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SHAPE-CONSTRAINED INFERENCE

The class Fy of log-concave densities on R? is closed under marginal-
isation, conditioning and convolution, so is very attractive for fully
automatic nonparametric density estimation.

New minimax lower bound in squared Hellinger distance:
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ifd=1
if d > 2.

The problem is therefore fundamentally harder than had been anticipated.

The log-concave maximum likelihood estimator f,, achieves

A O(n=4/d+4y ifd = 1,2
sup E{h*(fn, f)} =< O(n~?logn) ifd=3
J€Jd O(n=Y/@d=1) ifd > 4.

These rates are ditferent from previous conjectures in the literature!

Kim, A. K. H. and Samworth, R. J. (2014) Global rates of convergence in log-concave
density estimation. http://arxiv.org/abs/1404.2298.

Chen, Y. and Samworth, R. J. (2014) Generalised additive and index models with shape
constraints. http://arxiv.org/abs/1404.2957.

HIGH-DIMENSIONAL VARIABLE SELECTION

Mormal -

- Cancerous Pt

M36634 B :
ME3391 .
R44301 [l B N

HA7126
Heat map of genes selected with CPSS.

250753

Complementary Pairs Stability Selection (CPSS) is a new method for
improving the performance of any existing variable selection algorithm.

It works by aggregating the results of applying a selection procedure to
subsamples of the data.

Let (A1,A2),...,(A2p-1,A2p) be randomly chosen disjoint pairs of
subsets of {1,...,n} of size n/2.

For k = 1,...,p, define Iz (k) to be the proportion of subsets on which
the base procedure §,, /, selects variable k.

For some 0 < 7 < 1, define the selected variables SSTSS to be those
variables k for which Iz (k) > 7.

Letg =FE Sn/g\,pk,n = P(k & S’n) and L = {k : pgns2 < q/p}. If7>1/2,
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No conditions required, and the bound can be further sharpened under
unimodality /r-concavity assumptions.
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Shah, R. D. and Samworth, R. J. (2013) Variable selection with error control: An-
other look at Stability Selection, . Roy. Statist. Soc., Ser. B, 75, 55-80.

NONPARAMETRIC CLASSIFICATION
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Neighbour order d

Given data (X1,Y7),...,(X,,Y,) € R? x {1,2} and a new point
r € R? to classify, rearrange data as (X (1), Y(1))s - - (X(n), Y(n)), where

Weighted nearest neighbour classifier with weights (w,,;):

( 1 if Z?:l ’wm]l{y(i)zl} > 1/2

Co (@) = <\ 2 otherwise.

Optimal weighting scheme: choose k* = O(n*/(4+4)) and
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R[4 i - )] =1k
0 1 =k*+1,...,n.

Improvement in risk over unweighted k-nearest neighbours:

R(é,rvfnn) o R(CBayes) 1 2d - 4 (2d+4)/(d+4)
R(éql;nn) _ R(C’Bayes) ’ 4d/(d+4) ( d+ 4 > .

Asymptotic improvement does not depend on distributions!

Samworth, R. J. (2012) Optimal weighted nearest neighbour classifiers, Ann. Statist., 40,
2733-2763.

INDEPENDENT COMPONENT ANALYSIS
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In ICA, we observe replicates ot
X =A §,

dx1 dxddx1

where A is deterministic and invertible, and S has independent com-
ponents. We want to estimate the unmixing matrix W = A~! and the
marginals of S.

New method uses ideas of log-concave projection, and is consis-
tent under very weak conditions — no smoothness conditions or
tuning parameters are required!

Samworth, R. J. and Yuan, M. (2012) Independent component analysis via nonparametric
maximum likelihood estimation. Ann. Statist., 40, 2973-3002.




