

A MULTIPLE MYELOMA CLASSIFICATION SYSTEM THAT ASSOCIATES NORMAL B-CELL SUBSET PHENOTYPES WITH PROGNOSIS

Authors:

*Julie Støve Bødker¹; *Rasmus Froberg Brøndum¹; *Alexander Schmitz¹; Anna Amanda Schönherz¹²; Ditte Starberg Jespersen¹; Mads Sønderkær¹; Charles Vesteghem¹²; Hanne Due Rasmussen¹; Caroline Holm Nørgaard¹; Martin Perez-Andres^{1,2}; Mehmet Kemal Samur³; Faith Davies⁴; Brian Walker⁴; Charlotte Pawlyn⁵; Martin Kaiser⁵; David Johnson⁵; Uta Bertsch⁶; Annemiek Broyl⁷; Mark van Duin⁷; Rajen Shah⁸; Preben Johansen⁹; Martin Agge Nørgaard¹⁰; Richard Samworth⁸; Pieter Sonneveld⁷; Hartmut Goldschmidt⁶; Gareth J. Morgan⁴; Alberto Orfao²; Nikhil Munshi³; Tarec El-Galaly^{1,11,12}; **Karen Dybkær^{1,11,12}; and **Martin Bøgsted^{1,11,12}

*Shared first authorship **Shared senior authorship.

Affiliations:

¹Department of Haematology, Aalborg University Hospital, Aalborg, Denmark; ²Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain; Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA; ⁴UAMS Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; ⁵Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom; ⁶National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany; ⁷Department of Haematology, Erasmus MC, Rotterdam, Netherlands; ⁸Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom; ⁹Department of Haematopathology, Aalborg University Hospital, Aalborg, Denmark; ¹⁰Department of Cardiothoracic Surgery, Aalborg University Hospital, Denmark; ¹¹Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark, ¹²Department of Clinical Medicine, Aalborg University, Denmark.

24

ABSTRACT

25 Diagnostic tests for multiple myeloma reflect the criteria from the updated WHO classification
26 based on biomarkers and clinicopathologic heterogeneity. Here we propose a new subtyping of
27 myeloma plasma cells from diagnostic samples, assigned by normal B-cell subset associated
28 gene signatures (BAGS).

29 For this purpose, we combined fluorescence-activated cell sorting and gene expression profiles
30 from normal bone marrow PreBI, PreBII, immature, naïve, memory, and plasma cell subsets to
31 generate BAGS for assignment of normal bone marrow subtypes in diagnostic samples. The
32 impact of the subtypes was analyzed in eight available data set from 1772 patients' myeloma
33 plasma cell samples.

34 The resulting tumor assignments in available clinical datasets exhibited similar BAGS subtype
35 frequencies in four cohorts from *de novo* multiple myeloma patients across 1296 individual
36 cases. The BAGS subtypes were significantly associated with progression-free and overall
37 survival in a meta-analysis of 916 patients from three prospective trial cohorts with high-dose
38 melphalan as first line therapy. The major impact was observed within the PreBII and memory
39 subtypes, which had a significantly inferior prognosis compared to other subtypes. A multiple
40 Cox proportional hazard analysis documented that BAGS subtypes added significant,
41 independent prognostic information to the TC classification. BAGS subtype analysis of patient
42 cases identified transcriptional differences, including a number of differentially spliced genes.

43 We identified subtype differences in myeloma at diagnosis, with prognostic impact, supporting
44 an acquired B-cell trait and phenotypic plasticity as a pathogenetic hallmark of multiple
45 myeloma.

46

INTRODUCTION

47 Despite the extensive insight into multiple myeloma (MM) pathogenesis, as outlined in the
48 WHO classification^{1,2}, a number of questions remain unanswered regarding the origin,
49 initiation, and developing myeloma cells, including its association with the normal B-cell
50 hierarchy in the bone marrow (BM)³⁻⁶. We hypothesize that considering MM as a disease of
51 differentiation by identifying its cell of origin (COO) could lead to novel biological insight and
52 development of new treatment options as described by Boise and coauthors⁷.

53 MM develops from a pre-malignant monoclonal gammopathy of unknown significance (MGUS),
54 by a stepwise oncogenesis to intramedullary early smoldering or evolving *de novo* myeloma
55 because of acquired genetic deregulation⁸⁻¹⁰. The primary translocations implicating the 14q32
56 locus involve a series of promiscuous target genes, with *CCND1* and *FGFR3/MMSET* being the
57 most frequently present at the MGUS stage¹¹. Furthermore, the larger part of breakpoints
58 occurs in the switch regions, suggesting the early translocation happens during IgH class-
59 switch recombination in the germinal center¹²⁻¹⁴. The existence of early translocations and the
60 overexpression of *CCND* genes form the translocations and cyclin D (TC) classification
61 generated from early events^{9,11}. Later incidences include a spectrum of mutations and
62 dysregulations occurring in advanced disease with poor prognosis¹⁴⁻¹⁹.

63 Myeloma plasma cells (PCs) are class-switched, freezing the initiating cell at the post-
64 germinal B-cell maturation stage, refuting that the disease is initiated in earlier B-cell subsets,
65 as have been proposed before²⁰. The earliest IgH clonotypic cell we have identified with a class-
66 switched isotype is in the myeloma memory B-cell compartment^{21,22}, but its clonogenic and
67 malignant potential is a controversial issue²³⁻²⁶. Recent studies have concluded that they are
68 remainings of a neoplastic cell with no malignant potential^{27,28}, contrasting the myeloma PC

69 compartments.

70 The myeloma stem cell concept has been reviewed in detail by us and others^{29,30}. We
71 proposed an operational definition of COO to allow for acquisition of data supporting the
72 existence of the myeloma stem cell, where a normal B-cell that achieve the first myeloma
73 initiating mutation is not necessarily linearly connected to the myeloma stem cell. These results
74 underpin the hypothesis that myeloma generating cells are present in the malignant PC
75 compartment, but the COO is a normal counterpart of a germinal-center B cell that evolves via
76 differentiation into a premalignant PC compartment already present in MGUS populations.

77 The plasticity potential of myeloma cells, perhaps caused by interaction with the tumor
78 microenvironment, also plays an important role in development and maintance of MM³⁰.

79 The present study takes a COO approach, where we refer to an expanding compartment
80 initiated by a differentiation specific oncogene hit³¹. The terms COO and cancer stem cells have
81 been used interchangeably. However, it is important to differentiate between them as in
82 contrast to our phenotypic COO studies, it is our perception that cancer stem cell research
83 depends on single cell studies in the frame of the classical stem cell definition²⁹.

84 The deregulated myeloma cells are under influence by the host as well as the
85 microenvironment may be key in the emergence of myeloma and it's related phenotypic
86 changes. This phenomenon coined plasticity is defined as a changed cellular phenotype or
87 function during deregulated differentiation³². More specific, this refers to malignant mature
88 plasma cells that share properties of different maturation steps, including precursors. The
89 phenomenon facilitates a new tool for providing insight into the observed clonal plasticity^{33,34}
90 associated with oncogenesis^{8-12,17,35-38}. The mechanisms of deregulated differentiation and
91 myeloma-cell plasticity ought to be investigated and their clinical significance assessed.

92 Recently, we have documented a procedure to identify and study gene expression of flow-
93 sorted human B-cell subsets from normal lymphoid tissue³⁹⁻⁴². These subsets can be profiled
94 and by proper statistical modeling define specific B-cell associated gene signatures (BAGS),
95 recently introduced for DLBCL⁴³⁻⁴⁵. Here we have applied BAGS from normal BM subsets to
96 assign individual MM subtypes and correlate them with prognosis to delineate their
97 pathogenetic impact.

98

99

PATIENTS, MATERIAL, AND METHODS

100 The subtyping method based on normal BM has previously been briefly outlined in Nørgaard
101 et al.⁴⁶ and applied to Chronic Lymphocytic Leukemia patients. In this paper we will describe it
102 in more detail and with provide more profound quality control of the normal samples.

103 **Ethical statement and tissue analysis**

104 All normal tissue samples were collected in accordance with the research protocol (MSCNET,
105 N-20080062MCH) accepted by the North Denmark Regional Committee on Health Research
106 Ethics.

107 Normal BM was harvested from either sternum (n = 7) during cardiac surgery or taken as
108 aspirates from the iliac crest of healthy volunteers (n = 14). The normal B-cell subsets were
109 phenotyped by multiparametric flow cytometry (MFC) and fluorescence-activated cell sorting
110 (FACS) into six distinct B-cell subsets (PreBI, PreBII, immature (Im), naïve (N), memory (M) B-
111 cells, and PCs) using a monoclonal antibody panel⁴⁴. Gene expression profiles (GEP) for the
112 sternal samples were generated using Affymetrix Exon 1.0 ST while GEP for the iliac crest
113 samples were generated using either Affymetrix Exon 1.0 ST (n = 8) or U133 plus 2.0 (n = 6)
114 arrays. Details on MFC, FACS, and GEP are described in the Supplementary text 1

115 **Clinical myeloma data sets**

116 Data originated from Affymetrix microarray analysis of PC-enriched myeloma samples, from
117 four controlled trials: UAMS, HOVON65/GMMG-HD4, MRC Myeloma IX (all U133 plus 2.0), and
118 APEX (U133A arrays)^{35,36,47-50} as well as a preclinical study: IFM-DFCI^{37,51} (Human Exon 1.0 ST
119 arrays) as described in Supplementary text 1.

120 **Statistical analysis**

121 All statistical analyses were performed with R version 3.4.3 using Bioconductor packages^{52,53}.

122 Below is a summary of the statistical analysis; for full documentation see Supplementary text 1
123 and detailed session information provided as a Knitr document⁵⁴ in the Supplementary text 2.
124 The arrays were cohort-wise background corrected, normalized, and summarized by Robust
125 Multichip Average⁵⁵.

