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Summary. Structured additive regression models are perhaps the most commonly used class

of models in statistical applications. It includes, among others, (generalised) linear models,

(generalised) additive models, smoothing-spline models, state-space models, semiparametric

regression, spatial and spatio-temporal models, log-Gaussian Cox-processes, geostatistical

and geoadditive models. In this paper we consider approximate Bayesian inference in a popu-

lar subset of structured additive regression models, latent Gaussian models, where the latent

field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response vari-

ables.

The posterior marginals are not available in closed form due to the non-Gaussian response

variables. For such models, Markov chain Monte Carlo methods can be implemented, but

they are not without problems, both in terms of convergence and computational time. In some

practical applications, the extent of these problems is such that Markov chain Monte Carlo is

simply not an appropriate tool for routine analysis.

We show that, by using an integrated nested Laplace approximation and its simplified ver-

sion, we can directly compute very accurate approximations to the posterior marginals. The

main benefit of these approximations is computational: where MCMC algorithms need hours

and days to run, our approximations provide more precise estimates in seconds and minutes.

Another advantage with our approach is its generality, which makes it possible to perform

Bayesian analysis in an automatic, streamlined way, and to compute model comparison cri-

teria and various predictive measures so that models can be compared and the model under

study can be challenged.

1. Introduction

1.1. Aim of the paper

This paper discusses how to perform approximate Bayesian inference in a subclass of struc-
tured additive regression models, named latent Gaussian models. Structured additive re-
gression models are a flexible and extensive used class of models, see for example Fahrmeir
and Tutz (2001) for a detailed account. In these models, the observation (or response)
variable yi is assumed to belong to an exponential family, where the mean µi is linked to
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a structured additive predictor ηi through a link-function g(·), so that g(µi) = ηi. The
structured additive predictor ηi accounts for effects of various covariates in an additive way:

ηi = α +

nf∑

j=1

f (j)(uji) +

nβ∑

k=1

βkzki + ǫi. (1)

Here, the {f (j)(·)}’s are unknown functions of the covariates u, the {βk}’s represent the
linear effect of covariates z and the ǫi’s are unstructured terms. This class of model has
a wealth of applications, thanks to the very different forms that the unknown functions
{f (j)} can take. Latent Gaussian models are a subset of all Bayesian additive models
with a structured additive predictor (1); namely those which assign a Gaussian prior to α,
{f (j)(·)}, {βk} and {ǫt}. Let x denote the vector of all the latent Gaussian variables, and θ

the vector of hyperparameters, which are not necessarily Gaussian. In the machine learning
literature, the phrase ‘Gaussian process models’ is often used (Rasmussen and Williams,
2006). We discuss various applications of latent Gaussian models in Section 1.2.

The main aim of this paper is twofold:

(a) To provide accurate and fast deterministic approximations to all, or some of, the n
posterior marginals for xi, the components of latent Gaussian vector x, plus possibly
the posterior marginals for θ or some of its components θj . If needed, the marginal
densities can be post-processed to compute quantities like posterior expectations,
variances and quantiles.

(b) To demonstrate how to use these marginals in order i) to provide adequate approxi-
mations to the posterior marginal for sub-vectors xS for any subset S, ii) to compute
the marginal likelihood and the Deviance Information Criteria (DIC) for model com-
parison, and iii) to compute various Bayesian predictive measures.

1.2. Latent Gaussian Models: Applications

Latent Gaussian models have a numerous and wide ranging list of applications; most struc-
tured Bayesian models are in fact of this form; see for example the books by Fahrmeir and
Tutz (2001), Gelman et al. (2004) and Robert and Casella (1999). We will first give some
areas of applications grouped according to their physical dimension. Let f(·) denote one of
the f (j)(·)-terms in (1) with variables f1, f2, . . ..

Regression models Bayesian generalised linear models correspond to the linear predictor
ηi = α +

∑nβ

k=1 βkzki (Dey et al., 2000). The f(·)-terms are used either to relax the
linear relationship of the covariate as argued for by Fahrmeir and Tutz (2001), or
to introduce random effects, or both. Popular models for modelling smooth effects
of covariates are P-spline models (Lang and Brezger, 2004) and random walk mod-
els (Fahrmeir and Tutz, 2001; Rue and Held, 2005), or continuous indexed spline mod-
els (Wahba, 1978; Wecker and Ansley, 1983; Kohn and Ansley, 1987; Rue and Held,
2005) or Gaussian processes (O’Hagan, 1978; Chu and Ghahramani, 2005; Williams
and Barber, 1998; Besag et al., 1995; Neal, 1998). Random effects make it possible to
account for overdispersion caused by unobserved heterogeneity, or for correlation in
longitudinal data, and can be introduced by defining f(ui) = fi and letting {fi} be
independent, zero-mean, and Gaussian (Fahrmeir and Lang, 2001).
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Dynamic models Temporal dependency can be introduced by using i in (1) as a time
index t and defining f(·) and covariate u so that f(ut) = ft. Then {ft} can model
a discrete-time or continuous-time auto-regressive model, a seasonal effect or more
generally the latent process of a structured time-series model (Kitagawa and Gersch,
1996; West and Harrison, 1997). Alternatively, {ft} can represent a smooth temporal
function in the same spirit as regression models.

Spatial and spatio-temporal models Spatial dependency can be modelled similarly, us-
ing a spatial covariate u so that f(us) = fs, where s represents the spatial location or
spatial region s. The stochastic model for fs is constructed to promote spatial smooth
realisations of some kind. Popular models include the BYM model for disease-mapping
with extensions for regional data (Besag et al., 1991; Held et al., 2005; Weir and Pet-
titt, 2000; Gschlößl and Czado, 2007; Wakefield, 2007), continuous-indexed Gaussian
models (Banerjee et al., 2004; Diggle and Ribeiro, 2006), texture models (Marroquin
et al., 2001; Rellier et al., 2002). Spatial and temporal dependencies can be achieved
either by using a spatio-temporal covariate (s, t) or a corresponding spatio-temporal
Gaussian field (Kamman and Wand, 2003; Cressie and Johannesson, 2008; Banerjee
et al., 2008; Finkenstadt et al., 2006; Abellan et al., 2007; Gneiting, 2002; Banerjee
et al., 2004).

In many applications, the final model may consist of a sum of various components, such as
a spatial component, random effects, and both linear and smooth effects of some covariates.
Furthermore, linear or sum-to-zero constraints are sometimes imposed as well in order to
separate out the effects of various components in (1).

1.3. Latent Gaussian Models: Notation and Basic Properties

To simplify the following discussion, denote generically π(·|·) as the conditional density
of its arguments, and let x be all the n Gaussian variables {ηi}, α, {f (j)}, {βk}. The
density π(x|θ1) is Gaussian with (assumed) zero mean, precision matrix Q(θ1) with hy-
perparameters θ1. Denote by N (x; µ, Σ), the N (µ, Σ) Gaussian density with mean µ

and covariance (inverse precision) Σ at configuration x. Note that we have included {ηi}
instead of {ǫi} into x, as it simplifies the notation later on.

The distribution for the nd observational variables y = {yi : i ∈ I} is denoted by
π(y|x,θ2) and we assume that {yi : i ∈ I} are conditionally independent given x and θ2.
For simplicity, denote by θ = (θT

1 ,θT
2 )T with dim(θ) = m. The posterior then reads (for a

non-singular Q(θ))

π(x,θ | y) ∝ π(θ) π(x | θ)
∏

i∈I

π(yi | xi,θ)

∝ π(θ) |Q(θ)|n/2 exp

(
−1

2
xT Q(θ)x +

∑

i∈I

log π(yi|xi,θ)

)
.

The imposed linear constraints (if any) are denoted by Ax = e for a k×n matrix A of rank
k. The main aim is to approximate the posterior marginals π(xi|y), π(θ|y) and π(θj |y).

Many, but not all, latent Gaussian models in the literature (see Section 1.2) satisfy two
basic properties which we shall assume throughout the paper. The first is that the latent
field x, which is often of large dimension, n = 102 − 105, admit conditional independence
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properties. Hence, the latent field is a Gaussian Markov random field (GMRF) with a sparse
precision matrix Q(θ) (Rue and Held, 2005). This means that we can use numerical methods
for sparse matrices, which are much quicker than general dense matrix calculations (Rue
and Held, 2005). The second property is that the number of hyperparameters m, is small,
say m ≤ 6. Both properties are usually required to produce fast inference, but exceptions
exist (Eidsvik et al., 2008).

