myeloma data sets

Data originated from Affymetrix microarray analysis of PC-enriched myeloma samples, from
four controlled trials: UAMS, HOVON65/GMMG-HD4, MRC Myeloma IX (all U133 plus 2.0), and
APEX (U133A arrays)3>3647-50 a5 well as a preclinical study: [FM-DFCI3751 (Human Exon 1.0 ST

arrays) as described in Supplementary text 1.

Statistical analysis

All statistical analyses were performed with R version 3.4.3 using Bioconductor packages>253.
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Below is a summary of the statistical analysis; for full documentation see Supplementary text 1
and detailed session information provided as a Knitr document># in the Supplementary text 2.
The arrays were cohort-wise background corrected, normalized, and summarized by Robust
Multichip Average>>.

BAGS subtyping was build on median-centered gene expression profiles from the sternal
BM data summarized at ENSG gene IDs, using regularized multinomial regression, with five
discrete outcomes one for each B-cell subset and elastic net penalty>¢. The number of features
available in the training of the classifier was prefiltered to only include genes probed by all
microarray platforms used in the clinical validation data. Penalization parameters were tuned
by leave one out cross validation. To compensate for cohort-wise technical batch effects, each
clinical cohort was probe-set-wise median-centered and adjusted to have the same variance as
in the sternal BM data. Each patient was BAGS classified according to the class with the highest
predicted probability score above 0.40 or otherwise unclassified (Figure S1). The robustness
of the probability cut-off were thoroughly tested (Supplementary text 2, Section 11.1). TC
classification was done directely on the RMA normalized samples according to Bergsagel et al.’s
algorithm®.

Kaplan-Meier curves, log-rank tests, and simple and multiple Cox proportional hazards
regression were used for survival analsyis. The cohorts ivolving patients from three
prospective trial cohorts with high-dose melphalan as first line therapy were amalgamated into
a meta-dataset to increase the power of the study. BAGS subtypes as an independent
explanatory variable was investigated in the meta-dataset by a Cox proportional hazards
regression analysis with BAGS subtypes, TC classes, and cohort as potential confounders.

Harell’s C-statistic for overall survival was calculated from predicted values from the
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multivariate Cox model with and without inclusion of the BAGS classes to asses the prognostic
utility.

The samples were assigned resistance probabilities for the drug melphalan by resistance
gene signature (REGS) classifiers>7-61,

The significance level was set throughout to 0.05, and effect estimates were provided with
95% confidence intervals. P-values for the differential gene expression and alternative splice

analyses were adjusted by Holm’s method®2.

RESULTS

BAGS classifier generation and clinical sample assignment

The data quality of the differentiating B-cell subset compartments of the sternal BM was
individually validated as illustrated by density plots from MFC analysis (Figure 1A) and
principal component analysis (Figure 1B) of the mean fluorescence intensities (MFIs) of the
CD markers used for FACS; unsupervised cluster analysis was also conducted for the gene
expression values of the membrane CD markers used for FACS (Figure 1C, previously shown
in Ngrgaard et al.#¢) and 45 classical B-cell markers summarized from a literature search
(Figure 1D). Subset-specific segregation was further documented by principal component
analysis (Figure S2A-B).

The BAGS classifiers with the smallest deviance determined by cross validation consisted
of 184 genes, for details see Supplementary text 1 and Figure S3. Each B-cell subset signature
contained 27-54 genes, ensuring comparable gene representation for all subsets in the BAGS
classifier. The selected genes and associated coefficents for the BAGS signatures are shown in
Table S1 (previously shown in Ngrgaard et al.4¢). The expressed signatures included 51 genes

associated with specific B-cell functions, 79 specific genes with more fundamental biological
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associations, and 24 probes with unknown gene functions (Table S2A-F).

We subsequently validated the BAGS classifier, which was trained using GEP data from
Human Exon 1.0 ST Arrays, on independent normal B-cell subsets from BM aspirates from the
iliac crest profiled using either Human Exon 1.0 ST or U133 plus 2.0 arrays, and found
concordant assignments for both platforms (Table S3). This documented the cross-platform
validity of the classifier, allowing it's use in clinical data with GEP originating from other
platforms.