126 BAGS subtyping was build on median-centered gene expression profiles from the sternal
127 BM data summarized at ENSG gene IDs, using regularized multinomial regression, with five
128 discrete outcomes one for each B-cell subset and elastic net penalty⁵⁶. The number of features
129 available in the training of the classifier was prefiltered to only include genes probed by all
130 microarray platforms used in the clinical validation data. Penalization parameters were tuned
131 by leave one out cross validation. To compensate for cohort-wise technical batch effects, each
132 clinical cohort was probe-set-wise median-centered and adjusted to have the same variance as
133 in the sternal BM data. Each patient was BAGS classified according to the class with the highest
134 predicted probability score above 0.40 or otherwise unclassified (**Figure S1**). The robustness
135 of the probability cut-off were thoroughly tested (Supplementary text 2, **Section 11.1**). TC
136 classification was done directly on the RMA normalized samples according to Bergsagel et al.'s
137 algorithm⁹.

138 Kaplan–Meier curves, log-rank tests, and simple and multiple Cox proportional hazards
139 regression were used for survival analysis. The cohorts involving patients from three
140 prospective trial cohorts with high-dose melphalan as first line therapy were amalgamated into
141 a meta-dataset to increase the power of the study. BAGS subtypes as an independent
142 explanatory variable was investigated in the meta-dataset by a Cox proportional hazards
143 regression analysis with BAGS subtypes, TC classes, and cohort as potential confounders.
144 Harell's C-statistic for overall survival was calculated from predicted values from the

145 multivariate Cox model with and without inclusion of the BAGS classes to asses the prognostic
146 utility.

147 The samples were assigned resistance probabilities for the drug melphalan by resistance
148 gene signature (REGS) classifiers⁵⁷⁻⁶¹.

149 The significance level was set throughout to 0.05, and effect estimates were provided with
150 95% confidence intervals. P-values for the differential gene expression and alternative splice
151 analyses were adjusted by Holm's method⁶².

152 RESULTS

153 BAGS classifier generation and clinical sample assignment

154 The data quality of the differentiating B-cell subset compartments of the sternal BM was
155 individually validated as illustrated by density plots from MFC analysis (**Figure 1A**) and
156 principal component analysis (**Figure 1B**) of the mean fluorescence intensities (MFIs) of the
157 CD markers used for FACS; unsupervised cluster analysis was also conducted for the gene
158 expression values of the membrane CD markers used for FACS (**Figure 1C**, previously shown
159 in Nørgaard et al.⁴⁶) and 45 classical B-cell markers summarized from a literature search
160 (**Figure 1D**). Subset-specific segregation was further documented by principal component
161 analysis (**Figure S2A-B**).

162 The BAGS classifiers with the smallest deviance determined by cross validation consisted
163 of 184 genes, for details see Supplementary text 1 and **Figure S3**. Each B-cell subset signature
164 contained 27–54 genes, ensuring comparable gene representation for all subsets in the BAGS
165 classifier. The selected genes and associated coefficents for the BAGS signatures are shown in
166 **Table S1** (previously shown in Nørgaard et al.⁴⁶). The expressed signatures included 51 genes
167 associated with specific B-cell functions, 79 specific genes with more fundamental biological

168 associations, and 24 probes with unknown gene functions (**Table S2A-F**).

169 We subsequently validated the BAGS classifier, which was trained using GEP data from
170 Human Exon 1.0 ST Arrays, on independent normal B-cell subsets from BM aspirates from the
171 iliac crest profiled using either Human Exon 1.0 ST or U133 plus 2.0 arrays, and found
172 concordant assignments for both platforms (**Table S3**). This documented the cross-platform
173 validity of the classifier, allowing it's use in clinical data with GEP originating from other
174 platforms.

175 Microarray data from four independent cohorts ($n = 1296$) of *de novo* MM patients were
176 assigned for BAGS subtypes. **Table 1** shows the resulting assignment of the tumors and
177 exhibited BAGS subtype frequencies and average percentage for PreBI = 1%, PreBII = 6%, Im =
178 11%, N = 23%, M = 41%, and PC = 4%, with no significant variation between the cohorts from
179 different geographical regions, time periods, or sampling methods ($P = 0.9$). We allow 15% of
180 cases within each cohort to be unclassified, resulting in a probability cut-off of approximately
181 0.40. The distribution of the TC classes within the BAGS subtypes is given in **Table 1**, with
182 significant association identified ($P < 0.001$). There was also significant correlation with ISS
183 staging ($P = 0.032$), with increased numbers of the PreBII and M subtypes associated with ISS
184 stage III, as shown in **Table 1**. BAGS, proliferation index, and melphalan resistance assignments
185 for all samples used in the analyses are provided in Supplementary data, **Table S4A-H**.

186 **Prognostic impact of assigned BAGS subtypes**

187 **Figure 2A-B** illustrates the results from a meta-analysis of the 916 patients included in the
188 three prospective trial cohorts with high-dose melphalan as first line therapy (UAMS,
189 HOVON65/GMMG-HD4, and MRC Myeloma IX) with the Affymetrix U133 plus 2.0 microarray
190 data available, documenting that the assigned BAGS subtypes were significantly associated with

191 progression-free (PFS) and overall survival (OS) (PFS, log-rank test, $P < 0.001$; OS, log-rank test P
192 < 0.001). Major impact was observed within patient cohorts with the PreBII and M subtypes,
193 which had a significantly inferior prognosis compared to the patients with Im, N, and PC
194 subtypes.

195 The robustness of the BAGS association with outcome was successfully evaluated for a
196 wide range of probability cut-offs for the percentage of unclassified cases (Supplementary text
197 2, **Section 11.1**). The BAGS-assigned MM subtypes in the individual clinical trial data sets
198 UAMS/TT2&3, HOVON/GMMG-HD4, and MRCIX, all including HDM and a variety of new drugs,
199 were also separately analyzed for outcome following treatment as illustrated in **Figure S4A-H**.
200 Results from the individual datasets were in accordance with the above described meta-
201 analysis illustrated in **Figure 2A-B**.

202 Cox proportional hazard meta-analysis results, as shown in **Table 2** and Harrell's C-
203 statistic, giving the concordance between observed survival and predicted risk scores from the
204 a multivariate cox model with ($C = 0.65$) and without ($C = 0.59$) BAGS classes, demonstrated
205 that the BAGS subtypes added significant and independent prognostic information to the
206 already well-established TC classification. In addition, we found significant correlation between
207 the BAGS subtypes and the proliferation index (PI) risk profiling ($P < 0.001$), melphalan
208 resistance probability ($P < 0.001$), and beta-2 microglobulin plasma level ($P < 0.001$) as
209 illustrated in **Figure 3A-C**, respectively. Results in these figures are done on a combined dataset
210 adjusted for differences in individual datasets, while results for individual datasets may be
211 found in Supplementary text 1, **Figure S5A-C**.

212 **BAGS assignment of MGUS, smoldering myeloma, MM, extramedullary MM, and**

213 **myeloma cell lines**

214 Available data sets were used for BAGS assignment of associated myeloma diseases, as shown
215 in **Table S5A**. Of interest, five of six plasma cell leukemia cases were M subtypes, indicating a
216 subtype evolution or selection for advanced disease. In contrast, MGUS cases had a significantly
217 high frequency (> 50%) of N subtypes, which was different from smoldering myeloma and
218 newly diagnosed and relapsed MM. The distribution of M component isotypes showed no
219 significant differences across BAGS subtypes, except for a tendency for LCD to be
220 overrepresented in the post germinal subtypes as shown in **Table S5B**. Frequencies of BAGS
221 subtypes in relapsed MM patients from the APEX dataset (**Table S5C**) were similar to the
222 frequencies in first line patients shown in **Table 1**. Finally, we observed that 9 out of 12 human
223 myeloma cancer cell lines were classified as PC subtypes (**Table S6**).

224 **Characterization of BAGS subtypes**

225 Differential expression analysis of BAGS subtypes with poor prognosis (Pre-BII or Memory vs
226 the rest) identified hundreds of genes with a highly significant differential expression as given
227 in **Table S7A-B** for the Pre-BII and Memory subtypes, respectively. GO enrichment of
228 significant genes showed that the Pre-BII subtype myelomas are enriched for the categories
229 mitotic cell cycle, nuclear division and DNA-dependent DNA replication (**Table S8A**), and
230 Memory subtype myelomas are enriched for the categories cell-cell signaling, synaptic
231 transmission, multicellular organismal process (**Table S8B**). For more detail see
232 Supplementary text 1.

233 Finally, in order to detect whether the Pre-BII and Memory subtypes showed alternative
234 splicing patterns associated with oncogenesis, we investigated alternative exon usage in the
235 IFM-DFCI data set. Results suggested Pre-BII-specific alternative exon usage for 16 genes

236 (Table S9A), which were especially associated with biological processes involved in cell cycle
237 regulation (Table S10A). In Memory subtype cases, we only identified 2 candidate genes with
238 potential alternative exon usage (Table S9B) associated with basic cell functions including
239 regulation of programmed cell death, metabolism, and signaling transduction (Table S10B).
240 Comparison to alternative exon usage patterns detected in non-malignant samples (Table
241 S11) indicated that the majority of events were specific to malignant samples, suggesting
242 association to oncogenesis.

243

DISCUSSION

244 We have phenotyped distinct cellular subsets of B-cells in the normal BM to generate a BAGS
245 classifier and have documented that the assigned subtypes have prognostic impact.
246 A probability estimate for each sample to be assigned to each of the six BAGS subtypes was
247 provided. Samples with very low classification probabilities were labeled as unclassified. The
248 frequency of unclassified samples in other gene expression-based COO classifications is around
249 15%¹⁷. A pragmatic probability cut-off of 0.40 was used, which is well above the random
250 assignment probability of one out of six, to ensure that 85% of the samples would be BAGS-
251 subtypes. The robustness of the BAGS association with outcome was successfully assessed for
252 a wide series of probability cut-offs.

253 The present study was whenever possible conducted according to guidelines of -omics-
254 directed medicine, e.g. McShane et al.⁶³, REMARK⁶⁴, and MIAME⁶⁵. However, it is worth noting
255 that the BAGS classifier used cohort-based normalization, which implies that it cannot
256 practically be used in a clinical set-up where patients show up one at a time. Remedies to this
257 problem have been proposed elsewhere⁶⁶ and were not further pursued here.