1.4. Inference: MCMC approaches

The common approach to inference for latent Gaussian models is Markov chain Monte
Carlo (MCMC). It is well known however that MCMC tends to exhibit poor performance
when applied to such models. Various factors explain this. First, the components of the
latent field x are strongly dependent on each other. Second, θ and x are also strongly
dependent, especially when n is large. A common approach to (try to) overcome this first
problem is to construct a joint proposal based on a Gaussian approximation to the full
conditional of x (Gamerman, 1997, 1998; Carter and Kohn, 1994; Knorr-Held, 1999; Knorr-
Held and Rue, 2002; Rue et al., 2004). The second problem requires, at least partially, a
joint update of both θ and x. One suggestion is to use the one-block approach of Knorr-Held
and Rue (2002): make a proposal for θ to θ′, update x from the Gaussian approximation
conditional on θ′, then accept/reject jointly; see Rue and Held (2005, Ch. 4) for variations on
this approach. Some models can alternatively be reparameterised to overcome the second
problem (Papaspiliopoulos et al., 2007). Independence samplers can also sometimes be
constructed (Rue et al., 2004). For some (observational) models, auxiliary variables can be
introduced to simplify the construction of Gaussian approximations (Shephard, 1994; Albert
and Chib, 1993; Holmes and Held, 2006; Frühwirth-Schnatter and Wagner, 2006; Frühwirth-
Schnatter and Frühwirth, 2007; Rue and Held, 2005). Despite all these developments,
MCMC remains painfully slow from the end user’s point of view.

1.5. Inference: Deterministic approximations

Gaussian approximations play a central role in the development of more efficient MCMC
algorithms. This remark leads to the following questions:

• Can we bypass MCMC entirely, and base our inference on such closed-form approxi-
mations?

• To which extent can we advocate an approach that leads to a (presumably) small
approximation error over another approach giving rise to a (presumably) large MCMC
error?

Obviously, MCMC errors seem preferable, as they can be made arbitrarily small, for ar-
bitrarily large computational time. We argue however that, for a given computational
cost, the deterministic approach developed in this paper outperforms MCMC algorithms to
such an extent that, for latent Gaussian models, resorting to MCMC rarely makes sense in
practice.

It is useful to provide some orders of magnitude. In typical spatial examples where the
dimension n is a few thousands, our approximations for all the posterior marginals can be
computed in (less than) a minute or a few minutes. The corresponding MCMC samplers
need hours or even days to compute accurate posterior marginals. The approximation bias
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is, in typical examples, much less than the MCMC error and negligible in practice. More
formally, on one hand it is well-known that MCMC is a last resort solution: Monte Carlo
averages are characterised by additive Op(N

−1/2) errors, where N is the simulated sample
size. Thus, it is easy to get rough estimates, but nearly impossible to get accurate ones; an
additional correct digit requires 100 times more computational power. More importantly,
the implicit constant in Op(N

−1/2) often hides a curse of dimensionality with respect to the
dimension n of the problem, which explains the practical difficulties with MCMC mentioned
above. On the other hand, Gaussian approximations are intuitively appealing for latent
Gaussian models. For most real problems and datasets, the conditional posterior of x

is typically well-behaved, and looks ‘almost’ Gaussian. This is clearly due to the latent
Gaussian prior assigned to x, which has a non-negligible impact on the posterior, especially
in terms of dependence between the components of x.

1.6. Approximation methods in Machine Learning

A general approach towards approximate inference is the variational Bayes (VB) method-
ology developed in the machine learning literature (Hinton and van Camp, 1993; MacKay,
1995; Bishop, 2006). VB has provided numerous promising results in various areas, like hid-
den Markov models (MacKay, 1997), mixture models (Humphreys and Titterington, 2000),
graphical models (Attias, 1999, 2000), state-space models (Beal, 2003), among others; see
Beal (2003), Titterington (2004) and Jordan (2004) for extensive reviews.

For the sake of discussion, consider the posterior distribution π(x,θ|y) of a generic
Bayesian model, with observation y, latent variable x, and hyperparameter θ. The prin-
ciple of VB is to use as an approximation the joint density q(x,θ) that minimises the
Kullback-Leibler contrast of π(x,θ|y) with respect to q(x,θ). The minimisation is sub-
ject to some constraint on q(x,θ), most commonly: q(x,θ) = qx(x)qθ(θ). Obviously, the
VB approximated density q(x,θ) does not capture the dependence between x and θ, but
one hopes that its marginals (of x and θ) approximate well the true posterior marginals.
The solution of this minimisation problem is approached through an iterative, EM-like
algorithm.

In general, the VB approach is not without potential problems. First, even though VB
seems often to approximate well the posterior mode (Wang and Titterington, 2006), the
posterior variance can be (sometimes severely) under-estimated; see Bishop (2006, Chap. 10)
and Wang and Titterington (2005). In the case of latent Gaussian models, this phenomenon
does occur as we demonstrate in Appendix A; we show that the VB approximated variance
can be up to n times smaller than the true posterior variance in a typical application.
The second potential problem is that the iterative process of the basic VB algorithm is
tractable for ‘conjugate-exponential’ models only (Beal, 2003). This implies that π(θ)
must be conjugate with respect to the complete likelihood π(x,y|θ) and the complete
likelihood must belong to an exponential family. However, few of the latent Gaussian
models encountered in applications are of this type, as illustrated by our worked-through
examples in Section 5. A possible remedy around this requirement is to impose restrictions
on q(x,θ), such as independence between blocks of components of θ (Beal, 2003, Ch. 4), or
a parametric form for q(x,θ) that allow for a tractable minimisation algorithm. However,
this requires case-specific solutions, and the constraints will increase the approximation
error.

Another approximation scheme popular in Machine Learning is the Expectation-Propagation
(EP) approach (Minka, 2001); see e.g. Zoeter et al. (2005) and Kuss and Rasmussen (2005)
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for applications of EP to latent Gaussian models. EP follows principles which are somewhat
similar to VB, i.e. minimises iteratively some pseudo-distance between π(x,θ|y) and the
approximation q(x,θ), subject to q(x,θ) factorising in a ‘simple’ way, e.g. as a product
of parametric factors, each involving a single component of (x,θ). However, the pseudo-
distance used in EP is the Kullback-Leibler contrast of q(x,θ) relative to π(x,θ|y), rather
than the other way around (as in VB). Because of this, EP usually over-estimates the
posterior variance (Bishop, 2006, Chap. 10). Kuss and Rasmussen (2005) derives an EP
approximation scheme for classification problems involving Gaussian processes that seems
to be accurate and fast; but their focus is on approximating π(x|θ,y) for θ set to the pos-
terior mode, and it is not clear how to extend this approach to a fully Bayesian analysis.
More importantly, deriving an efficient EP algorithm seems to require specific efforts for
each class of models. With respect to computational cost, VB and EP are both designed to
be faster than exact MCMC methods, but, due to their iterative nature, they are (much)
slower than analytic approximations (such as those developed in this paper); see Section 5.3
for an illustration of this in one of our examples. Also, it is not clear whether EP and VB
can be implemented efficiently in scenarios involving linear constraints on x.

The general applicability of the VB and EP approaches does not contradict the exis-
tence of improved approximation schemes for latent Gaussian models, hopefully without
the problems just discussed. How this can be done is described next.

1.7. Inference: The new approach

The posterior marginals of interests can be written as

π(xi | y) =

∫
π(xi | θ,y) π(θ | y) dθ and π(θj | y) =

∫
π(θ | y) dθ−j ,

and key feature of our new approach is to use this form to construct nested approximations

π̃(xi | y) =

∫
π̃(xi | θ,y) π̃(θ | y) dθ and π̃(θj | y) =

∫
π̃(θ | y) dθ−j . (2)

Here, π̃(·|·) is an approximated (conditional) density of its arguments. Approximations to
π(xi|y) are computed by approximating π(θ|y) and π(xi|θ,y), and using numerical inte-
gration (i.e. a finite sum) to integrate out θ. The integration is possible as the dimension
of θ is small, see Section 1.3. As it will become clear in the following, the nested approach
makes Laplace approximations very accurate when applied to latent Gaussian models. The
approximation of π(θj |y) is computed by integrating out θ−j from π̃(θ|y); we return in Sec-
tion 3.1 to the practical details.