Microarray data from four independent cohorts (n = 1296) of de novo MM patients were
assigned for BAGS subtypes. Table 1 shows the resulting assignment of the tumors and
exhibited BAGS subtype frequencies and average percentage for PreBI = 1%, PreBII = 6%, Im =
11%, N = 23%, M = 41%, and PC = 4%, with no significant variation between the cohorts from
different geographical regions, time periods, or sampling methods (P = 0.9). We allow 15% of
cases within each cohort to be unclassified, resulting in a probability cut-off of approximately
0.40. The distribution of the TC classes within the BAGS subtypes is given in Table 1, with
significant association identified (P < 0.001). There was also significant correlation with ISS
staging (P = 0.032), with increased numbers of the PreBIl and M subtypes associated with ISS
stage III, as shown in Table 1. BAGS, proliferation index, and melphalan resistance assignments

for all samples used in the analyses are provided in Supplementary data, Table S4A-H.

Prognostic impact of assigned BAGS subtypes

Figure 2A-B illustrates the results from a meta-analysis of the 916 patients included in the
three prospective trial cohorts with high-dose melphalan as first line therapy (UAMS,
HOVON65/GMMG-HD4, and MRC Myeloma IX) with the Affymetrix U133 plus 2.0 microarray

data available, documenting that the assigned BAGS subtypes were significantly associated with
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progression-free (PFS) and overall survival (OS) (PFS, log-rank test, P < 0.001; OS, log-rank test P
< 0.001). Major impact was observed within patient cohorts with the PreBII and M subtypes,
which had a significantly inferior prognosis compared to the patients with Im, N, and PC
subtypes.

The robustness of the BAGS association with outcome was successfully evaluated for a
wide range of probability cut-offs for the percentage of unclassified cases (Supplementary text
2, Section 11.1). The BAGS-assigned MM subtypes in the individual clinical trial data sets
UAMS/TT2&3, HOVON/GMMG-HD4, and MRCIX, all including HDM and a variety of new drugs,
were also separately analyzed for outcome following treatment as illustrated in Figure S4A-H.
Results from the individual datasets were in accordance with the above described meta-
analysis illustrated in Figure 2A-B.

Cox proportional hazard meta-analysis results, as shown in Table 2 and Harell’s C-
statistic, giving the concordance between observed survival and predicted risk scores from the
a multivariate cox model with (C = 0.65) and without (C = 0.59) BAGS classes, demonstrated
that the BAGS subtypes added significant and independent prognostic information to the
already well-established TC classification. In addition, we found significant correlation between
the BAGS subtypes and the proliferation index (PI) risk profiling (P < 0.001), melphalan
resistance probability (P < 0.001), and beta-2 microglobulin plasma level (P < 0.001) as
illustrated in Figure 3A-C, respectively. Results in these figures are done on a combined dataset
adjusted for differences in individual datasets, while results for individual datasets may be

found in Supplementary text 1, Figure S5A-C.

BAGS assignment of MGUS, smoldering myeloma, MM, extramedullary MM, and

10
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myeloma cell lines

Available data sets were used for BAGS assignment of associated myeloma diseases, as shown
in Table S5A. Of interest, five of six plasma cell leukemia cases were M subtypes, indicating a
subtype evolution or selection for advanced disease. In contrast, MGUS cases had a significantly
high frequency (> 50%) of N subtypes, which was different from smoldering myeloma and
newly diagnosed and relapsed MM. The distribution of M component isotypes showed no
significant differences across BAGS subtypes, except for a tendency for LCD to be
overrepresented in the post germinal subtypes as shown in Table S5B. Frequencies of BAGS
subtypes in relapsed MM patients from the APEX dataset (Table S5C) were similar to the
frequencies in first line patients shown in Table 1. Finally, we observed that 9 out of 12 human

myeloma cancer cell lines were classified as PC subtypes (Table S6).