258 The assignment of BAGS subtypes to MM may explain an inter-individual disease heterogeneity,
259 which could reflect the association between cellular differentiation and oncogenesis^{27,67-69}. A
260 standardized flow cytometry immunophenotyping of hematological malignancies, illustrates
261 the potential clinical application of surface expressed markers to identify diagnostic tumor
262 clones⁷⁰. Such a strategy has allowed new studies of normal PC heterogeneity by
263 differentiation^{6,10,71}.

264 MM is an example of a malignant disease that has been studied intensively with
265 microarrays. Many peer-reviewed papers have documented new classification systems based

266 on gene expression profiles to correlate with biology and prognosis^{1,8-12}. The present work
267 addresses a need to study a new diagnostic platform defined by the molecular classification of
268 BAGS in MM, as for DLBCL^{43,72}. In accordance with our studies in DLBCL, where we applied the
269 whole lymphoid differentiation compartment from tonsils or normal lymph nodes, we
270 prospectively analyzed the lymphoid subset-defined compartments from normal BM to
271 generate six BAGS for MM assignment. The idea was that the COO concept would hold true also
272 for MM and assign subtypes from the post-germinal differentiation pathway. To our surprise, a
273 major fraction of patient tissues were assigned a PreBII, Im, or N subtype, disproving the
274 subtyping to be true reminiscence of the origin from a germinal or post germinal phenotype.
275 Given the phenotypic variation among MGUS, smoldering myeloma, MM, MM relapse,
276 extramedullary MM, plasma cell leukemia, and human myeloma cancer cell lines, it is more
277 likely that BAGS assignment does classify MM cases based on reversible phenotypic plasticity³³.

278 The BAGS classification is correlated to the well-established TC classification; however,
279 we found that the poor prognosis for PreBII and memory subtypes correlated with the myeloma
280 cell PI and the beta-2 microglobulin plasma, but not gene expression level. PI and beta-2
281 microglobulin is historically the most important and persistent biomarker in different trials,
282 independent of the evolving therapy. The mechanisms behind these prognostically useful
283 markers are unknown but should now be studied to understand their pathogenetic impact.

284 Our detection of alternative exon usage suggested subtype specific patterns, supporting
285 that the BAGS phenotyping is based on biological processes. Alternatively spliced candidate
286 genes detected in the Pre-BII subtype revealed an overrepresentation of genes involved in cell
287 cycle regulation and increased proliferation, such as *GTSE1*, *PKMYT1*, *BIRC5*, and *AURKB* ,
288 suggesting an association with altered cell cycle regulation and proliferation. However,

289 detected alternative exon usage of candidate genes needs to be experimentally validated and
290 confirmed.

291 HDM forms the basis of MM treatment⁷³. However, patients with refractory or relapsed
292 diseases represent a large unmet need for drug-specific predictive tests and precise companion
293 diagnostics⁵⁷⁻⁶¹. This need can be exemplified by REGS and BAGS classification with predictive
294 information to guide therapy. The current analyses indicate that such information is available
295 at diagnosis (**Figure 3B and Figure S5B**) and could be used for identification of candidates for
296 more precise strategies. Collectively, this result indicates BAGS subtypes experiences different
297 clinical tracks and drug resistant mechanisms, and maybe even different molecular
298 pathogenesis. We believe our results support the future inclusion of gene expression profiling
299 in randomized prospective clinical trials aimed at improving MM treatment.

300 BAGS classification divided *de novo* MM patients into so-far-unrecognized, differentiation-
301 dependent prognostic groups. These prognostic analyses and observations support the idea
302 that BAGS classification in MM may contribute with pathogenetic information, especially in
303 attempts to understand the biology behind the classical and still meaningful biomarkers PI and
304 beta-2 microglobulin. Most importantly, the classification included pregerminal subtypes,
305 pointing at a reversible phenotypic plasticity in myeloma PCs. Prospective future studies are
306 needed to prove the concept using clinical endpoints, including prediction of therapeutic
307 outcome.

308 **Acknowledgments**

309 We acknowlegde the tremendous perseverance by the late Professor Hans Erik Johnsen (May
310 13, 1948 – May 17, 2018) in driving the project behind this publication. Ufortunately, he did
311 not experience the final outcome of the work.

312 This study was supported by research funding from the EU 6th FP to MSCNET (LSHC-CT-2006-
313 037602), the Danish Cancer Society, the Danish Research Agency to CHEPRE (#2101-07-
314 0007), and the KE Jensen Foundation (2006-2010) to HEJ and KD.

315 Technicians Louise Hvilsted Madsen and Helle Høholt participated in several aspects of the
316 laboratory work.

317 **Author contributions**

318 M.B. and K.D. designed, collected data, and lead the study; J.S.B., R.F.B., A.S., M.B., and K.D. wrote
319 the manuscript; R.F.B. and M.B. performed statistical analysis; Biological and clinical
320 interpretation was provided by J.S.B., K.D., A.A.S., D.S.J., T.E.G. and H.E.J.; M.P.A., A.O., A.S., R.F.B.,
321 A.A.S., M.S., C.V., H.D.R., C.H.N., D.S.J., P.J., M.A.N., R.S., and R.S. contributed vital technology or
322 analytical tools; M.K.S., N.M., F.D., B.W., C.P., M.K., D.J., G.J.M., U.B., H.G., A.B., M.v.D., and P.S.
323 delivered clinical and expression data. All authors read and approved the final version of the
324 manuscript before submission. Hans Erik Johnsen, Department of Hematology, Aalborg
325 University Hospital, Denmark lead the project before his death and therefore contributed in
326 designing the study and drafting the manuscript.

327

328 Conflift-of-interest disclosure: The authors declare no competing financial interests.

329 **Correspondance: Martin Bøgsted, Department of Clinical Medicine, Aalborg University,**
330 **Sdr. Skovvej 15, DK-9000 Aalborg, Denmark; E-mail: martin.boegsted@rn.dk**

331

332

REFERENCES

333 1. Campo E, Swerdlow SH, Harris NL, et al. The 2008 WHO classification of lymphoid
334 neoplasms and beyond: evolving concepts and practical applications. *Blood*.
335 2011;117(19):5019–32.

336 2. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health
337 Organization classification of lymphoid neoplasms. *Blood*. 2016;127(20):2375–2391.

338 3. Rasmussen T, Honoré L, Johnsen HE. Identification and characterisation of malignant
339 cells using RT-PCR on single flow-sorted cells. *Med. Oncol.* 1998;15(2):96–102.

340 4. Rasmussen T, Haaber J, Dahl IM, et al. Identification of translocation products but not K-
341 RAS mutations in memory B cells from patients with multiple myeloma. *Haematologica*.
342 2010;95(10):1730–1737.

343 5. Kim D, Park CY, Medeiros BC, Weissman IL. CD19-CD45 low/- CD38 high/CD138+ plasma
344 cells enrich for human tumorigenic myeloma cells. *Leukemia*. 2012;26(12):2530–7.

345 6. Cenci S, van Anken E, Sitia R. Proteostasis and plasma cell pathophysiology. *Curr. Opin.*
346 *Cell Biol.* 2011;23(2):216–22.

347 7. Boise LH, Kaufman JL, Bahlis NJ, Lonial S, Lee KP. The Tao of myeloma. *Blood*.
348 2014;124(12):1873–9.

349 8. Hallek M, Bergsagel PL, Anderson KC. Multiple myeloma: increasing evidence for a
350 multistep transformation process. *Blood*. 1998;91(1):3–21.

351 9. Bergsagel PL, Kuehl WM, Zhan F, et al. Cyclin D dysregulation: an early and unifying
352 pathogenic event in multiple myeloma. *Blood*. 2005;106(1):296–303.

353 10. Zhan F, Hardin J, Kordsmeier B, et al. Global gene expression profiling of multiple
354 myeloma, monoclonal gammopathy of undetermined significance, and normal bone
355 marrow plasma cells. *Blood*. 2002;99(5):1745–57.

356 11. Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. *Oncogene*.
357 2001;20(40):5611–5622.

358 12. Bergsagel PL, Chesi M, Nardini E, et al. Promiscuous translocations into immunoglobulin
359 heavy chain switch regions in multiple myeloma. *Proc. Natl. Acad. Sci. U. S. A.*
360 1996;93(24):13931–6.

361 13. Chesi M, Nardini E, Brents LA, et al. Frequent translocation t(4;14)(p16.3;q32.3) in
362 multiple myeloma is associated with increased expression and activating mutations of

363 fibroblast growth factor receptor 3. *Nat. Genet.* 1997;16(3):260–4.

364 14. Rasmussen T, Theilgaard-Mönch K, Hudlebusch HR, et al. Occurrence of dysregulated
365 oncogenes in primary plasma cells representing consecutive stages of myeloma
366 pathogenesis: indications for different disease entities. *Br. J. Haematol.*
367 2003;123(2):253–62.

368 15. Davies FE, Dring AM, Li C, et al. Insights into the multistep transformation of MGUS to
369 myeloma using microarray expression analysis. *Blood.* 2003;102(13):4504–11.

370 16. Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl IMS. Possible roles for activating RAS
371 mutations in the MGUS to MM transition and in the intramedullary to extramedullary
372 transition in some plasma cell tumors. *Blood.* 2005;105(1):317–23.

373 17. Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of
374 multiple myeloma. *Nature.* 2011;471(7339):467–472.

375 18. Egan JB, Shi CX, Tembe W, et al. Whole-genome sequencing of multiple myeloma from
376 diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal
377 tides. *Blood.* 2012;120(5):1060–1066.

378 19. Leich E, Weißbach S, Klein H-U, et al. Multiple myeloma is affected by multiple and
379 heterogeneous somatic mutations in adhesion- and receptor tyrosine kinase signaling
380 molecules. *Blood Cancer J.* 2013;3(2):e102–e102.

381 20. Vicente-Dueñas C, Romero-Camarero I, González-Herrero I, et al. A novel molecular
382 mechanism involved in multiple myeloma development revealed by targeting MafB to
383 haematopoietic progenitors. *EMBO J.* 2012;31(18):3704–3717.