Our approach is based on the following approximation π̃(θ|y) of the marginal posterior
of θ:

π̃(θ | y) ∝ π(x,θ,y)

π̃G(x|θ,y)

∣∣∣∣∣
x=x⋆(θ)

(3)

where π̃G(x|θ,y) is the Gaussian approximation to the full conditional of x, and x⋆(θ) is
the mode of the full conditional for x, for a given θ. The proportionality sign (3) comes
from the fact that the normalising constant for π(x,θ|y) is unknown. This expression is
equivalent to Tierney and Kadane (1986)’s Laplace approximation of a marginal posterior

distribution and this suggests that the approximation error is relative and of order O(n
−3/2
d )
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after renormalisation. However, since n is not fixed but depends on nd, standard asymptotic
assumptions usually invoked for Laplace expansions are not verified here; see Section 4 for
a discussion of the error rate.

Note that π̃(θ|y) itself tends to depart significantly from Gaussianity. This suggests
that a cruder approximation based on a Gaussian approximation to π(θ|y) is not accurate
enough for our purposes; this also applies to similar approximations based on ‘equivalent
Gaussian observations’ around x⋆, and evaluated at the mode of (3) (Breslow and Clayton,
1993; Ainsworth and Dean, 2006). A critical aspect of our approach is to explore and ma-
nipulate π̃(θ|y) and π̃(xi|y) in a ‘nonparametric’ way. Rue and Martino (2007) used (3) to
approximate posterior marginals for θ for various latent Gaussian models. Their conclusion
was that π̃(θ|y) is particularly accurate: even long MCMC runs could not detect any error
in it. For the posterior marginals of the latent field, they proposed to start from π̃G(x|θ,y)
and approximate the density of xi|θ,y with the Gaussian marginal derived from π̃G(x|θ,y),
i.e.

π̃(xi | θ,y) = N
{
xi; µi(θ), σ2

i (θ)
}

. (4)

Here, µ(θ) is the mean (vector) of the Gaussian approximation, whereas σ2(θ) is a vector of
corresponding marginal variances. This approximation can be integrated numerically with
respect to θ, see (2), to obtain approximations of the marginals of interest for the latent
field,

π̃(xi | y) =
∑

k

π̃(xi | θk,y) × π̃(θk | y) × ∆k. (5)

The sum is over values of θ with area-weights ∆k. Rue and Martino (2007) showed that
the approximate posterior marginals for θ were accurate, while the error in the Gaussian
approximation (4) was higher. In particular, (4) can present an error in location and/or a
lack of skewness. Other issues in Rue and Martino (2007) were both the difficulty to detect
the xi’s whose approximation is less accurate and the inability to improve the approximation
at those locations. Moreover, they were unable to control the error of the approximations
and to chose the integration points {θk} in an adaptive and automatic way.

In this paper, we solve all the remaining issues in Rue and Martino (2007), and present
a fully automatic approach for approximate inference in latent Gaussian models which
we name Integrated Nested Laplace Approximations (INLA). The main tool is to apply
the Laplace approximation once more, this time to π(xi|y,θ). We also present a faster
alternative which corrects the Gaussian approximation (4) for error in the location and lack
of skewness at moderate extra cost. The corrections are obtained by a series expansion
of the Laplace approximation. This faster alternative is a natural first choice, because of
its low computational cost and high accuracy. It is our experience that INLA outperforms
without comparison any MCMC alternative, both in terms of accuracy and computational
speed. We will also demonstrate how the various approximations can be used to derive tools
for assessing the approximation error, approximate posterior marginals for a subset of x,
and to compute interesting quantities like the marginal likelihood, the Deviance Information
Criteria and various Bayesian predictive measures.

1.8. Plan of paper

Section 2 contains preliminaries on GMRF’s, sparse matrix computations and Gaussian
approximations. Section 3 explains the INLA approach and how to approximate π(θ|y),
π(θj |y) and π(xi|θ,y). For the latent field, three approximations are discussed: Gaussian,
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Laplace and simplified Laplace. Section 4 discusses the error rates of the Laplace appro-
ximations used in INLA. Section 5 illustrates the performance of INLA through simulated
and real examples, which include stochastic volatility models, a longitudinal mixed model,
a spatial model for mapping of cancer incidence data and spatial log-Gaussian Cox pro-
cesses. Section 6 discusses some extensions: construction of posterior marginals for subsets
xS , approximations of the marginal likelihood and predictive measures, the DIC criterion
for model comparison and an alternative integration scheme for cases where the number of
hyperparameters is not small but moderate. We end with a general discussion in Section 7.

2. Preliminaries

We present here basic properties of GMRF’s and explain how to perform related compu-
tations using sparse matrix algorithms. We then discuss how to compute Gaussian appro-
ximations for a latent GMRF. See Rue and Held (2005) for more details on both issues.
Denote by x−i the vector x minus its ith element and by Γ(τ ; a, b) the Γ(a, b) density (with
mean a/b) at point τ .

2.1. Gaussian Markov Random Fields

A GMRF is a Gaussian random variable x = (x1, . . . , xn) with Markov properties: for some
i 6= j’s, xi and xj are independent conditional upon x−ij . These Markov properties are
conveniently encoded in the precision (inverse covariance) matrix Q: Qij = 0 if and only if
xi and xj are independent conditional upon x−ij . Let the undirected graph G denote the
conditional independence properties of x, then x is said to be a GMRF with respect to G.
If the mean of x is µ, the density of x is

π(x) = (2π)−n/2|Q|1/2 exp

{
−1

2
(x − µ)T Q(x − µ)

}
. (6)

In most cases only O(n) of the n2 entries of Q are non-zero, so Q is sparse. This allows for
fast factorisation of Q as LLT , where L is the (lower) Cholesky triangle. The sparseness
of Q is inherited into L, thanks to the global Markov property: for i < j, such that i and j
are separated by F (i, j) = {i + 1, . . . , j − 1, j + 1, . . . , n} in G, Lji = 0. Thus, only non-null
terms in L are computed. In addition, nodes can be re-ordered to decrease the number of
non-zero terms in L. The typical cost of factorising Q into LLT depends on the dimension
of the GMRF, e.g. O(n) for 1D (one dimension), O(n3/2) for 2D O(n2) for 3D. Solving
equations which involve Q also makes use of the Cholesky triangle. For example, Qx = b

is solved in two steps. First solve Lv = b, then solve LT x = v. If z ∼ N (0, I) then the
solution of LT x = z has precision matrix Q. This is the general method for producing
random samples from a GMRF. The log density at any x, log π(x), can easily be computed
using (6) since log |Q| = 2

∑
i log Lii.

Marginal variances can also be computed efficiently. To see this, we can start with the
equation LT x = z where z ∼ N (0, I). Recall that the solution x has precision matrix Q.
Writing this equation out in detail, we obtain Liixi = zi −

∑n
k=i+1 Lkixk for i = n, . . . , 1.

Multiplying each side with xj j ≥ i, and taking expectation, we obtain

Σij = δij/L2
ii −

1

Lii

n∑

k=i+1

LkiΣkj , j ≥ i, i = n, . . . , 1, (7)
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where Σ (= Q−1) is the covariance matrix, and δij = 1 if i = j and zero otherwise. Thus Σij

can be computed from (7), letting the outer loop i run from n to 1 and the inner loop j from
n to i. If we are only interested in the marginal variances, we only need to compute Σij ’s
for which Lji (or Lij) is not known to be zero, see above. This reduces the computational
costs to typically O(n(log n)2) in the spatial case; see Rue and Martino (2007, Sec. 2) for
more details.

When the GMRF is defined with additional linear constraints, like Ax = e for a k × n
matrix A of rank k, the following strategy is used: if x is a sample from the unconstrained
GMRF, then

xc = x − Q−1AT (AQ−1AT )−1(Ax − e) (8)

is a sample from the constrained GMRF. The expected value of xc can also be computed
using (8). This approach is commonly called ‘conditioning by Kriging’, see Cressie (1993)
or Rue (2001). Note that Q−1AT is computed by solving k linear systems, one for each
column of AT . The additional cost of the k linear constraints is O(nk2). Marginal variances
under linear constraints can be computed in a similar way, see Rue and Martino (2007,
Sec. 2).

