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SHAPE-CONSTRAINED INFERENCE

The class Fd of log-concave densities on Rd is closed under marginal-
isation, conditioning and convolution, so is very attractive for fully
automatic nonparametric density estimation.

New minimax lower bound in squared Hellinger distance:

inf
f̃n

sup
f∈Fd

E{h2(f̃n, f)} ≥
{
c1n
−4/5 if d = 1

cdn
−2/(d+1) if d ≥ 2.

The problem is therefore fundamentally harder than had been anticipated.

The log-concave maximum likelihood estimator f̂n achieves

sup
f∈Fd

E{h2(f̂n, f)} =





O(n−4/(d+4)) if d = 1, 2
O(n−1/2 log n) if d = 3
O(n−1/(d−1)) if d ≥ 4.

These rates are different from previous conjectures in the literature!

Kim, A. K. H. and Samworth, R. J. (2014) Global rates of convergence in log-concave
density estimation. http://arxiv.org/abs/1404.2298.
Chen, Y. and Samworth, R. J. (2014) Generalised additive and index models with shape
constraints. http://arxiv.org/abs/1404.2957.

HIGH-DIMENSIONAL VARIABLE SELECTION

Heat map of genes selected with CPSS.

Complementary Pairs Stability Selection (CPSS) is a new method for
improving the performance of any existing variable selection algorithm.

It works by aggregating the results of applying a selection procedure to
subsamples of the data.

Let (A1, A2), . . . , (A2B−1, A2B) be randomly chosen disjoint pairs of
subsets of {1, . . . , n} of size n/2.

For k = 1, . . . , p, define Π̂B(k) to be the proportion of subsets on which
the base procedure Ŝn/2 selects variable k.

For some 0 ≤ τ ≤ 1, define the selected variables ŜCPSS
n,τ to be those

variables k for which Π̂B(k) ≥ τ .

Let q = E|Ŝn/2|, pk,n = P(k ∈ Ŝn) and L = {k : pk,n/2 ≤ q/p}. If τ > 1/2,

E|ŜCPSS
n,τ ∩ L| ≤ q

(2τ − 1)p
E|Ŝn/2 ∩ L|.

No conditions required, and the bound can be further sharpened under
unimodality/r-concavity assumptions.

Shah, R. D. and Samworth, R. J. (2013) Variable selection with error control: An-
other look at Stability Selection, J. Roy. Statist. Soc., Ser. B, 75, 55–80.

NONPARAMETRIC CLASSIFICATION
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Fig 1. Optimal weight profiles at different dimensions. Here, k∗ = 100, and the figure dis-
plays the positive weights in (1.1), scaled to have the same weight on the nearest neighbour
at each dimension.

dependent factor to obtain the number k′ of positive weights for the weighted
classifier, and then using the weights given in (1.1) with k′ replacing k∗.

In Corollary 3 we describe the asymptotic improvement in the excess risk
that is attainable using the procedure described in the previous paragraph.
Since the rate of convergence to zero of the excess risk is O(n−4/(d+4)) in both
cases, the improvement is in the leading constant, and again it is notable that
the asymptotic improvement does not depend on the underlying populations.
The improvement is relatively modest, which goes some way to explaining
the continued popularity of the (unweighted) k-nearest neighbour classifier.
Nevertheless, for d ≤ 15, the improvement in regret is at least 5%, though
it is negligible as d→ ∞; the greatest improvement occurs when d = 4, and
here it is just over 8%. See Figure 2.

Another popular way of improving the performance of a classifier is by
bagging (Breiman, 1996, 1999). Short for ‘bootstrap aggregating’, bagging in-

imsart-aos ver. 2012/08/31 file: AOS1049.tex date: September 11, 2012

16 R. J. SAMWORTH

0
.9
0

0
.9
2

1
.0
0

1
.0
5

1
.1
0

1
.1
5

1
.2
0

0 10 20 30 40 50

d

R
eg
re
t
ra
ti
o

Fig 3. Asymptotic ratio of the regret of the bagged nearest neighbour classifier (dashed)
to that of the k-nearest neighbour classifier, as a function of the dimension of the feature
vectors. The asymptotic regret ratio for the optimally weighted nearest neighbour classifier
compared with the k-nearest neighbour classifier is shown as a solid line for comparison.