384 21. Rasmussen T, Lodahl M, Hancke S, Johnsen HE. In multiple myeloma clonotypic CD38-
385 /CD19+ / CD27+ memory B cells recirculate through bone marrow, peripheral blood and
386 lymph nodes. *Leuk. Lymphoma.* 2004;45(7):1413–7.

387 22. Matsui W, Wang Q, Barber JP, et al. Clonogenic multiple myeloma progenitors, stem cell
388 properties, and drug resistance. *Cancer Res.* 2008;68(1):190–7.

389 23. Paino T, Ocio EM, Paiva B, et al. CD20 positive cells are undetectable in the majority of
390 multiple myeloma cell lines and are not associated with a cancer stem cell phenotype.
391 *Haematologica.* 2012;97(7):1110–1114.

392 24. Yaccoby S, Epstein J. The proliferative potential of myeloma plasma cells manifest in the
393 SCID-hu host. *Blood.* 1999;94(10):3576–3582.

394 25. Guikema JEJ, Vellenga E, Bakkus MHC, Bos NA. Myeloma clonotypic B cells are hampered
395 in their ability to undergo B-cell differentiation in vitro. *Br. J. Haematol.* 2002;119(1):54–
396 61.

397 26. Rasmussen T, Jensen L, Johnsen HE. The clonal hierarchy in multiple myeloma. *Acta Oncol.*
398 2000;39(7):765–70.

399 27. Pfeifer S, Perez-Andres M, Ludwig H, Sahota SS, Zojer N. Evaluating the clonal hierarchy
400 in light-chain multiple myeloma: implications against the myeloma stem cell hypothesis.
401 *Leukemia.* 2011;25(7):1213–6.

402 28. Van Valckenborgh E, Matsui W, Agarwal P, et al. Tumor-initiating capacity of CD138- and
403 CD138+ tumor cells in the 5T33 multiple myeloma model. *Leukemia.* 2012;26(6):1436–
404 9.

405 29. Johnsen HE, Bøgsted M, Schmitz A, et al. The myeloma stem cell concept, revisited: from
406 phenomenology to operational terms. *Haematologica.* 2016;101(12):1451–1459.

407 30. Hajek R, Okubote SA, Svachova H. Myeloma stem cell concepts, heterogeneity and
408 plasticity of multiple myeloma. *Br. J. Haematol.* 2013;163(5):551–564.

409 31. Visvader JE. Cells of origin in cancer. *Nature.* 2011;469(7330):314–22.

410 32. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. *Cell.*
411 2011;144(5):646–674.

412 33. Yaccoby S. The phenotypic plasticity of myeloma plasma cells as expressed by
413 dedifferentiation into an immature, resilient, and apoptosis-resistant phenotype. *Clin.
414 Cancer Res.* 2005;11(21):7599–606.

415 34. Bam R, Khan S, Ling W, et al. Primary myeloma interaction and growth in coculture with
416 healthy donor hematopoietic bone marrow. *BMC Cancer.* 2015;15(1):864.

417 35. Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma. *Blood.*
418 2006;108(6):2020–8.

419 36. Mulligan G, Mitsiades C, Bryant B, et al. Gene expression profiling and correlation with
420 outcome in clinical trials of the proteasome inhibitor bortezomib. *Blood.*
421 2007;109(8):3177–3188.

422 37. Avet-Loiseau H, Li C, Magrangeas F, et al. Prognostic Significance of Copy-Number
423 Alterations in Multiple Myeloma. *J. Clin. Oncol.* 2009;27(27):4585–4590.

424 38. Samur MK, Shah PK, Wang X, et al. The shaping and functional consequences of the dosage

425 effect landscape in multiple myeloma. *BMC Genomics*. 2013;14(1):672.

426 39. Johnsen HE, Bergkvist KS, Schmitz A, et al. Cell of origin associated classification of B-cell
427 malignancies by gene signatures of the normal B-cell hierarchy. *Leuk. Lymphoma*.
428 2014;55(6):1251–1260.

429 40. Kjeldsen MK, Perez-Andres M, Schmitz A, et al. Multiparametric flow cytometry for
430 identification and fluorescence activated cell sorting of five distinct B-cell subpopulations
431 in normal tonsil tissue. *Am. J. Clin. Pathol.* 2011;136(6):960–9.

432 41. Bergkvist KS, Nyegaard M, Bøgsted M, et al. Validation and implementation of a method
433 for microarray gene expression profiling of minor B-cell subpopulations in man. *BMC*
434 *Immunol.* 2014;15(1):3.

435 42. Rasmussen SM, Bilgrau AE, Schmitz A, et al. Stable phenotype of B-cell subsets following
436 cryopreservation and thawing of normal human lymphocytes stored in a tissue biobank.
437 *Cytom. Part B - Clin. Cytom.* 2015;88(1):40–49.

438 43. Dybkær K, Bøgsted M, Falgreen S, et al. Diffuse large B-cell lymphoma classification
439 system that associates normal B-cell subset phenotypes with prognosis. *J. Clin. Oncol.*
440 2015;33(12):1379–88.

441 44. Bergkvist KS, Nørgaard MA, Bøgsted M, et al. Characterization of memory B cells from
442 thymus and its impact for DLBCL classification. *Exp. Hematol.* 2016;44(10):982–990.e11.

443 45. Michaelsen TY, Richter J, Brøndum RF, et al. A B-cell-associated gene signature
444 classification of Diffuse Large B-cell Lymphoma by the NanoString technology. *Under Rev.*
445 *Blood Adv.* 2019;2(13):1542–1546.

446 46. Nørgaard CH, Jakobsen LH, Gentles AJ, et al. Subtype assignment of CLL based on B-cell
447 subset associated gene signatures from normal bone marrow – A proof of concept study.
448 *PLoS One.* 2018;13(3):e0193249.

449 47. Barlogie B, Mitchell A, van Rhee F, et al. Curing myeloma at last: defining criteria and
450 providing the evidence. *Blood.* 2014;124(20):3043–51.

451 48. Broyl A, Hose D, Lokhorst H, et al. Gene expression profiling for molecular classification
452 of multiple myeloma in newly diagnosed patients. *Blood.* 2010;116(14):2543–2553.

453 49. Morgan GJ, Davies FE, Gregory WM, et al. Cyclophosphamide, thalidomide, and
454 dexamethasone as induction therapy for newly diagnosed multiple myeloma patients
455 destined for autologous stem-cell transplantation: MRC Myeloma IX randomized trial

456 results. *Haematologica*. 2012;97(3):442–450.

457 50. Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or High-Dose
458 Dexamethasone for Relapsed Multiple Myeloma. *N. Engl. J. Med.* 2005;352(24):2487–
459 2498.

460 51. Chauhan D, Tian Z, Nicholson B, et al. A Small Molecule Inhibitor of Ubiquitin-Specific
461 Protease-7 Induces Apoptosis in Multiple Myeloma Cells and Overcomes Bortezomib
462 Resistance. *Cancer Cell*. 2012;22(3):345–358.

463 52. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for
464 computational biology and bioinformatics. *Genome Biol.* 2004;5(10):R80.

465 53. R Core Team. R : A Language and Environment for Statistical Computing. Vienna, Austria,
466 Austria: R Foundation for Statistical Computing, Vienna, Austria; 2017.

467 54. Xie Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. 2017;

468 55. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high
469 density oligonucleotide array probe level data. *Biostatistics*. 2003;4(2):249–64.

470 56. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models
471 via Coordinate Descent. *J. Stat. Softw.* 2010;33(1):1–22.

472 57. Boegsted M, Holst JM, Fogd K, et al. Generation of a predictive melphalan resistance index
473 by drug screen of B-cell cancer cell lines. *PLoS One*. 2011;6(4):e19322.

474 58. Bøgsted M, Bilgrau AE, Wardell CP, et al. Proof of the concept to use a malignant B cell
475 line drug screen strategy for identification and weight of melphalan resistance genes in
476 multiple myeloma. *PLoS One*. 2013;8(12):e83252.

477 59. Laursen MB, Falgreen S, Bødker JS, et al. Human B-cell cancer cell lines as a preclinical
478 model for studies of drug effect in diffuse large B-cell lymphoma and multiple myeloma.
479 *Exp. Hematol.* 2014;42(11):927–938.

480 60. Falgreen S, Laursen MB, Bødker JS, et al. Exposure time independent summary statistics
481 for assessment of drug dependent cell line growth inhibition. *BMC Bioinformatics*.
482 2014;15(1):168.

483 61. Falgreen S, Dybkær K, Young KH, et al. Predicting response to multidrug regimens in
484 cancer patients using cell line experiments and regularised regression models. *BMC
485 Cancer*. 2015;15:235.

486 62. Holm S. A Simple Sequentially Rejective Multiple Test Procedure. *Scand. J. Stat.*

487 1979;6(2):65–70.

488 63. McShane LM, Cavenagh MM, Lively TG, et al. Criteria for the use of omics-based predictors
489 in clinical trials: explanation and elaboration. *BMC Med.* 2013;11:220.

490 64. McShane LM, Altman DG, Sauerbrei W, et al. Reporting recommendations for tumor
491 marker prognostic studies. *J. Clin. Oncol.* 2005;23(36):9067–72.

492 65. Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray
493 experiment (MIAME)-toward standards for microarray data. *Nat. Genet.*
494 2001;29(4):365–71.

495 66. Falgreen S, Ellern Bilgrau A, Brøndum RF, et al. hemaClass.org: Online One-By-One
496 Microarray Normalization and Classification of Hematological Cancers for Precision
497 Medicine. *PLoS One.* 2016;11(10):.

498 67. Greaves M, Maley CC. Clonal evolution in cancer. *Nature.* 2012;481(7381):306–13.

499 68. Corre J, Munshi N, Avet-Loiseau H. Genetics of multiple myeloma: another heterogeneity
500 level? *Blood.* 2015;125(12):1870–1876.

501 69. Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host
502 interactions. *Nat. Rev. Cancer.* 2002;2(3):175–87.