2.2. Gaussian Approximations

Our approach is based on Gaussian approximations to densities of the form:

π(x) ∝ exp

{
−1

2
xT Qx +

∑

i∈I

gi(xi)

}
. (9)

where gi(xi) is log π(yi|xi,θ) in our setting. The Gaussian approximation π̃G(x) is obtained
by matching the modal configuration and the curvature at the mode. The mode is computed
iteratively using a Newton-Raphson method, also known as the scoring algorithm and its
variant, the Fisher-scoring algorithm (Fahrmeir and Tutz, 2001). Let µ(0) be the initial

guess, and expand gi(xi) around µ
(0)
i to the second order,

gi(xi) ≈ gi(µ
(0)
i ) + bixi −

1

2
cix

2
i (10)

where {bi} and {ci} depend on µ(0). A Gaussian approximation is obtained, with precision
matrix Q + diag(c) and mode given by the solution of (Q + diag(c))µ(1) = b. This process
is repeated until it converges to a Gaussian distribution with, say, mean x⋆ and precision
matrix Q⋆ = Q + diag(c⋆). If there are linear constraints, the mean is corrected at each
iteration using the expected value of (8).

Since the non-quadratic term in (9) is only a function of xi and not a function of xi

and xj , say, the precision matrix of the Gaussian approximation is of the form Q+diag(c).
This is computationally convenient, as the Markov properties of the GMRF are preserved.

There are some suggestions in the literature how to construct an improved Gaussian
approximation to (9) with respect to the one obtained matching the mode and the curva-
ture at the mode; see Rue (2001, Sec. 5), Rue and Held (2005, Sec. 4.4.1) and Kuss and
Rasmussen (2005). We have chosen not to pursue this issue here.
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3. The Integrated Nested Laplace approximation (INLA)

In this section we present the INLA approach for approximating the posterior marginals of
the latent Gaussian field, π(xi|y), i = 1, . . . , n. The approximation is computed in three
steps. The first step (Section 3.1) approximates the posterior marginal of θ using the Laplace
approximation (3). The second step (Section 3.2) computes the Laplace approximation, or
the simplified Laplace approximation, of π(xi|y,θ), for selected values of θ, in order to
improve on the Gaussian approximation (4). The third step combines the previous two
using numerical integration (5).

3.1. Exploring π̃(θ|y)
The first step of the INLA approach is to compute our approximation to the posterior
marginal of θ, see (3). The denominator in (3) is the Gaussian approximation to the full
conditional for x, and is computed as described in Section 2.2. The main use of π̃(θ|y) is to
integrate out the uncertainty with respect to θ when approximating the posterior marginal
of xi, see (5). For this task, we do not need to represent π̃(θ|y) parametrically, but rather
to explore it sufficiently well to be able to select good evaluation points for the numerical
integration. At the end of this section, we discuss how the posterior marginals π(θj |y) can
be approximated. Assume for simplicity that θ = (θ1, . . . , θm) ∈ R

m, which can always be
obtained by reparametrisation.

Step 1 Locate the mode of π̃(θ|y), by optimising log π̃(θ|y) with respect to θ. This
can be done using some quasi-Newton method which builds up an approximation to the
second derivatives of log π̃(θ|y) using the difference between successive gradient vectors.
The gradient is approximated using finite differences. Let θ⋆ be the modal configuration.

Step 2 At the modal configuration θ⋆ compute the negative Hessian matrix H > 0, using
finite differences. Let Σ = H−1, which would be the covariance matrix for θ if the density
were Gaussian. To aid the exploration, use standardised variables z instead of θ: let
Σ = V ΛV T be the eigen-decomposition of Σ, and define θ via z, as follows

θ(z) = θ⋆ + V Λ1/2z.

If π̃(θ|y) is a Gaussian density, then z is N (0, I). This reparametrisation corrects for scale
and rotation, and simplifies numerical integration; see for example Smith et al. (1987).

Step 3 Explore log π̃(θ|y) using the z-parametrisation. Figure 1 illustrates the procedure
when log π̃(θ|y) is unimodal. Panel (a) shows a contour plot of log π̃(θ|y) for m = 2, the
location of the mode and the new coordinate axis for z. We want to explore log π̃(θ|y) in
order to locate the bulk of the probability mass. The result of this procedure is displayed
in panel (b). Each dot is a point where log π̃(θ|y) is considered as significant, and which
is used in the numerical integration (5). Details are as follows. We start from the mode
(z = 0), and go in the positive direction of z1 with step-length δz say δz = 1, as long as

log π̃(θ(0)|y) − log π̃(θ(z)|y) < δπ (11)

where, for example δπ = 2.5. Then we switch direction and do similarly. The other
coordinates are treated in the same way. This produces the black dots. We can now fill
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Fig. 1. Illustration of the exploration of the posterior marginal for θ. In (a) the mode is located, the

Hessian and the coordinate system for z are computed. In (b) each coordinate direction is explored

(black dots) until the log-density drops below a certain limit. Finally the grey dots are explored.

in all the intermediate values by taking all different combinations of the black dots. These
new points (shown as grey dots) are included if (11) holds. Since we layout the points θk

in a regular grid, we may take all the area-weights ∆k in (5) to be equal.

Approximating π(θj |y). Posterior marginals for θj can be obtained directly from π̃(θ|y)
using numerical integration. However, this is computationally demanding, as we need to
evaluate π̃(θ|y) for a large number of configurations. A more feasible approach is to use
the points already computed during step 1-3 to construct an interpolant to log π̃(θ|y), and
to compute marginals using numerical integration from this interpolant. If high accuracy
is required, we need in practise a more dense configuration (for example δz = 1/2 or 1/4)
than is required for the latent field x; see Martino (2007) for numerical comparisons.

3.2. Approximating π(xi|θ,y)
We have now a set of weighted points {θk} to be used in the integration (5). The next step
is to provide accurate approximations for the posterior marginal for the xi’s, conditioned on
selected values of θ. We discuss three approximations π̃(xi|y,θk), that is the Gaussian, the
Laplace, and a simplified Laplace approximation. Although the Laplace approximation is
preferred in general, the much smaller cost of the simplified Laplace generally compensates
for the slight loss in accuracy.

3.2.1. Using Gaussian Approximations

The simplest (and cheapest) approximation to π(xi|θ,y) is the Gaussian approximation
π̃G(xi|θ,y), where the mean µi(θ) and the marginal variance σ2

i (θ) are derived using the
recursions (7), and possibly correcting for linear constraints. During the exploration of
π̃(θ|y), see Section 3.1, we already compute π̃G(x|θ,y), so only marginal variances need
to be additionally computed. The Gaussian approximation gives often reasonable results,
but there can be errors in the location and/or errors due to the lack of skewness (Rue and
Martino, 2007).
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3.2.2. Using Laplace Approximations

The natural way to improve the Gaussian approximation is to compute the Laplace appro-
ximation

π̃LA(xi | θ,y) ∝ π(x,θ,y)

π̃GG(x−i|xi,θ,y)

∣∣∣∣∣
x

−i=x⋆
−i

(xi,θ)

. (12)

Here, π̃GG is the Gaussian approximation to x−i|xi,θ,y, and x⋆
−i(xi,θ) is the modal

configuration. Note that π̃GG is different from the conditional density corresponding to
π̃G(x|θ,y).

Unfortunately, (12) implies that π̃GG must be recomputed for each value of xi and θ,
since its precision matrix depends on xi and θ. This is far too expensive, as it requires
n factorisations of the full precision matrix. We propose two modifications to (12) which
make it computationally feasible.

