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P erhaps the most surprising result in Statis-
tics arises in a remarkably simple estima-
tion problem. Let X1, …, Xp be independent 

random variables, with Xi ∼ N(θi , 1) for i = 1, …, 
p.  Writing X = (X1, …, Xp)T, suppose we want to 
find a good estimator θ̂  = θ̂(X) of θ = (θ1, …, θp)T. 
To define more precisely what is meant by a good 
estimator, we use the language of statistical deci-
sion theory. We introduce a loss function L(θ̂, θ), 
which measures the loss incurred when the true 
value of our unknown parameter is θ, and we esti-
mate it by θ̂. We will be particularly interested in 
the squared error loss function L(θ̂, θ) = �θ̂  – θ�2, 
where � . � denotes the Euclidean norm, but other 
choices, such as the absolute error loss L(θ̂, θ) = 
∑p

i=1 �θ̂i – θ i� are of course perfectly possible.

Now L(θ̂, θ) is a random quantity, which is not 
ideal for comparing the overall performance of 
two different estimators (as opposed to the loss-
es they each incur on a particular data set). We 
therefore introduce the risk function

If θ̂ and θ̃ are both estimators of θ, we say θ̂ 
strictly dominates θ̃ if R(θ̂ ,θ) ≤ R(θ̃ ,θ) for all θ, 
with strict inequality for some value of θ. In this 
case, we say θ̃ is inadmissible. If θ̂ is not strictly 
dominated by any estimator of θ, it is said to be 
admissible. Notice that admissible estimators 
are not necessarily sensible: for instance, in our 

problem above with p = 1 and the squared error 
loss function, the estimator θ̂ = 37 (which ignores 
the data!) is admissible. On the other hand, deci-
sion theory dictates that inadmissible estimators 
can be discarded, and that we should restrict our 
choice of estimator to the set of admissible ones.

This discussion may seem like overkill in this 
simple problem, because there is a very obvious 
estimator of θ : since all the components of X are 
independent, and E(Xi) = θi (in other words Xi 
is an unbiased estimator of θi), why not just use 
θ̂0(X) = X? Indeed, this estimator appears to have 
several desirable properties (for example, it is the 
maximum likelihood estimator and the uniform 
minimum variance unbiased estimator), and by 
the early 1950’s, three proofs had emerged to show 
that θ̂0 is admissible for squared error loss when 
p = 1. Nevertheless, Stein (1956) stunned the sta-
tistical world when he proved that, although θ̂0 is 
admissible for squared error loss when p = 2, it is 
inadmissible when p ≥ 3. In fact, James and Stein 
(1961) showed that the estimator

strictly dominates θ̂0. The proof of this remark-
able fact is relatively straightforward, and is given 
in the Appendix.  

Stein’s Paradox

Largest even number which cannot be written
as the sum of two odd composite numbers.38
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One of the things that is so surprising about this 
result is that even though all of the components 
of X are independent, the i th component of θ̂ JS 
depends on all of the components of X. To give 
an unusual example to emphasise the point, sup-
pose that we were interested in estimating the 
proportion of the US electorate who will vote for 
Barack Obama, the proportion of babies born in 
China that are girls and the proportion of Britons 
with light-coloured eyes. Then our James–Stein 
estimate of the proportion of democratic voters 
depends on our hospital and eye colour data!  
The reader might reasonably complain that in 
the above examples, the data would be binomi-
ally rather than normally distributed. However, 
one can easily transform binomially distributed 
data so that it is well approximated by a normal 
distribution with unit variance (see the baseball 
example below), and then consider the estimation 
problem on the transformed scale, before apply-
ing the inverse transform.