503 70. van Dongen JJM, Lhermitte L, Böttcher S, et al. EuroFlow antibody panels for standardized
504 n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant
505 leukocytes. *Leukemia.* 2012;26(9):1908–75.

506 71. Paiva B, Perez-Andres M, Gutierrez ML, et al. CD56+ Clonal Plasma Cells In Multiple
507 Myeloma Are Associated With Unique Disease Characteristics and Have a Counterpart Of
508 CD56+ Normal Plasma Cells With Increased Maturity. *Blood.* 2013;122(21):.

509 72. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma
510 identified by gene expression profiling. *Nature.* 2000;403(6769):503–11.

511 73. Engelhardt M, Terpos E, Kleber M, et al. European Myeloma Network recommendations
512 on the evaluation and treatment of newly diagnosed patients with multiple myeloma.
513 *Haematologica.* 2014;99(2):232–242.

514

515

TABLES AND FIGURE LEGENDS

516

Table 1 BAGS defined subtype analysis.

Frequencies across data sets (P= 0.90).								
Group	PreBI (%)	PreBII (%)	Im (%)	N (%)	M (%)	PC (%)	UC (%)	Sum
UAMS	3 (1)	29 (5)	58 (10)	143 (26)	219 (39)	23 (4)	84 (15)	559
Hovon 65	2 (1)	19 (6)	45 (14)	61 (19)	134 (42)	11	48 (15)	320
Myeloma IX	1 (0)	14 (6)	23 (9)	59 (24)	105 (43)	8 (3)	37 (15)	247
IFM-DFCI	2 (1)	11 (6)	21 (12)	38 (22)	68 (40)	4 (2)	26 (15)	170
Sum*	8 (1)	75 (6)	147 (11)	302 (23)	528 (41)	46 (4)	196 (15)	1296

Association with the TC classification (P< 0.001).

Group	PreBI (%)	PreBII (%)	Im (%)	N (%)	M (%)	PC (%)	UC (%)	Sum
4p16	1 (1)	21 (12)	7 (4)	45 (25)	78 (44)	3 (2)	22 (12)	177
MAF	2 (2)	4 (5)	12 (15)	25 (30)	31 (38)	1 (1)	7 (9)	82
6p21	1 (1)	2 (2)	12 (14)	19 (22)	36 (42)	2 (2)	14 (16)	86
11q13	0 (0)	3 (2)	11 (7)	46 (29)	81 (51)	4 (2)	15 (9)	160
D1	2 (0)	11 (3)	63 (15)	89 (21)	157 (37)	19 (5)	81 (19)	422

B-cell subset phenotype classification of MM subtypes

D1plusD2	0 (0)	4 (20)	2 (10)	2 (10)	9 (45)	0 (0)	3 (15)	20
D2	1 (1)	16 (13)	12 (10)	15 (12)	53 (44)	7 (6)	17 (14)	121
Unclassifie								
d	1 (0)	12 (5)	28 (12)	60 (26)	81 (36)	10 (4)	36 (16)	228
								129
Sum	8 (1)	73 (6)	147 (11)	301 (23)	526 (41)	46 (4)	195 (15)	6

ISS stage III with increased frequencies in the PreBII and M subtypes. (P= 0.032).

Group	PreBI (%)	PreBII (%)	Im (%)	N (%)	M (%)	PC (%)	UC (%)	Sum
Stage I	2 (0)	8 (2)	51 (12)	115 (28)	149 (36)	18 (4)	72 (17)	415
Stage II	1 (0)	18 (7)	25 (9)	65 (24)	105 (39)	15 (6)	39 (15)	268
Stage III	2 (1)	19 (10)	22 (11)	33 (17)	89 (46)	5 (3)	23 (12)	193
NA	1 (0)	17 (7)	28 (11)	50 (20)	115 (46)	4 (2)	35 (14)	250
Sum	6 (1)	62 (6)	126 (11)	263 (23)	458 (41)	42 (4)	169 (15)	1126

517 The BAGS-defined subtype analysis was performed across 4 different clinical cohorts (N = 1296
 518 cases) following assignment of the data sets according to the restricted multinomial classifier.
 519

Table 2 Cox proportional hazards regression analysis.

Combined PFS, n = 642, number of events = 311						
	Hazard ratio	95% CI	P value	Hazard ratio	95% CI	P value
Pre-BII	1	-	-	1	-	-
Immature	0.45	(0.26-0.76)	0.0032	0.48	(0.28-0.83)	0.0085
Naive	0.41	(0.25-0.66)	< 0.001	0.39	(0.24-0.63)	< 0.001
Memory	0.61	(0.39-0.95)	0.027	0.58	(0.37-0.92)	0.02
Plasmacell	0.28	(0.13-0.6)	< 0.001	0.3	(0.14-0.64)	0.0018
4p16	1	-	-	1	-	-
MAF	0.47	(0.29-0.77)	0.0026	0.53	(0.32-0.86)	0.011
6p21	0.23	(0.07-0.73)	0.013	0.17	(0.05-0.54)	0.0027
11q13	0.36	(0.26-0.52)	< 0.001	0.31	(0.22-0.45)	< 0.001
D1	0.35	(0.26-0.47)	< 0.001	0.3	(0.22-0.41)	< 0.001
D1plusD2	0.27	(0.12-0.63)	0.0024	0.27	(0.12-0.62)	0.0021
D2	0.38	(0.25-0.57)	< 0.001	0.25	(0.16-0.39)	< 0.001
Hovon65	1	-	-	1	-	-
MyelomaIX	1.16	(0.84-1.6)	0.38	1.15	(0.83-1.59)	0.41
UAMS	0.37	(0.29-0.48)	< 0.001	0.33	(0.26-0.42)	< 0.001

Combined OS, n= 642, number of events= 236						
	Hazard ratio	95% CI	P value	Hazard ratio	95% CI	P value
Pre-BII	1	-	-	1	-	-
Immature	0.31	(0.18-0.51)	< 0.001	0.36	(0.21-0.62)	< 0.001
Naive	0.19	(0.12-0.3)	< 0.001	0.19	(0.12-0.31)	< 0.001
Memory	0.33	(0.22-0.5)	< 0.001	0.34	(0.23-0.52)	< 0.001

Plasmacell	0.1	(0.03-0.28)	< 0.001	0.11	(0.04-0.32)	< 0.001
4p16	1	-	-	1	-	-
MAF	0.53	(0.3-0.93)	0.027	0.59	(0.34-1.05)	0.072
6p21	0.43	(0.13-1.36)	0.15	0.51	(0.16-1.65)	0.26
11q13	0.48	(0.33-0.71)	< 0.001	0.51	(0.35-0.76)	< 0.001
D1	0.37	(0.26-0.51)	< 0.001	0.39	(0.28-0.55)	< 0.001
D1plusD2	0.41	(0.17-1.02)	0.056	0.31	(0.12-0.78)	0.013
D2	0.53	(0.34-0.83)	0.0056	0.47	(0.3-0.75)	0.0014
Hovon65	1	-	-	1	-	-
MyelomaIX	1.23	(0.81-1.85)	0.33	1.24	(0.82-1.88)	0.31
UAMS	0.91	(0.68-1.21)	0.5	0.87	(0.65-1.17)	0.35

521 Cox proportional hazards regression analysis in the meta data set for BAGS subtypes based on
 522 PFS and OS, demonstrating added independent significance to the TC classification staging
 523 system. Columns on the left show results for a univariate analysis with each of the covariates,
 524 while columns on the right show results from the multivariate model. The Pre-BI class was
 525 dropped from the analysis due to, too few observations in this group.

526

527

FIGURE LEGENDS

528 **Figure 1A-D Expression of membrane markers, transcription factors, and B-cell subset-
529 specific genes in normal BM tissue.**

530 **A)** B-cells of the BM were defined by flow cytometry as CD19+, CD45+, and CD3- and were
531 additionally divided by surface marker expression of CD10, CD20, CD27, CD38, and CD34,
532 published in detail previously⁴⁴.

533 The data quality of the differentiating B-cell subset compartments was validated as illustrated
534 by normalized histograms of **(A)** the mean fluorescence intensities (MFIs) CD markers based
535 on merged MFC reanalysis of pure sorted populations resulting from seven independent sorting
536 procedures. Broken lines represents MFI values for each sorted B-cell subset.

537 **B)** Principal component analysis of the MFI values for each sorted cell in all samples. The cells
538 are coded with a color according to their original subset. The dots represents mean values for
539 each sorted B-cell subset.

540 **C)** The most variable probe sets were used in unsupervised hierarchical clustering analysis of
541 the surface markers MME = CD10, CD34, CD38, CD27, PTPRC = CD45, MS4A = CD20 and CD19
542 used for FACS.

543 **D)** B-cell differentiation-specific genes (n = 45), summarized from a literature review of
544 transcriptional regulation of B lymphopoiesis. The colors at the top of D indicate the relative
545 gene expression for each sample, with blue representing high and brown representing low.

546

547 **Figure 2A-B Meta-analysis of the prognostic impact of assigned BAGS subtypes.**

548 Progression-free **(A)** and overall survival **(B)** were compared between BAGS subtypes for high-
549 dose melphalan-treated patients in published clinical trials. P-values are results from log-rank
550 tests. The subtypes numbers given as n are the numbers of events/number of assigned patients
551 with the subtypes in the meta data set. The BAGS subtypes are color coded as in **Figure 1A-D**.