Our first modification consists in avoiding the optimisation step in computing π̃GG(x−i|xi,θ,y)
by approximating the modal configuration,

x⋆
−i(xi,θ) ≈ EeπG

(x−i | xi). (13)

The right-hand side is evaluated under the conditional density derived from the Gaussian
approximation π̃G(x|θ,y). The computational benefit is immediate. First, the conditional
mean can be computed by a rank-one update from the unconditional mean, using (8). In
the spatial case the cost is O(n log n), for each i, which comes from solving Q⋆(θ)v = 1i,
where 1i equals one at position i, and zero otherwise. This rank-one update is computed
only once for each i, as it is linear in xi. Although their settings are slightly different, Hsiao
et al. (2004) show that deviating from the conditional mode does not necessarily degrade
the approximation error. Another positive feature of (13) is that the conditional mean is
continuous with respect to xi, which is not the case when numerical optimisation is used to
compute x⋆

−i(xi,θ).

Our next modification materialises the following intuition: only those xj that are ‘close’
to xi should have an impact on the marginal of xi. If the dependency between xj and
xi decays as the distance between nodes i and j increases, only those xj ’s in a ‘region of
interest’ around i, Ri(θ), determine the marginal of xi. The conditional expectation in (13)
implies that

EeπG
(xj |xi) − µj(θ)

σj(θ)
= aij(θ)

xi − µi(θ)

σi(θ)
(14)

for some aij(θ) when j 6= i. Hence, a simple rule for constructing the set Ri(θ) is

Ri(θ) = {j : |aij(θ)| > 0.001} . (15)

The most important computational saving using Ri(θ) comes from the calculation of the
denominator of (12), where we now only need to factorise a |Ri(θ)|× |Ri(θ)| sparse matrix.

Expression (12), simplified as explained above, must be computed for different values of
xi in order to find the density. To select these points, we use the mean and variance of the
Gaussian approximation (4), and choose, say, different values for the standardised variable

x
(s)
i =

xi − µi(θ)

σi(θ)
(16)
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according to the corresponding choice of abscissas given by the Gauss-Hermite quadrature
rule. To represent the density π̃LA(xi|θ,y), we use

π̃LA (xi | θ,y) ∝ N
{
xi; µi(θ), σ2

i (θ)
}
× exp {cubic spline(xi)} . (17)

The cubic spline is fitted to the difference of the log-density of π̃LA(xi|θ,y) and π̃G(xi|θ,y)
at the selected abscissa points, and then the density is normalised using quadrature inte-
gration.

3.2.3. Using a Simplified Laplace Approximation

In this section we derive a simplified Laplace approximation π̃SLA(xi|θ,y) by doing a series
expansion of π̃LA(xi|θ,y) around xi = µi(θ). This allows us to correct the Gaussian appro-
ximation π̃G(xi|θ,y) for location and skewness. For many observational models including
the Poisson and the Binomial, these corrections are sufficient to obtain essentially correct
posterior marginals. The benefit is purely computational: as most of the terms are common
for all i, we can compute all the n marginals in only O(n2 log n) time in the spatial case.
Define

d
(3)
j (xi,θ) =

∂3

∂x3
j

log π(yj | xj ,θ)

∣∣∣∣∣
xj=EeπG

(xj |xi)

which we assume exists. The evaluation point is found from (14). The following trivial
Lemma will be useful.

Lemma 1. Let x = (x1, . . . , xn)T ∼ N (0, Σ), then for all x1

−1

2
(x1, E(x−1|x1)

T ) Σ−1

(
x1

E(x−1|x1)

)
= −1

2
x2

1/Σ11.

We expand the numerator and denominator of (12) around xi = µi(θ), using (13) and
Lemma 1. Up to third order, we obtain

log π(x,θ,y)

∣∣∣∣∣
x

−i=EeπG
(x

−i|xi)

= −1

2
(x

(s)
i )2

+
1

6
(x

(s)
i )3

∑

j∈I\i

d
(3)
j (µi(θ),θ) {σj(θ)aij(θ)}3

+ · · ·
(18)

The first and second order terms give the Gaussian approximation, whereas the third order
term provides a correction for skewness. Further, the denominator of (12) reduces to

log π̃GG(x−i | xi,θ,y)

∣∣∣∣∣
x

−i=EeπG
(x

−i|xi)

= constant +
1

2
log |H + diag {c(xi,θ)}| (19)

where H is the prior precision matrix of the GMRF with ith column and row deleted,
and c(xi,θ) is the vector of minus the second derivative of the log likelihood evaluated at
xj = EeπG

(xj |xi), see (14). Using that

d log |H + diag(c)| =
∑

j

[
{H + diag (c)}−1

]

jj
dcj
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we obtain

log π̃GG(x−i | xi,θ,y)

∣∣∣∣∣
x

−i=EeπG
(x

−i|xi)

= constant

− 1

2
x

(s)
i

∑

j∈I\i

VareπG
(xj |xi) d

(3)
j (µi(θ),θ) σj(θ) aij(θ) + · · · .

(20)

For Gaussian data (19) is just a constant, so the first order term in (20) is the first correction
for non-Gaussian observations. Note that

VareπG
(xj |xi) = σ2

j (θ)
{
1 − CorreπG

(xi, xj)
2
}

and that the covariance between xi and xj (under π̃G) is computed while doing the rank-one
update in (13), as the jth element of the solution of Q⋆(θ)v = 1i.

We now collect the expansions (18) and (20). Define

γ
(1)
i (θ) =

1

2

∑

j∈I\i

σ2
j (θ)

{
1 − CorreπG

(xi, xj)
2
}

d
(3)
j (µi(θ),θ) σj(θ) aij(θ)

γ
(3)
i (θ) =

∑

j∈I\i

d
(3)
j (µi(θ),θ) {σj(θ)aij(θ)}3

(21)

then

log π̃SLA(xs
i |θ,y) = constant − 1

2
(x

(s)
i )2 + γ

(1)
i (θ)x

(s)
i +

1

6
(x

(s)
i )3γ

(3)
i (θ) + · · · . (22)

Eq. (22) does not define a density as the third order term is unbounded. A common way
to introduce skewness into the Gaussian distribution is to use the Skew-Normal distribu-
tion (Azzalini and Capitanio, 1999)

πSN(z) =
2

ω
φ

(
z − ξ

ω

)
Φ

(
a
z − ξ

ω

)
(23)

where φ(·) and Φ(·) are the density and distribution function of the standard normal distri-
bution, and ξ, ω > 0, and a are respectively the location, scale, and skewness parameters.

We fit a Skew-Normal density to (22) so that the third derivative at the mode is γ
(3)
i , the

mean is γ
(1)
i and the variance is 1. In this way, γ

(3)
i only contributes to the skewness whereas

the adjustment in the mean comes from γ
(1)
i ; see Appendix B for details.

We have implicitly assumed that the expansion (18) is dominated by the third order
term. This is adequate when the log-likelihood is skewed, but not for symmetric distribu-
tions with thick tails like a Student-tν with a low degree of freedom. For such cases, we
expand only the denominator (20) and fit the spline-corrected Gaussian (17) instead of a
skewed Normal. This is slightly more expensive, but is needed.

The simplified Laplace approximation appears to be highly accurate for many observa-
tional models. The computational cost is dominated by the calculation of vector ai·(θ), for
each i; thus the ‘region of interest’ strategy (15) is unhelpful here. Most of the other terms
in (21) do not depend on i, and thus are computed only once. The cost for computing (22),
for a given i, is of the same order as the number of non-zero elements of the Cholesky
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triangle, e.g. O(n log n) in the spatial case. Repeating the procedure n times gives a total
cost of O(n2 log n) for each value of θ. We believe this is close to the lower limit for any
general algorithm that approximates all of the n marginals. Since the graph of x is general,
we need to visit all other sites, for each i, for a potential contribution. This operation alone
costs O(n2). In summary, the total cost for computing all n marginals π̃(xi|y), i = 1, . . . , n,
using (5) and the simplified Laplace approximation, is exponential in the dimension of θ

times O(n2 log n) (in the spatial case).

4. Approximation error: Asymptotics and practical issues

4.1. Approximation error of π̃(θ|y)
For the sake of discussion, denote p the dimension of vector (x,θ), i.e. p = n + m, and
recall that nd denotes the number of observations. Up to normalisation, π̃(θ|y) is formally
equivalent to the Laplace approximation of a marginal posterior density proposed by Tierney
and Kadane (1986), which, under ‘standard’ conditions, has error rate O(n−1

d ). We want to
make it clear however that these standard conditions are not relevant in many applications
of latent Gaussian models. We will now discuss several asymptotic schemes and their impact
on the actual error rate of π̃(θ|y).