4. Faster rates of convergence. If we allow negative weights, it is
possible to choose weights satisfying

∑n
i=1 αiwni = 0. This means that we

can eradicate the dominant squared bias term in the asymptotic expansion
of Theorem 1. It follows that, subject to additional smoothness conditions,
we can achieve faster rates of convergence with weighted nearest neighbour
classifiers, as we now describe. The appropriate variant of condition (A.2),
which we denote by (A.2)(r), is as follows:

(A.2)(r) The set S = {x ∈ R : η(x) = 1/2} is non-empty. There exists
an open subset U0 of Rd that contains S and such that the following
properties hold: firstly, |η(x)− 1/2| is bounded away from zero for x ∈
U \U0, where U is an open set containing R; secondly the restrictions
of P1 and P2 to U0 are absolutely continuous with respect to Lebesgue
measure, with 2r-times continuously differentiable Radon–Nikodym
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Given data (X1, Y1), . . . , (Xn, Yn) ∈ Rd × {1, 2} and a new point
x ∈ Rd to classify, rearrange data as (X(1), Y(1)), . . . , (X(n), Y(n)), where
‖X(1) − x‖ ≤ . . . ≤ ‖X(n) − x‖.

Weighted nearest neighbour classifier with weights (wni):

Ĉwnn
n (x) =

{
1 if

∑n
i=1 wni1{Y(i)=1} ≥ 1/2

2 otherwise.

Optimal weighting scheme: choose k∗ = O(n4/(d+4)) and

w∗ni =

{ 1
k∗

[
1 + d

2 − d
2(k∗)2/d

{i1+2/d − (i− 1)1+2/d}
]

i = 1, . . . , k∗

0 i = k∗ + 1, . . . , n.

Improvement in risk over unweighted k-nearest neighbours:

R(Ĉwnn
n )−R(CBayes)

R(Ĉknn
n )−R(CBayes)

→ 1

4d/(d+4)

(
2d+ 4

d+ 4

)(2d+4)/(d+4)

.

Asymptotic improvement does not depend on distributions!

Samworth, R. J. (2012) Optimal weighted nearest neighbour classifiers, Ann. Statist., 40,
2733–2763.
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FIG. 4. Mixture of normals signal: top left panel, top right panel and bottom left panel give the true
signal, rotated observations and the reconstructed signal, respectively. The bottom right panel gives
the estimated marginal densities along with the true marginal (grey line).

(2) Now suppose that
∫
Rd ‖x‖dP (x) < ∞, but P(H) = 1 for some hyper-

plane H = {x ∈ Rd :a�
1 x = α}, where a1 is a unit vector in Rd and α ∈ R. Find

a2, . . . , ad such that a1, . . . , ad is an orthonormal basis for Rd . Define the family
of density functions

fσ (x) = 1

2σ
e−|aT

1 x−α|/σ
d∏

j=2

e
−|aT

j x|

2
.

Then fσ ∈ F ICA
d , and

∫
Rd

logfσ (x) dP (x) = − log(σ ) − d log 2 −
d∑

j=2

∫
H

∣∣aT
j x

∣∣dP (x)

≥ − log(σ ) − d log 2 −
d∑

j=2

∫
H

‖x‖dP (x) → ∞

as σ → 0.

In ICA, we observe replicates of

X
d×1

= A
d×d

S
d×1

,

where A is deterministic and invertible, and S has independent com-
ponents. We want to estimate the unmixing matrix W = A−1 and the
marginals of S.

New method uses ideas of log-concave projection, and is consis-
tent under very weak conditions — no smoothness conditions or
tuning parameters are required!

Samworth, R. J. and Yuan, M. (2012) Independent component analysis via nonparametric
maximum likelihood estimation. Ann. Statist., 40, 2973–3002.