Characterization of BAGS subtypes

Differential expression analysis of BAGS subtypes with poor prognosis (Pre-BIl or Memory vs
the rest) identified hundreds of genes with a highly significant differential expression as given
in Table S7A-B for the Pre-BIl and Memory subtypes, respectively. GO enrichment of
significant genes showed that the Pre-BII subtype myelomas are enriched for the categories
mitotic cell cycle, nuclear division and DNA-dependent DNA replication (Table S8A), and
Memory subtype myelomas are enriched for the categories cell-cell signaling, synaptic
transmission, multicellular organismal process (Table S8B). For more detail see

Supplementary text 1.

Finally, in order to detect whether the Pre-BIl and Memory subtypes showed alternative
splicing patterns associated with oncogenesis, we investigated alternative exon usage in the

IFM-DFCI data set. Results suggested Pre-BlI-specific alternative exon usage for 16 genes

11
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(Table S9A), which were especially associated with biological processes involved in cell cycle
regulation (Table S10A). In Memory subtype cases, we only identified 2 candidate genes with
potential alternative exon usage (Table S9B) associated with basic cell functions including
regulation of programmed cell death, metabolism, and signaling transduction (Table S10B).
Comparison to alternative exon usage patterns detected in non-malignant samples (Table
$11) indicated that the majority of events were specific to malignant samples, suggesting

association to oncogenesis.
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DISCUSSION

We have phenotyped distinct cellular subsets of B-cells in the normal BM to generate a BAGS
classifier and have documented that the assigned subtypes have prognostic impact.

A probability estimate for each sample to be assigned to each of the six BAGS subtypes was
provided. Samples with very low classification probabilities were labeled as unclassified. The
frequency of unclassified samples in other gene expression-based COO classifications is around
15%17. A pragmatic probability cut-off of 0.40 was used, which is well above the random
assignment probability of one out of six, to ensure that 85% of the samples would be BAGS-
subtypes. The robustness of the BAGS association with outcome was successfully assessed for
a wide series of probability cut-offs.

The present study was whenever possible conducted according to guidelines of —omics-

directed medicine, e.g. McShane et al.63, REMARK®4, and MIAME®>. However, it is worth noting
that the BAGS classifier used cohort-based normalization, which implies that it cannot
practically be used in a clinical set-up where patients show up one at a time. Remedies to this
problem have been proposed elsewhere®® and were not further pursued here.
The assignment of BAGS subtypes to MM may explain an inter-individual disease heterogeneity,
which could reflect the association between cellular differentiation and oncogenesis27.67-69, A
standardized flow cytometry immunophenotyping of hematological malignancies, illustrates
the potential clinical application of surface expressed markers to identify diagnostic tumor
clones’0. Such a strategy has allowed new studies of normal PC heterogeneity by
differentiation®10.71,

MM is an example of a malignant disease that has been studied intensively with

microarrays. Many peer-reviewed papers have documented new classification systems based

13
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on gene expression profiles to correlate with biology and prognosis8-12, The present work
addresses a need to study a new diagnostic platform defined by the molecular classification of
BAGS in MM, as for DLBCL#372, In accordance with our studies in DLBCL, where we applied the
whole lymphoid differentiation compartment from tonsils or normal lymph nodes, we
prospectively analyzed the lymphoid subset-defined compartments from normal BM to
generate six BAGS for MM assignment. The idea was that the COO concept would hold true also
for MM and assign subtypes from the post-germinal differentiation pathway. To our surprise, a
major fraction of patient tissues were assigned a PreBIl, Im, or N subtype, disproving the
subtyping to be true reminiscence of the origin from a germinal or post germinal phenotype.
Given the phenotypic variation among MGUS, smoldering myeloma, MM, MM relapse,
extramedullary MM, plasma cell leukemia, and human myeloma cancer cell lines, it is more
likely that BAGS assignment does classify MM cases based on reversible phenotypic plasticity33.
The BAGS classification is correlated to the well-established TC classification; however,
we found that the poor prognosis for PreBIl and memory subtypes correlated with the myeloma
cell PI and the beta-2 microglobulin plasma, but not gene expression level. PI and beta-2
microglobulin is historically the most important and persistent biomarker in different trials,
independent of the evolving therapy. The mechanisms behind these prognostically useful
markers are unknown but should now be studied to understand their pathogenetic impact.
Our detection of alternative exon usage suggested subtype specific patterns, supporting
that the BAGS phenotyping is based on biological processes. Alternatively spliced candidate
genes detected in the Pre-BII subtype revealed an overrepresentation of genes involved in cell
cycle regulation and increased proliferation, such as GTSE1, PKMYT1, BIRC5, and AURKB ,