Geometrically, the James–Stein estimator shrinks 
each component of X towards the origin, and it 
is therefore not particularly surprising that the 
biggest improvement in risk over θ̂0 comes when 
�θ� is close to zero; see Figure 1 for plots of the 
risk functions of θ̂0 and θ̂ JS when p = 5.  A simple 
calculation shows that R(θ̂ JS, 0) = 2 for all p ≥ 2, 
so the improvement in risk can be substantial 
when p is moderate or large.  In terms of choosing 
a point to shrink towards, though, there is noth-
ing special about the origin, and we could equally 
well shrink towards any pre-chosen θ0 ∈ Rp using 
the estimator

In this case, we have R(θ̂ JS
θ0, θ – θ0) = R(θ̂ JS, θ), so 

θ̂ JS
θ0 still strictly dominates θ̂0 when p ≥ 3.

Note that the shrinkage factor in θ̂ JS
θ0 becomes 

negative when �X – θ0�2 < p – 2, and indeed it 
can be proved that θ̂ JS

θ0 is strictly dominated by the 
positive-part James–Stein estimator

where x+ = max(x, 0). The risk of the positive-
part James–Stein estimator θ̂+

JS = θ̂ JS
+, 0 is also in-

cluded in Figure 1 for comparison. Remarkably, 
even the positive-part James–Stein estimator is 
inadmissible, though it cannot be improved by 
much, and it took until Shao and Strawderman 
(1994) to find a (still inadmissible!) estimator to 
strictly dominate it.

Generalisations and 
Related Problems
It is natural to ask how crucial the normality and 
squared error loss assumptions are to the Stein 
phenomenon. As a consequence of many papers 
written since Stein’s original masterpiece, it is now 
known that the normality assumption is not criti-
cal at all; similar (but more complicated) results 
can be proved for very wide classes of distribu-
tions. The original result can also be generalised 
to different loss functions, but there is an im-
portant caveat here: the Stein phenomenon only 
holds when we are interested in simultaneous es-
timation of all components of θ. If our loss func-
tion were L(θ̂, θ) = (θ̂1 – θ1) 2, for example, then 
we could not improve on θ̂0. This explains why it 
wouldn’t make much sense to use the James–Stein 
estimator in our bizarre example above; it is in-
conceivable that we would be simultaneously in-
terested in three such different quantities to the 
extent that we would want to incorporate all three 
estimation errors into our loss function.

Although Stein’s result is very clean to state and 
prove, it may seem somewhat removed from 
practical statistical problems. Nevertheless, the 
idea at the heart of Stein’s proposal, namely that 
of employing shrinkage to reduce variance (at 
the expense of introducing bias) turns out to be 
a very powerful one that has had a huge impact 
on statistical methodology. In particular, many 
modern statistical models may involve thousands 
or even millions of parameters (e.g. in microar-
ray experiments in genetics, or fMRI studies in 
neuroimaging); in such circumstances, we would 
almost certainly want estimators to set some of 
the parameters to zero, not only to improve per-
formance but also to ensure the interpretability of 
the fitted model. 

Sum of five consecutive primes (3 + 5 + 7 + 11 + 13)
and the first three powers of three (3 + 9 + 27). 39
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Another important problem that is closely related 
to estimation is that of constructing a confidence 
set for θ, the aim being to give an idea of the un-
certainty in our estimate of θ.  Given α  ∈  (0,1), 
an exact (1 – α)-level confidence set is a subset 
C = C(X) of Rp such that, whatever the true value 
of θ, the confidence set contains it with probability 
exactly 1 – α. The usual, exact (1 – α)-level confi-
dence set for θ in our original normal distribution 
set-up is a sphere centred at X. More precisely, it is

where χ p
2(α) denotes the upper α-point of the 

χ p
2 distribution (in other words, if Z ∼ χ p

2, then 
P�Z > χ p

2(α)� = α). But in the light of what we have 
seen in the estimation problem, it is natural to 
consider confidence sets that are spheres centred 
at θ̂+

JS (or θ̂ JS
+,θ0, for some θ0 ∈ Rp). Since the distri-

bution of �θ̂+
JS – θ�2 depends on �θ�, we can no 

longer obtain an exact (1 – α)-level confidence set, 
but it may be possible to construct much smaller 
confidence sets – using bootstrap methods to ob-
tain the radius, for example – which still have at 
least (1 – α)-level coverage (e.g. Samworth, 2005).