First, assume that p is fixed while nd goes to infinity; for instance, a GMRF model with a
fixed number of nodes but a growing number of observations accumulating at each node. In
this case, the usual assumptions for the asymptotic validity of a Laplace approximation, see
Kass et al. (1999) or Schervish (1995, p. 453), are typically satisfied. This asymptotic scheme
is obviously quite specific, but it explains the good properties of INLA in a few applications,
such as for instance a GMRF model with binomial observations, yi|xi ∼ Bin(ni, logit−1(xi)),
provided all the ni take large values.

Second, if n (and therefore p) grows with nd, then, according to Shun and McCullagh
(1995), the error rate is O(n/nd) as n is the dimension of the integral defining the unnor-
malised version of π̃(θ|y). Note that this rate is not established rigorously. This asymptotic
scheme is relevant to regression models involving individual effects, in which case n/nd → 0
is not a taxing assumption. On the other hand, many GMRF models are such that n/nd is
a constant (typically 1). For such models, we have the following result. If, as nd → ∞, the
true latent field x converges to a degenerate Gaussian random distribution of rank q, then
the asymptotic error rate is O(q/nd). Conversely, if the considered model is such that the
components of x are independent, one can show that the approximation error is O(1) but
almost never o(1).

In conclusion, the accuracy of π̃(θ|y) seems to be directly related to the ‘actual’ di-
mension of x. Thus, we recommend to evaluate, conditional on θ, the effective number

of parameters, pD(θ), as defined by Spiegelhalter et al. (2002). Since x given y and θ is
roughly Gaussian, pD(θ) is conveniently approximated by

pD(θ) ≈ n − Trace
{

Q(θ)Q⋆(θ)
−1

}
, (24)

the trace of the prior precision matrix times by the posterior covariance matrix of the
Gaussian approximation (Spiegelhalter et al., 2002, Eq. (16)). (The computation of pD(θ)
is computationally cheap, since the covariances of neighbours are obtained as a by-product
of the computation of the marginal variances in the Gaussian approximation based on (7).)
This quantity also measures to which extent the Gaussianity and the dependence structure
of the prior are preserved in the posterior of x, given θ. For instance, for non-informative
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data, pD(θ) = 0, and the approximation error is zero, since the posterior equals the Gaussian
prior. In all our applications, we observed that pD(θ) is typically small relative to nd for
values of θ in the vicinity of the posterior mode.

Note finally that in most cases normalising the approximated density reduces further
the asymptotic rate, as the dominating terms of the numerator and the denominator cancel
out (Tierney and Kadane, 1986); in the standard case, normalising reduces the error rate

from O(n−1
d ) to O(n

−3/2
d ).

The discussion above of the asymptotic properties of π̃(θ|y) applies almost directly to
π̃LA(xi|θ,y): conditional on θ, π̃LA(xi|θ,y) is a Laplace approximation of the posterior
marginal density of xi, and the dimension of the corresponding integral is the dimension of
x−i, i.e. n − 1.

4.2. Assessing the approximation error

Obviously, there is only one way to assess with certainty the approximation error of our
approach, which is to run a MCMC sampler for an infinite time. However, we propose to use
the following two strategies to assess the approximation error, which should be reasonable
in most situations.

Our first strategy is to verify the overall approximation π̃G(x|θ,y), for each θk used in
the integration. We do this by computing pD(θ) (24) as discussed in Section 4.1, but we
can also use that (3) can be rewritten as

π(θ|y)

π̃(θ|y)
∝ |Q⋆(θ)|1/2

∫
exp

[
−1

2
{x − x⋆(θ)}T

Q⋆(θ) {x − x⋆(θ)} + r(x;θ,y)

]
dx

= EeπG
[exp {r(x;θ,y)}] ,

where the constant of proportionality is quite involved and not needed in the following
discussion. Further, x⋆(θ) and Q⋆(θ) are the mean and precision of Gaussian distribution
π̃G, r(x;θ,y) =

∑
i hi(xi), and hi(xi) is gi(xi) minus its Taylor expansion up to order two

around x⋆
i (θ); see (9) and (10). If, for each θk, pD(θ) is small compared to nd, and the em-

pirical quantiles of the random variable r(x;θ,y) are in absolute value significantly smaller
than nd, then one has strong confidence that the Gaussian approximation is adequate. The
empirical quantiles of r(x;θ,y) are found by sampling (for example, 1 000) independent
realisations from π̃G.

Our second strategy is based on the simple idea of comparing elements of a sequence
of more and more accurate approximations. In our case, this sequence consists of the
Gaussian approximation (4), followed by the simplified Laplace approximation (22), then
by the Laplace approximation (12). Specifically we compute the integrated marginal (5)
based on both the Gaussian approximation and the simplified Laplace approximation, and
compute their symmetric Kullback-Leibler divergence (SKLD). If the divergence is small
then both approximations are considered as acceptable. Otherwise, compute (5) using
the Laplace approximation (12) and compute the divergence with the one based on the
simplified Laplace approximation. Again, if the divergence is small, simplified Laplace and
Laplace approximations appear to be acceptable; otherwise, the Laplace approximation is
our best estimate but the label ‘problematic’ should be attached to the approximation to
warn the user. (This last option has not yet happened to us.)

To assess the error due to the numerical integration (5), we can compare the SKLD
between the posterior marginals obtained with a standard and those obtained with a higher
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resolution. Such an approach is standard in numerical integration, we do not pursue this
issue here.

5. Examples

This section provides examples of applications of the INLA approach, with comparisons
to results obtained from intensive MCMC runs. The computations were performed on a
single-processor 2.1GHz laptop using the inla program (Martino and Rue, 2008) which is
a user-friendly interface towards our GMRFLib-library written in C (Rue and Held, 2005,
Appendix). (We will comment upon speedup strategies and parallel implementation in Sec-
tion 6.5 and Section 7.) We start with some simulated examples with fixed θ in Section 5.1,
to verify the (simplified) Laplace approximation for xi|θ,y. We continue with a generalised
linear mixed model for longitudinal data in Section 5.2, a stochastic volatility model ap-
plied to exchange rate data in Section 5.3, a spatial semi-parametric regression model for
disease-mapping in Section 5.4. The dimensions get really large in Section 5.5, in which we
analyse some data using a spatial log-Gaussian Cox process.

5.1. Simulated examples

We start by illustrating the various approximations of π(xi|θ,y) in two quite challenging
examples. The first model is based on a first order auto-regressive latent field with unknown
mean,

ft − µ | µ, f1, . . . , ft−1 ∼ N
{
φ(ft−1 − µ), σ2

}
, t = 2, . . . , 50 (25)

and µ ∼ N (0, 1), φ = 0.85, Var(ft) = 1 and f1 − µ ∼ N (0, 1). In this example ηt = ft;
see (1). As our observations we take

E1: yt − ηt | (η, µ) ∼ Student-t3, E2: yt | (η, µ) ∼ Bernoulli
{
logit−1(ηt)

}

for t = 1, . . . , 50, in experiment E1 and E2, respectively. Note that the Student-t3 is
symmetric so we need to use the full numerator in the simplified Laplace approximations
as described in Section 3.2.3.

To create the observations in each experiment, we sampled first (fT , µ)T from the prior,
then simulated the observations. We computed π̃(ft|θ,y) for t = 1, . . . , 50 and π̃(µ|θ,y)
using the simplified Laplace approximation. We located the ‘worst node’, that is the node
with maximum SKLD between the Gaussian and the simplified Laplace approximations.
This process was repeated 100 times. Figure 2 provides the results for the ‘worst of the
worst nodes’, that is the node that maximises our SKLD criterion among all the nodes
of the 100 generated sample. The first (resp. second) column displays the results for E1
with Student-t3 data (resp. E2 with Bernoulli data). Panel (a) and (b) display f (solid
line) and the observed data (circles). In (a) the selected node is marked with a vertical
line and solid dot. In (b) the node with maximum SKLD is µ, and hence is not shown.
Panel (c) and (d) display the approximated marginals for the node with maximum SKLD
in the standardised scale (16). The dotted line is the Gaussian approximation, the dashed
line is the simplified Laplace and the solid line is the Laplace approximation. In both cases,
the simplified Laplace and the Laplace approximation are very close to each other. The
SKLD between the Gaussian approximation and the simplified Laplace one is 0.20 (c) and
0.05 (d). The SKLD between the simplified Laplace approximation and the Laplace one
is 0.001 (c) and 0.0004 (d). Panel (e) and (f) show the simplified Laplace approximation
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with a histogram based on 10, 000 (near) independent samples from π(f , µ|θ,y). The fit is
excellent.