suggesting an association with altered cell cycle regulation and proliferation. However,

14
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detected alternative exon usage of candidate genes needs to be experimentally validated and
confirmed.

HDM forms the basis of MM treatment’3. However, patients with refractory or relapsed
diseases represent a large unmet need for drug-specific predictive tests and precise companion
diagnostics>7-¢1, This need can be exemplified by REGS and BAGS classification with predictive
information to guide therapy. The current analyses indicate that such information is available
at diagnosis (Figure 3B and Figure S5B) and could be used for identification of candidates for
more precise strategies. Collectively, this result indicates BAGS subtypes experiences different
clinical tracks and drug resistant mechanisms, and maybe even different molecular
pathogenesis. We believe our results support the future inclusion of gene expression profiling
in randomized prospective clinical trials aimed at improving MM treatment.

BAGS classification divided de novo MM patients into so-far-unrecognized, differentiation-
dependent prognostic groups. These prognostic analyses and observations support the idea
that BAGS classification in MM may contribute with pathogenetic information, especially in
attempts to understand the biology behind the classical and still meaningful biomarkers PI and
beta-2 microglobulin. Most importantly, the classification included pregerminal subtypes,
pointing at a reversible phenotypic plasticity in myeloma PCs. Prospective future studies are
needed to prove the concept using clinical endpoints, including prediction of therapeutic

outcome.
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TABLES AND FIGURE LEGENDS

Table 1 BAGS defined subtype analysis.

Group PreBI PreBII Im (%) N (%) M (%) PC (%) UC (%) Sum

(%) (%)

Hovon65  2(1)  19(6)  45(14) 61(19) 134 (42) 11 48 (15) 320

IFM-DFCI  2(1) 11(6)  21(12) 38 (22) 68(40)  4(2) 26 (15) 170

Group PreBI PreBII Im (%) N (%) M (%) PC (%) UC (%) Sum

(%) (%)

MAF 2(2) 4 (5) 12(15)  25(30)  31(38) 1 (1) 7(9) 82

11913 0 (0) 3(2) 11 (7) 46 (29) 81 (51) 4 (2) 15(9) 160
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D1plusD2 0 (0) 4 (20) 2 (10) 2 (10) 9 (45) 0 (0) 3 (15) 20

Unclassifie

d 1(0) 12 (5) 28(12) 60(26)  81(36) 10(4)  36(16) 228

Group PreBl  PreBIlI Im (%) N (%) M (%) PC (%) UC (%) Sum

(%) (%)

Stagell 1(0) 18(7)  25(9) 65(24)  105(39)  15(6)  39(15) 268

NA 1(0) 17(7) 28(11)  50(20) 115 (46) 4(2) 35 (14) 250

The BAGS-defined subtype analysis was performed across 4 different clinical cohorts (N = 1296

cases) following assignment of the data sets according to the restricted multinomial classifier.
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Table 2 Cox proportional hazards regression analysis.