A baseball data example
The following example is adapted from Sam-
worth (2005).  The data in Table 1 give the base-
ball batting averages (number of hits divided by 
number of times at bat) of p = 9 baseball players, 
all of whom were active in 1990.  The source was 
www.baseball-reference.com.  For i = 1, …, p, let ni 
and Zi respectively denote the number of times at 
bat and batting average of the i th player during 

the 1990 season.  Further, let πi denote the player’s 
true batting average, taken to be his career batting 
average. (Each player had at least 3000 at bats in 
his career.) We consider the model where Z1,…, 
Zp are independent, with Zi ∼ ni

–1 Bin(ni, πi).

We make the transformation 

and let θi  =  sin–1(2πi – 1), which means that 
Xi is approximately distributed as N(θi , 1). A heu-
ristic argument (which can be made rigorous) to 
justify this is that by a Taylor expansion applied 
to the function g(x) =  sin–1(2x – 1), we have

and this latter expression has an approximate 
N(0, 1) distribution when ni is large, by the cen-
tral limit theorem. In fact, since mini ni ≥ 400, 
an exact calculation gives that the variance of 
each Xi is between 1 and 1.005 for πi ∈ [0.2, 0.8]. 
For our prior guess θ0 = (θ0,1, …, θ0,p)T, we take 
θ0,i  =    sin–1(2π0 – 1), with π0 = 0.275 and 
n– = p–1 ∑p

i=1 ni. We find that �X – θ�2 = 2.56, some-
what below its expected value of around 9, though 
since the variance of a χ 9

2 random variable is 18, 
this observation is only around 1.5 standard de-
viations away from its mean.  On the other hand, 
�θ̂ JS

+,θ0 – θ�2 = 1.50, so Stein estimation does pro-
vide an improvement in this case.  

Player ni Zi πi

Baines 415 0.284 0.289
Barfield 476 0.246 0.256
Bell 583 0.254 0.265
Biggio 555 0.276 0.287
Bonds 519 0.301 0.297
Bonilla 625 0.280 0.279
Brett 544 0.329 0.305
Brooks Jr. 568 0.266 0.269
Browne 513 0.267 0.271

 Figure 1:  Risks with respect to squared error loss of 
the usual estimator θ̂0, the James–Stein estimator θ̂JS and 
the positive-part James–Stein estimator θ̂+

JS when p = 5.

 Table 1:  Table showing number of times at 
bat ni , batting average Zi  in 1990, and career 

batting average πi , of p = 9 baseball players.
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Only number whose letters are in alphabetical order. Venus 
returns to the same point in the night sky every 40 years.
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Letting π = (π1, …, πp) and recalling that θ is a 
function of π, the usual 95% confidence set for π 
is

On the other hand, the 95% confidence set for π 
constructed using the bootstrap approach is 

Numerical integration gives that the volume ratio 
of the bootstrap confidence set to the usual con-
fidence set in this case is 0.26, so the benefits of 
having centred the confidence set more appropri-
ately are quite substantial.
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Appendix
First note that since �X – θ�2 ∼ χ p

2, we have R(θ̂ 0, θ) = p for all θ ∈ Rp.  To compute the risk of the James–
Stein estimator, note that we can write

Consider the expectation inside the sum when i = 1.  We can simplify this expectation by writing it out 
as an n-fold integral, and computing the inner integral by parts:

since the integrated term vanishes. Repeating virtually the same calculation for components i = 2, …, p, 
we obtain

We therefore conclude that 

for all θ ∈ Rp, as required.

Number of Mozart’s last symphony. The
polynomial n2 + n + 41 gives primes for |n| < 40. 41