The great advantage of the Laplace approximations is the high accuracy and low compu-
tational cost. In both examples, we computed all the approximations (for each experiment)
in less than 0.08 seconds, whereas the MCMC samples required about 25 seconds.

The results shown in this example are rather typical and are not limited to simple time-
series models like (25). The Laplace approximation only ‘sees’ the log-likelihood model and
then uses some of the other nodes to compute the correction to the Gaussian approximation.
Hence, the form of the log-likelihood is more important than the form of the covariance for
the latent field.

5.2. A generalised linear mixed model for longitudinal data

Generalised linear (mixed) models form a large class of latent Gaussian models. We consider
the Epil example of the OpenBUGS (Thomas et al., 2006) manual Vol I, which is based on
model III of Breslow and Clayton (1993, Sec. 6.2) and data from Thall and Vail (1990).

The data come from a clinical trial of 59 epileptics patients. Each patient i is randomised
to a new drug (Trti = 1) or a placebo (Trti = 0), in addition to the standard chemotherapy.
The observations for each patient yi1, . . . , yi4, are the number of seizures during the two
weeks before each of the four clinic visits. The covariates are age (Age), the baseline seizure
counts (Base) and an indicator variable for the 4th clinic visit (V4). The linear predictor is

ηij = β0 + βBase log(Baselinej/4) + βTrtTrtj + βTrt×BaseTrtj × log(Baselinej/4)

+βAgeAgej + βV4V4j + ǫi + νij , i = 1, . . . , 59, j = 1, . . . , 4,

using centred covariates. The observations are conditionally independent Poisson variables
with mean exp(ηij). Overdispersion in the Poisson distribution is modelled using individual
random effects ǫi and subject by visit random effects νij . We use the same priors as in the

OpenBUGS manual: ǫi
iid∼ N (0, 1/τǫ), νij

iid∼ N (0, 1/τν), τǫ, τν ∼ Γ(0.001, 0.001), and all the
β·’s are assigned N (0, 1002) priors. In this example our latent field x is of dimension n = 301
and consists of {ηij}, {ǫi}, β0, βBase, βTrt, βTrt×Base, βAge and βV4. The hyperparameters
are θ = (τǫ, τν)T .

We computed the approximate posterior marginals for the latent field using both Gaus-
sians and simplified Laplace approximations. The node where SKLD between these two
marginals is maximum, is β0. The SKLD is 0.23. The two approximated marginals for β0

are displayed in Figure 3(a). The simplified Laplace (solid line) approximation does correct
the Gaussian approximation (dashed line) in the mean, while the correction for skewness is
minor. The simplified Laplace approximation gives accurate results, as shown in Figure 3(a)
where a histogram from a long MCMC using OpenBUGS is overlaid. Figure 3(b) displays
the posterior marginal for τǫ found by integrating out τν from π̃(θ|y); again, we find no
errors.

We validated the approximations at the modal value θ⋆. The effective number of pa-
rameters (24) was 121.1, which corresponds to about 2 samples for each parameter. A 95%
interval for the remainder r(x;θ⋆,y)/nd is [−0.01, 0.024] using 1, 000 independent sam-
ples. Computing the (true) Laplace approximation for the posterior marginal of β0 gives a
negligible SKLD to the simplified Laplace one; thus indicating that the simplified Laplace
approximation is adequate. The computational cost for obtaining all the latent posterior
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Fig. 2. First row shows the true latent Gaussian field (solid line), the observed Student-t3 data

and Bernoulli data (dots). Second row shows the approximate marginal for a selected node using

various approximations; Gaussian (dotted), simplified Laplace (dashed) and Laplace (solid). Third

row compares samples from a long MCMC chain with the marginal computed with the simplified

Laplace approximation.
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(a) (b)

Fig. 3. The posterior marginal for β0 (a) and τǫ (b) for the example in Section 5.2. The solid line

in (a) shows the marginal using simplified Laplace approximation and the dashed line the Gaussian

approximation. The solid line in (b) shows the marginal for τǫ after integrating out τν . The histograms

result from a long MCMC run using OpenBUGS.

marginals was about 1.5 seconds in total. Although OpenBUGS can provide approximate
answers in minutes, we had to run it for hours to provide accurate posterior marginals.

5.3. Stochastic volatility models

Stochastic volatility models are frequently used to analyse financial time series. Figure 4(a)
displays the log of the nd = 945 daily difference of the pound-dollar exchange rate from
October 1st, 1981, to June 28th, 1985. This data set has been analysed by Durbin and Koop-
man (2000), among others. There has been much interest in developing efficient MCMC
methods for such models, e.g. Shephard and Pitt (1997) and Chib et al. (2002).

The observations are taken to be

yt | ηt ∼ N {0, exp(ηt)} , t = 1, . . . , nd. (26)

The linear predictor consists of two terms, ηt = µ+ft, where ft is a first order auto-regressive
Gaussian process

ft | f1, . . . , ft−1, τ, φ ∼ N (φft−1, 1/τ) , |φ| < 1,

and µ is a Gaussian mean value. In this example, x = (µ, η1, . . . , ηT )T and θ = (φ, τ)T . The
log-likelihood (with respect to ηt) is quite far from being Gaussian and is non-symmetric.
There is some evidence that financial data have heavier tails than the Gaussian, so a Student-
tν distribution with unknown degrees of freedom can be substituted to the Gaussian in (26);
see Chib et al. (2002). We consider this modified model at the end of this example.

We use the following priors: τ ∼ Γ(1, 0.1), φ′ ∼ N (3, 1) where φ = 2 exp(φ′)/(1 +
exp(φ′)) − 1, and µ ∼ N (0, 1). We display the results for the Laplace approximation of
the posterior marginals of the two hyperparameters and µ, but only based on only the
first 50 observations in Figure 4(b)-(d), as using the full data set make the approximation
problem easier. The solid line in Figure 4(d) is the marginal found using simplified Laplace
approximations and the dashed line uses Gaussian approximations, but in this case there
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are little difference (the SKLD is 0.05). The histograms are constructed from the output of
a long MCMC run using OpenBUGS. The approximations computed are very precise and
no deviance (in any node) can be detected. The results obtained using the full data set are
similar but the marginals are narrower (not shown).

Following the discussion in Section 1.6, we also used this set of n = 50 observations to
compare INLA with Zoeter et al. (2005)’s EP algorithm (with a slightly different parametri-
sation of the model and other priors due to constraints in their code). The latter was
considerably less accurate (e.g. the posterior mean of φ is shifted one standard deviation
to the right) and more expensive; running time was about 40 minutes for Zoeter et al.
(2005)’s Matlab (http://www.mathworks.com/) code, to compare with 0.3 seconds for our
approach.

We now extend the model to allow for Student-tν distributed observations, where we
scale the Student-tν distribution to have unit variance for all ν > 2. We assign a N (2.08, 1)
prior to ν′ where ν = 2+exp(ν′). The number of hyperparameters is now three. Figure 4(e)
displays the approximate posterior marginal for the degrees-of-freedom and panel (f) dis-
plays the 0.025, 0.5 and 0.975 quantiles of ηt. Also in this case, we do not find any error in
the approximations which was verified on using a subset of the full data (not shown). The
marginal for the degrees-of-freedom suggests that the extension to Student-tν is not needed
in this case, but see Section 6.2 for a more formal comparison of these two models. For the
latent auto-regressive process, there is little difference between the Gaussian approximation
and the simplified Laplace one, for both models. The average SKLD was about 0.007 in
both cases.

We validated the approximations using all the n = 945 observations at the modal value
θ⋆. The effective number of parameters (24) was about 63, which is small compared to nd.
A 95% interval for the remainder r(x;θ⋆,y)/nd is [−0.002, 0.004] using 1, 000 independent
samples. The computational cost for obtaining all the posterior marginals (using (26)) for
the latent field, was about 11 seconds.