Hazard ratio 95% CI P value Hazard ratio 95% CI P value

Immature 0.45 (0.26-0.76)  0.0032 0.48 (0.28-0.83)  0.0085

Memory 0.61 (0.39-0.95)  0.027 0.58 (0.37-0.92)  0.02

4p16 1 - - 1 - -

6p21 0.23 (0.07-0.73)  0.013 0.17 (0.05-0.54)  0.0027

D1 0.35 (0.26-0.47)  <0.001 03 (0.22-0.41)  <0.001

D2 0.38 (0.25-0.57) <0.001 0.25 (0.16-0.39)  <0.001

MyelomalX 1.16 (0.84-1.6)  0.38 1.15 (0.83-1.59)  0.41

Hazard ratio 95% CI P value Hazard ratio 95% CI P value

Immature 031 (0.18-0.51)  <0.001 0.36 (0.21-0.62) <0.001

Memory 0.33 (0.22-0.5)  <0.001 0.34 (0.23-0.52)  <0.001
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Plasmacell 0.1 (0.03-0.28) < 0.001 0.11 (0.04-0.32) <0.001
4p16 1 - - 1 - -

MAF 0.53 (0.3-0.93) 0.027 0.59 (0.34-1.05) 0.072
6p21 0.43 (0.13-1.36)  0.15 0.51 (0.16-1.65)  0.26
11q13 0.48 (0.33-0.71) < 0.001 0.51 (0.35-0.76) < 0.001
D1 0.37 (0.26-0.51) <0.001 0.39 (0.28-0.55) < 0.001
D1plusD2 0.41 (0.17-1.02) 0.056 0.31 (0.12-0.78)  0.013
D2 0.53 (0.34-0.83)  0.0056 0.47 (0.3-0.75) 0.0014
Hovon65 1 - = 1 - -
MyelomalX 1.23 (0.81-1.85) 0.33 1.24 (0.82-1.88) 0.31
UAMS 091 (0.68-1.21) 0.5 0.87 (0.65-1.17)  0.35

Cox proportional hazards regression analysis in the meta data set for BAGS subtypes based on
PFS and OS, demonstrating added independent significance to the TC classification staging
system. Columns on the left show results for a univariate analysis with each of the covariates,
while columns on the right show results from the multivariate model. The Pre-BI class was

dropped from the analysis due to, too few observations in this group.
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FIGURE LEGENDS

Figure 1A-D Expression of membrane markers, transcription factors, and B-cell subset-
specific genes in normal BM tissue.

A) B-cells of the BM were defined by flow cytometry as CD19+, CD45+, and CD3- and were
additionally divided by surface marker expression of CD10, CD20, CD27, CD38, and CD34,
published in detail previously#*4.

The data quality of the differentiating B-cell subset compartments was validated as illustrated
by normalized histograms of (A) the mean fluorescence intensities (MFIs) CD markers based
on merged MFC reanalysis of pure sorted populations resulting from seven independent sorting
procedures. Broken lines represents MFI values for each sorted B-cell subset.

B) Principal component analysis of the MFI values for each sorted cell in all samples. The cells
are coded with a color according to their original subset. The dots represents mean values for
each sorted B-cell subset.

C) The most variable probe sets were used in unsupervised hierarchical clustering analysis of
the surface markers MME = CD10, CD34, CD38, CD27, PTPRC = CD45, MS4A = CD20 and CD19
used for FACS.

D) B-cell differentiation-specific genes (n = 45), summarized from a literature review of
transcriptional regulation of B lymphopoiesis. The colors at the top of D indicate the relative

gene expression for each sample, with blue representing high and brown representing low.
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Figure 2A-B Meta-analysis of the prognostic impact of assigned BAGS subtypes.

Progression-free (A) and overall survival (B) were compared between BAGS subtypes for high-
dose melphalan-treated patients in published clinical trials. P-values are results from log-rank
tests. The subtypes numbers given as n are the numbers of events/number of assigned patients

with the subtypes in the meta data set. The BAGS subtypes are color coded as in Figure 1A-D.

Figure 3A-C: BAGS subtype boxplots with correlation to proliferation, melphalan
resistance, and beta-2 microglobulin.

The individual adjusted proliferation index (PI) risk profiling (A), melphalan drug resistance
probability (index) (B), and beta-2 microglobulin plasma level (C), respectively per BAGS
subtype cases from analysis of the meta dataset. The BAGS subtypes are color coded as in

Figure 1A-D.
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