552

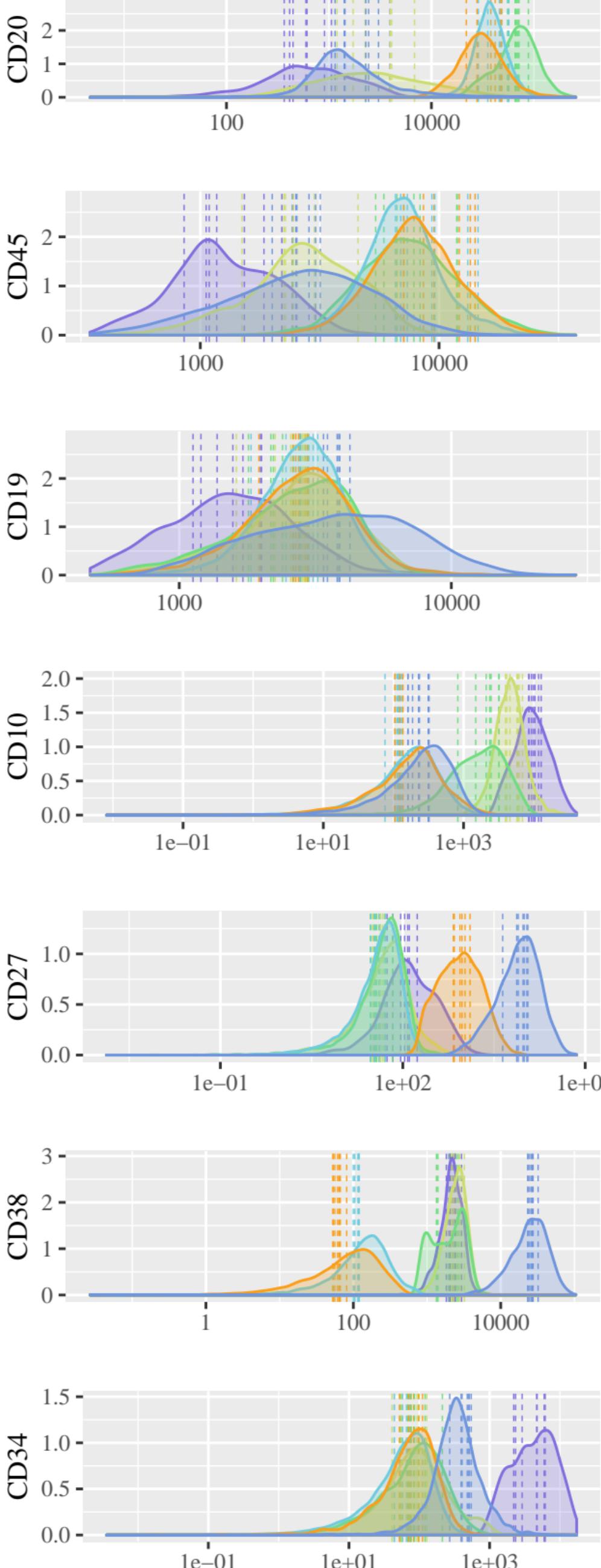
553

554 **Figure 3A-C: BAGS subtype boxplots with correlation to proliferation, melphalan
555 resistance, and beta-2 microglobulin.**

556 The individual adjusted proliferation index (PI) risk profiling **(A)**, melphalan drug resistance
557 probability (index) **(B)**, and beta-2 microglobulin plasma level **(C)**, respectively per BAGS
558 subtype cases from analysis of the meta dataset. The BAGS subtypes are color coded as in
559 **Figure 1A-D**.

560

Density Plot of Sorting Markers



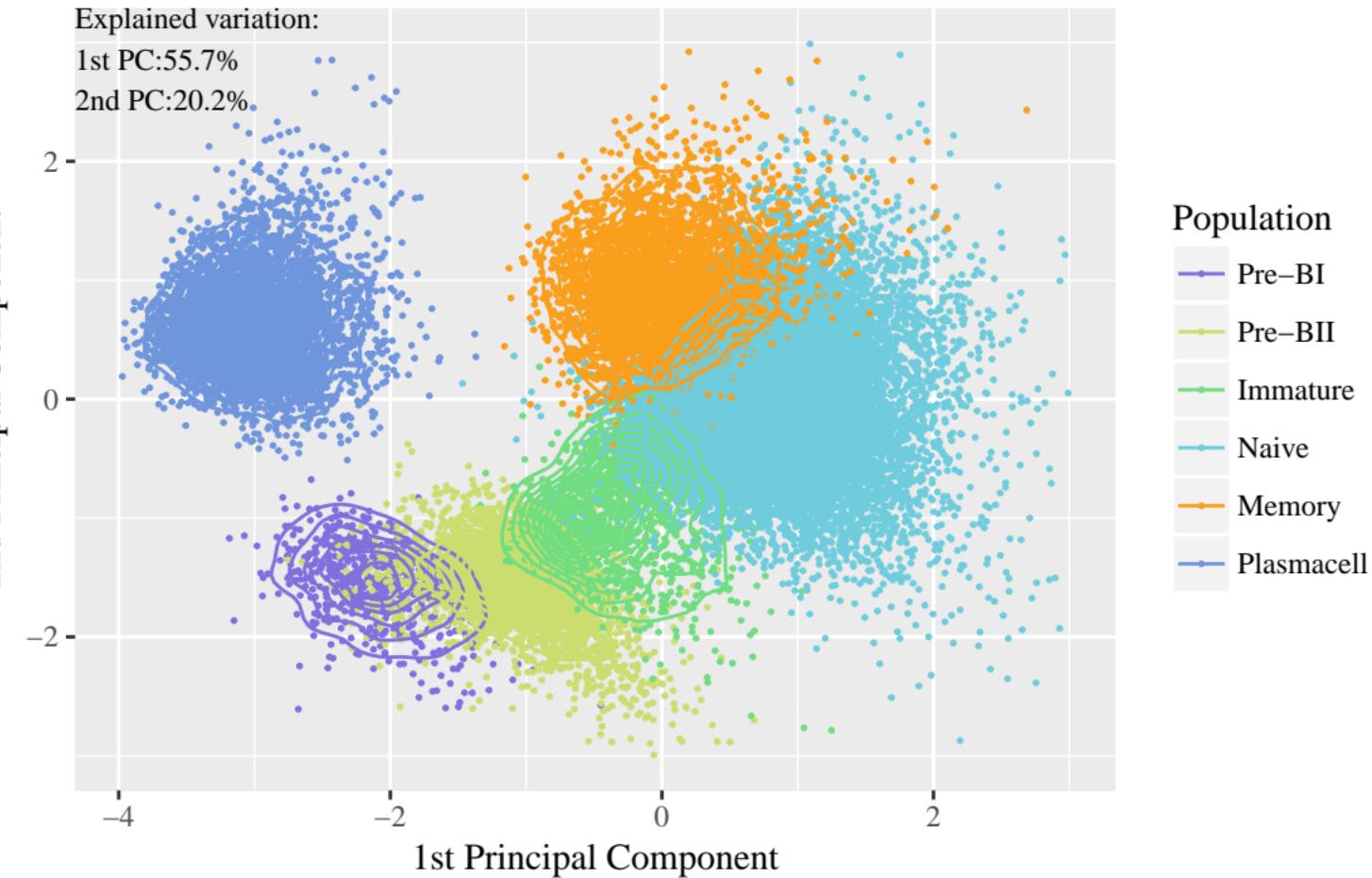
PCA of Membrane Marker Expressions

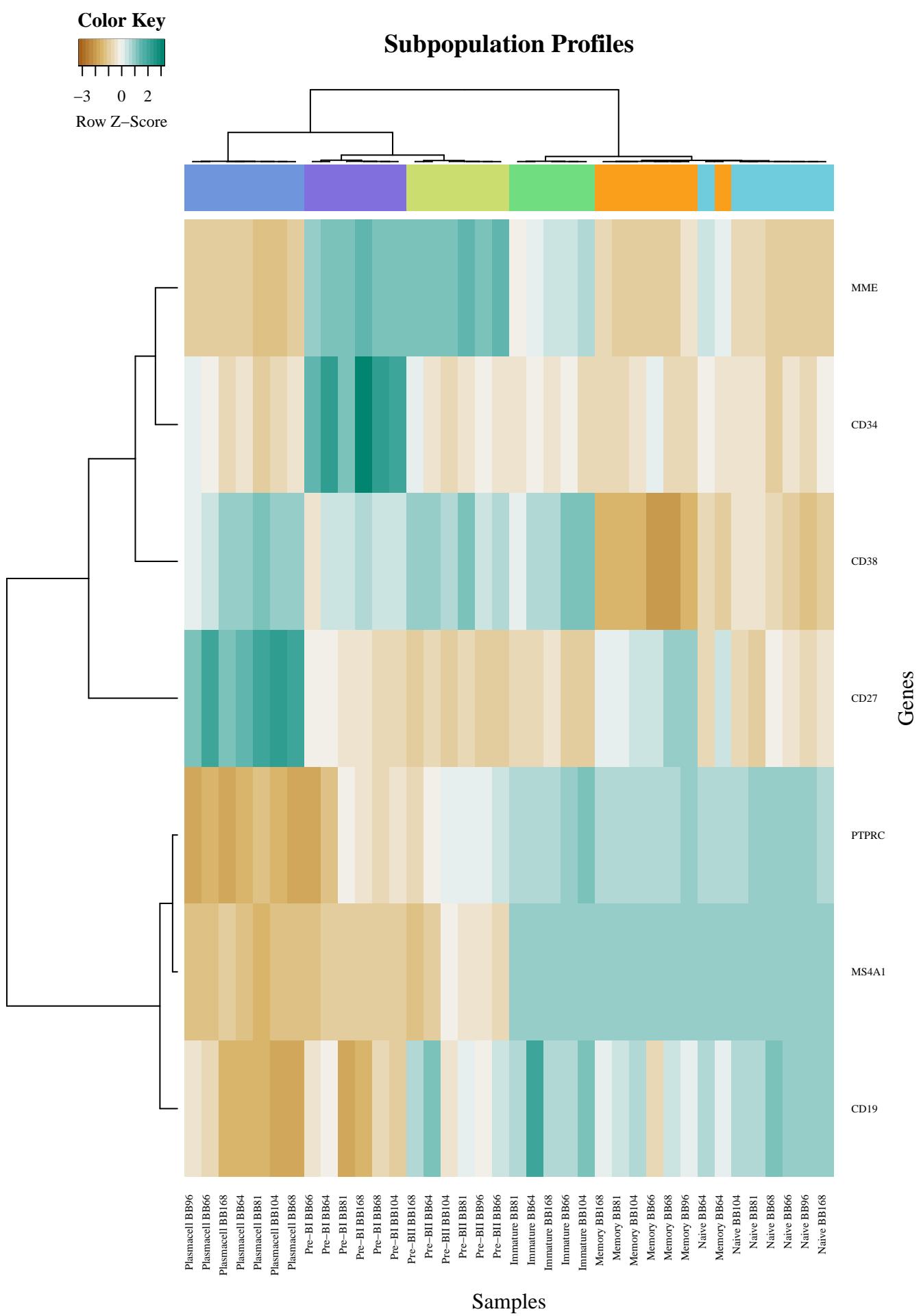
Explained variation:

1st PC: 55.7%

2nd PC: 20.2%

2nd Principal Component

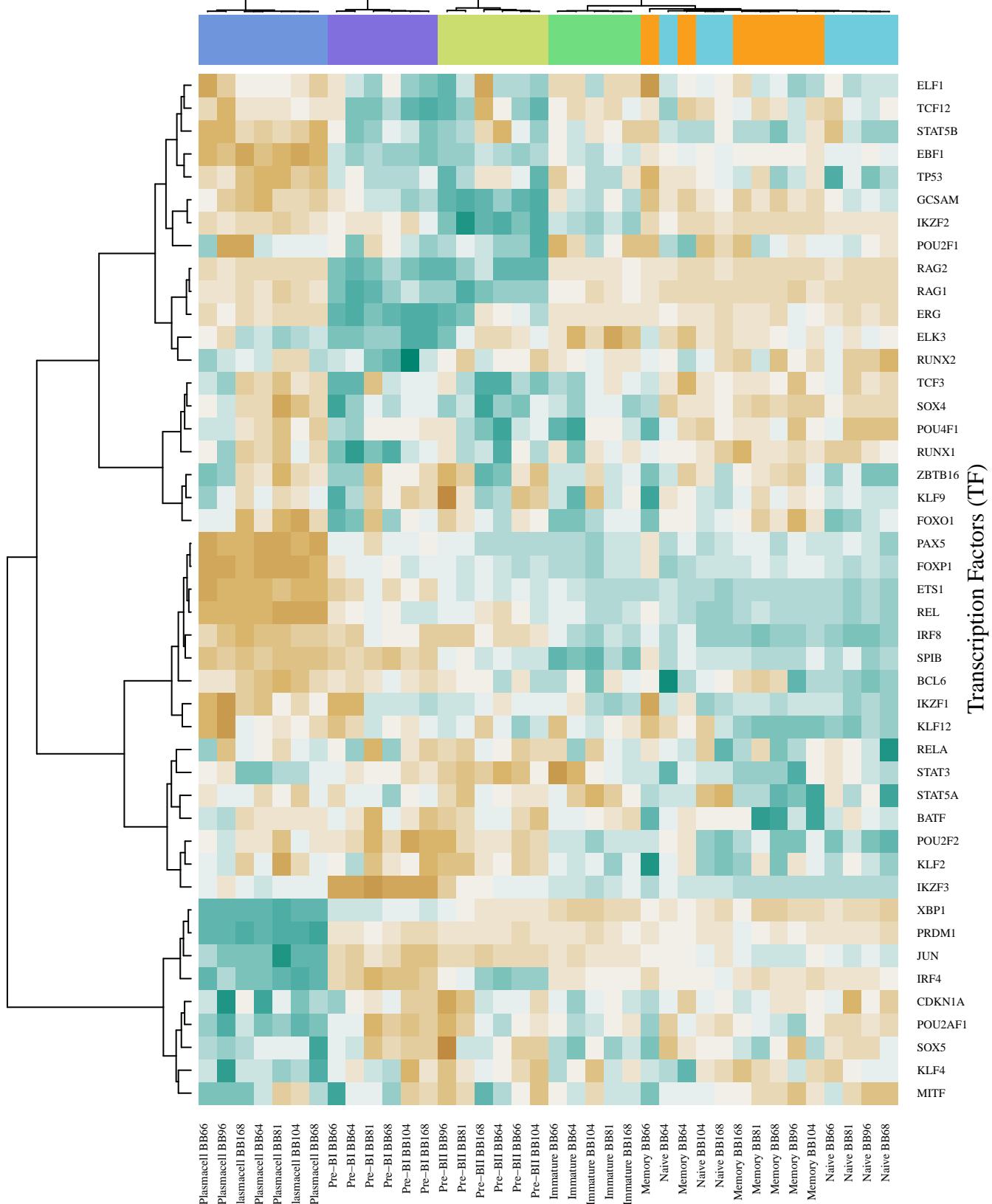


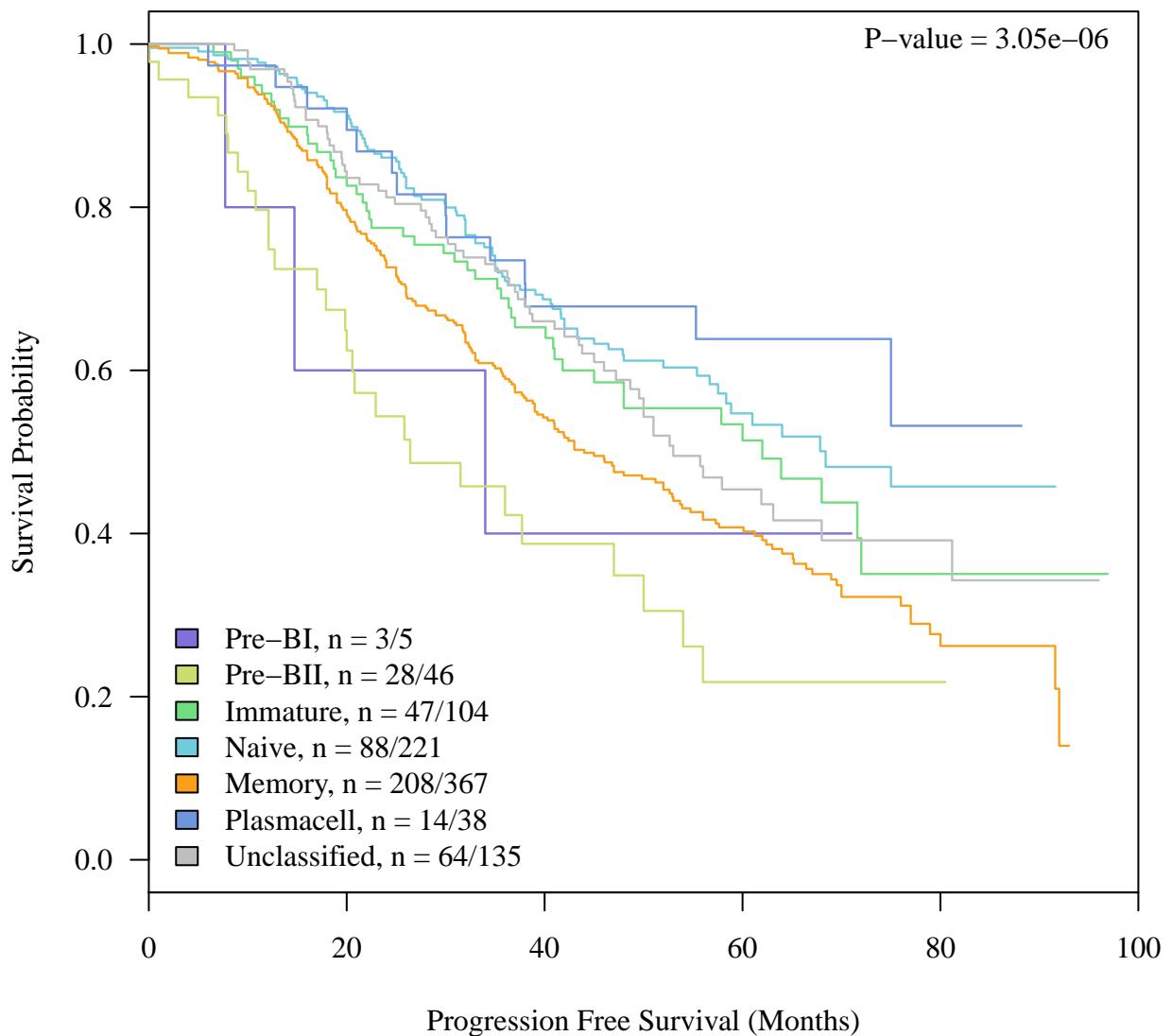
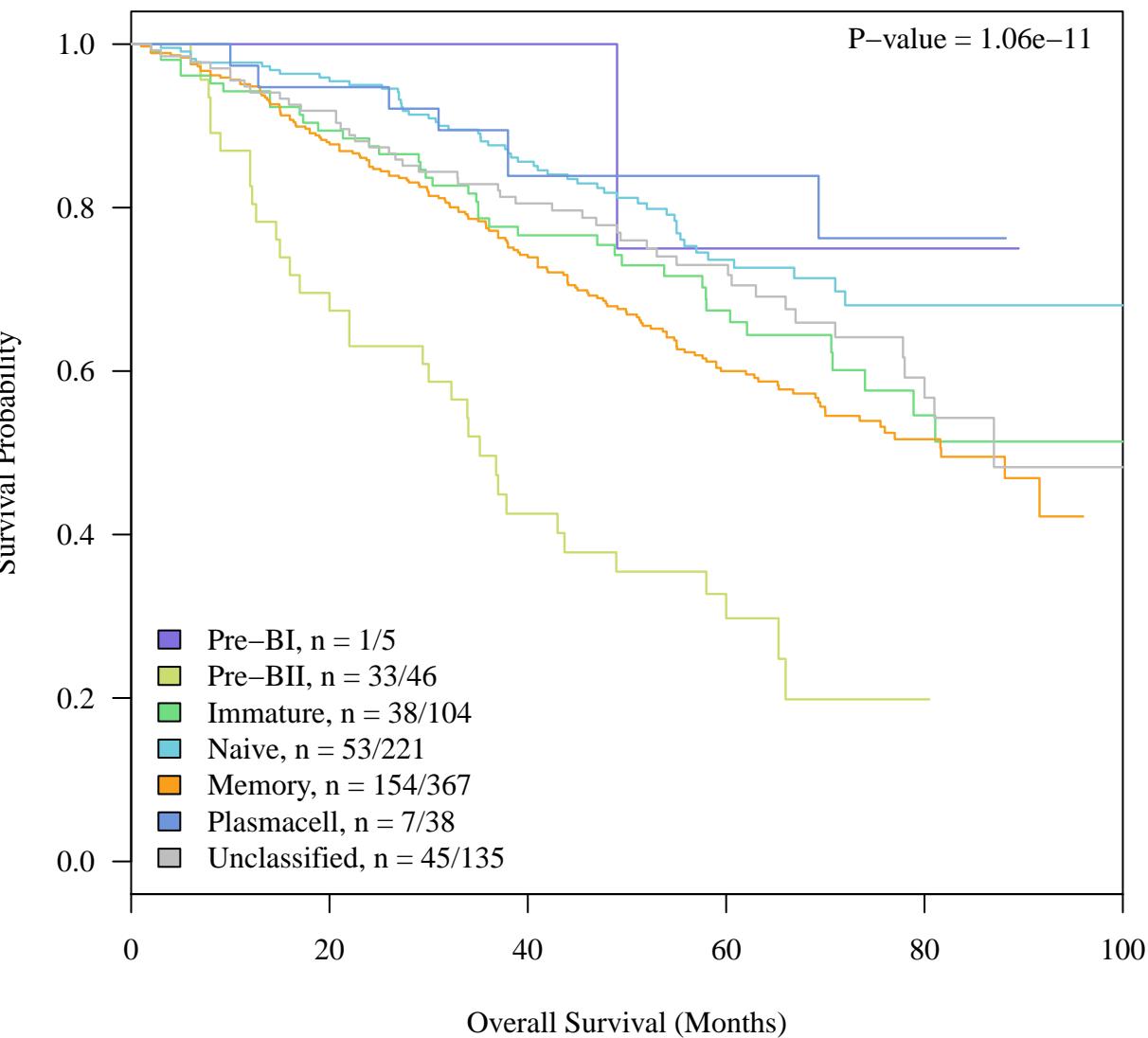


Color Key

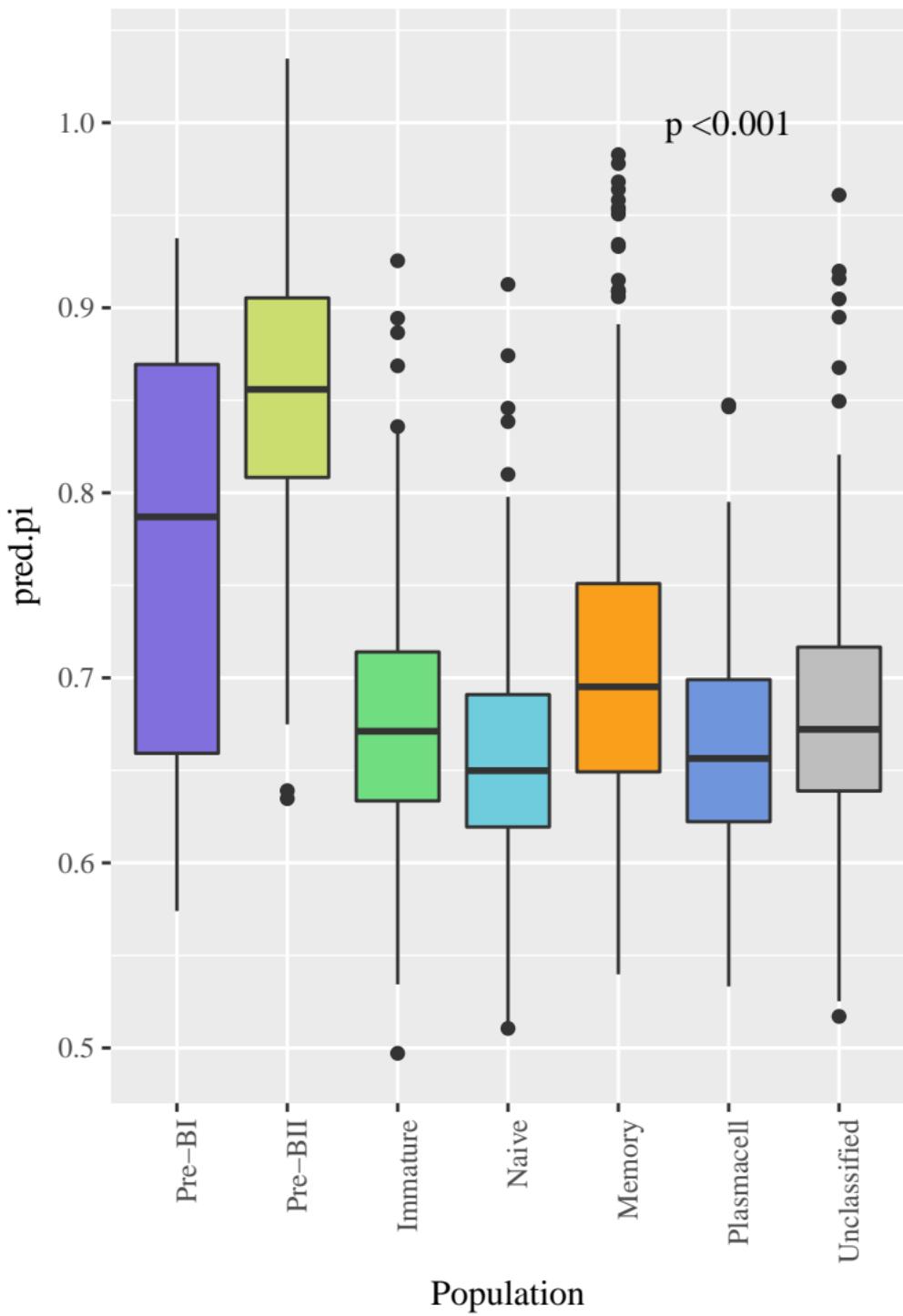
-2 2

Row Z-Score

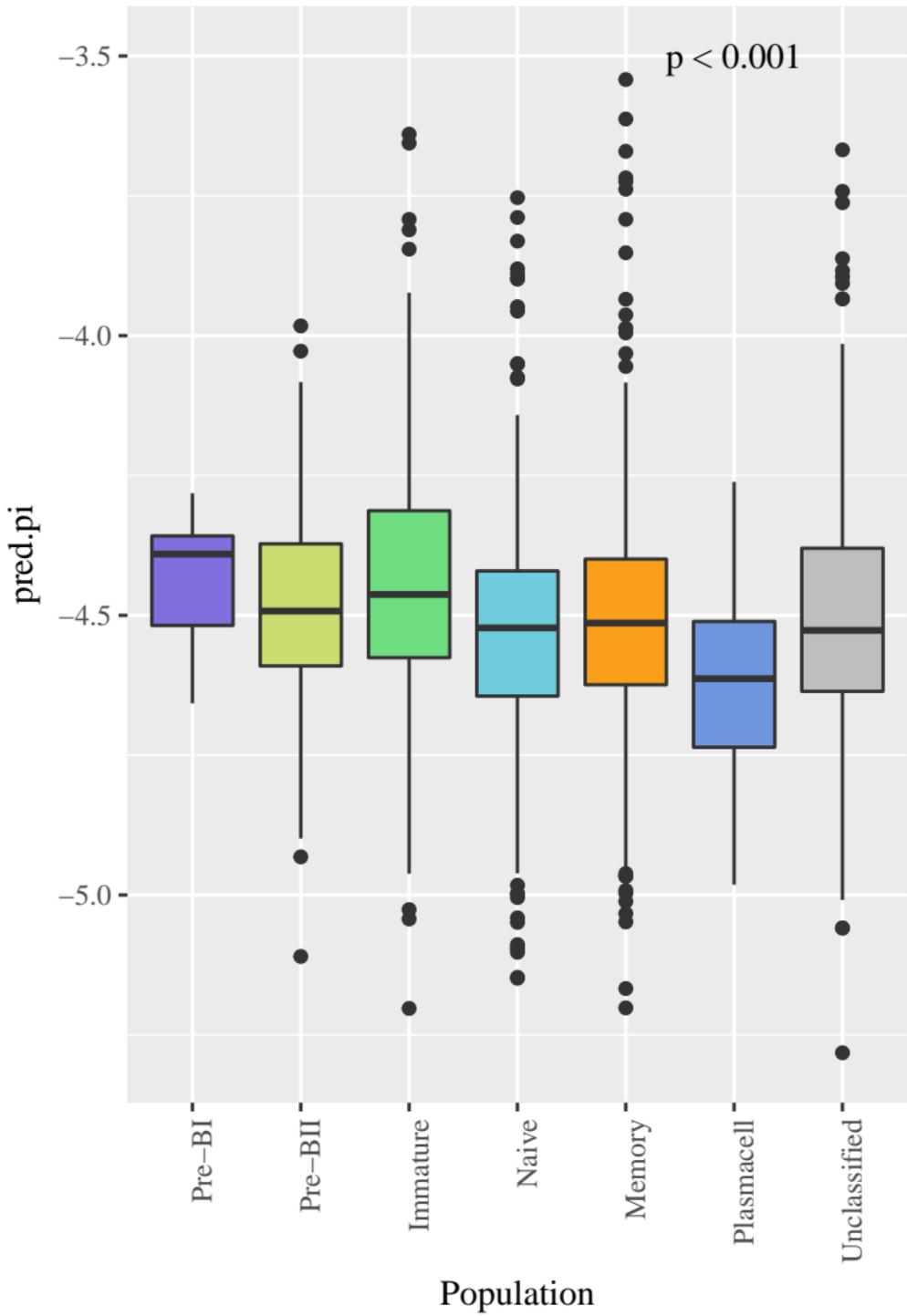
Subpopulation Profiles**Samples**

A**Combined, EFS****B****Combined, OS**

Adjusted Proliferation Index



Adjusted Melphalan Resistance Index



Adjusted B2M