5.4. Disease mapping of cancer incidence data

In this example we consider spatial model for mapping cancer incidence where the stage of
the disease at time of diagnosis is known. The class of “disease mapping” models are often
latent Gaussians, see for example Besag et al. (1991); Wakefield et al. (2000) and Held et al.
(2005) for an introduction.

The data are binary incidence cases of cervical cancer from the former East German
Republic from 1979 (Knorr-Held et al., 2002). The data are stratified by district and age
group. Each of the nd = 6990 cases are classified into premalignant yi = 1 or malignant
yi = 0. Denote by di and ai the district and age-group for case i = 1, . . . , 6990. There are
216 districts and 15 age groups (15−19, 20−24, . . ., > 84). We follow Rue and Held (2005,
Sec. 4.3.5) and use a logistic binary regression model:

logit(pi) = ηi = µ + f (a)
ai

+ f
(s)
di

+ f
(u)
di

,

where f (a) is a smooth effect of the age-group, f (s) is a smooth spatial field and f (u) are
district random effects. More specifically, f (a) follows an intrinsic second order random
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Panel (a) displays the log of the daily difference of the pound-dollar exchange rate from Oc-

tober 1st, 1981, to June 28th, 1985. Panels (b) and (c) display the approximated posterior marginals

for φ and τ using only the first n = 50 observations in (a). Overlaid are the histograms obtained

from a long MCMC run using OpenBUGS. Panel (d) displays the approximated posterior marginal

using simplified Laplace approximations (solid line) and Gaussian approximations (dashed line) for

µ, which is the node in latent field with maximum SKLD. Panel (e) displays the posterior marginal for

the degrees-of-freedom assuming Student-tν distributed observations, and panel (f) the 0.025, 0.5
and 0.975 posterior quantiles for ηt.
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walk model (Rue and Held, 2005, Ch. 3) with precision κ(a),

π(f (a)|κ(a)) ∝ (κ(a))(15−2)/2 exp


−κ(a)

2

15∑

j=3

(f
(a)
j − 2f

(a)
j−1 + f

(a)
j−2)

2


 . (27)

The model for the spatial term f (s) are defined conditionally, as

f
(s)
i | f

(s)
−i , κ

(s) ∼ N


 1

ni

∑

j∈∂i

f
(s)
j ,

1

niκ(s)




where ∂i is the set of neighbour-districts to district i, namely those ni districts who share
a common border with district i; see Rue and Held (2005, Sec. 3.3.2) for further detail
on this model. The district random effects are independent zero-mean Gaussians with
precision κ(u). We put a zero-mean constraint on both the age and spatial effects and
assign independent Γ(1, 0.01) priors to the three hyperparameters (κ(a), κ(s), κ(u))T , and a
N (0, 0.1) prior to µ. The dimension of the latent field x is 216 × 15 + 1 = 3241.

The results are displayed in Figure 5. Panel (a) displays the posterior marginal for the
node with the largest SKLD between the approximations using simplified Laplace (solid
line) and Gaussians (dashed line). The SKLD is 0.058. Overlaid is the histogram found
from a long MCMC run using the block-MCMC algorithm with auxiliary variables described
in Rue and Held (2005, Sec. 4.3.5); the fit is perfect. Panel (b) displays the effect of the age
groups, where the solid line interpolates the posterior median and the dashed lines displays
the 0.025 and 0.975 quantiles. The quantiles obtained from a long MCMC run are shown
by dots; again the fit is very good. Panel (c) displays the median of the smooth spatial
component, where the grey-scale goes from 0.2 (white) to 5 (black). (The shaded region is
Berlin.)

We validated the approximations at the modal value θ⋆. The effective number of param-
eters (24) was about 101, which is small compared to nd. A 95% interval for the remainder
r(x;θ⋆,y)/nd is [−0.001, 0.001] using 1, 000 independent samples. The computational cost
for obtaining all the posterior marginals for the latent field was about 34 seconds.

5.5. Log-Gaussian Cox process

Log-Gaussian Cox processes (LGCP) are a flexible class of models that have been success-
fully used for modelling spatial or spatio-temporal point processes, see for example Møller
et al. (1998), Brix and Møller (2001), Brix and Diggle (2001) and Møller and Waagepetersen
(2003). We illustrate in this section how LGCP models can be analysed using our approach
for approximate inference.

A LGCP is a hierarchical Poisson process: Y in W ⊂ R
d is a Poisson point process

with a random intensity function λ(ξ) = exp(Z(ξ)), where Z(ξ) is a Gaussian field at
ξ ∈ R

d. In this way, the dependency in the point-pattern is modelled through a common
latent Gaussian variable Z(·). In the analysis of LGCP, it is common to discretise the
observation window W . Divide W into N disjoint cells {wi} located at ξi each with area
|wi|. Let yi be the number of occurrences of the realised point pattern within wi and let
y = (y1, . . . , yN )T . Let ηi be the random variable Z(ξi). Clearly π(y|η) =

∏
i π(yi|ηi) and

yi|ηi is Poisson distributed with mean |wi| exp(ηi).
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(a) (b)

(c)

Fig. 5. The results for the cancer incidence example: (a) the posterior marginal for f
(a)
3

using simpli-

fied Laplace approximations (solid line), Gaussians approximations (dashed line) and samples from

a long MCMC run (histogram). Panel (b) displays the posterior median, 0.025 and 0.975 quantiles

of the age-class effect (interpolated), whereas the dots are those obtained from a long MCMC run.

Panel (c) displays the posterior median of the (smooth) spatial effect.
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We apply model (28) to the tropical rain forest data studied by Waagepetersen (2007).
These data come from a 50-hectare permanent tree plot which was established in 1980
in the tropical moist forest of Barro Colorado Island in central Panama. Censuses have
been carried out every 5th year from 1980 to 2005, where all free-standing woody stems at
least 10 mm diameter at breast height were identified, tagged, and mapped. In total, over
350, 000 individual trees species have been censured over 25 years. We will be looking at the
tree species Beilschmiedia pendula Lauraceae using data collected from the first four census
periods. The positions of the 3605 trees are displayed in Figure 6(a). Sources of variation
explaining the locations include the elevation and the norm of the gradient. There may be
clustering or aggregation due to unobserved covariates or seed dispersal. The unobserved
covariates can be either spatially structured or unstructured. This suggests the model

ηi = β0 + βAltAltitudei + βGradGradienti + f
(s)
i + f

(u)
i , (28)

where f (s) represent the spatial component, and f (u) is an unstructured term. An alter-
native would be to use a semi-parametric model for the effect of the covariates similar
to (27).

We start by dividing the area of interest into a 200 × 100 regular lattice, where each
square pixel of the lattice represent 25 square metres. This makes nd = 20 000. The scaled
and centred versions of the altitude and norm of the gradient, are shown in panel (b) and
(c), respectively. For the spatial structured term, we use a second order polynomial intrinsic
GMRF (see Rue and Held (2005, Sec. 3.4.2)), with following full conditionals in the interior
(with obvious notation)

E(f
(s)
i | f

(s)
−i , κ

(s)) =
1

20

(
8

◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

−2

◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

−1

◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

)
, Prec(f

(s)
i | f

(s)
−i , κ

(s)) = 20κ(s).

(29)
The precision κ(s) is unknown. The full conditionals are constructed to mimic the thin-plate
spline. There are some corrections to (29) near the boundary, which can be found using
the stencils in Terzopoulos (1988). We impose a sum-to-zero constraint on the spatial term

due to β0. The unstructured terms f (u) are independent N (0, κ(u)), vague Γ(1.0, 0.001)
priors are assigned to κ(s) and κ(u), and independent N (0, 103) priors to β0, βAlt and

βGrad. The latent field is x = (ηT , (f (s))T , β0, βAlt, βGrad)T with dimension 40, 003, and
θ = (log κ(s), log κ(u)) with dimension 2.

We computed the approximation for 20, 003 posterior marginals f (s), β0, βAlt and βGrad,
using the simplified Laplace approximation. The results are displayed in Figure 7. Panel (a)
displays the estimated posterior mean of the spatial component, where we have indicated
using contours, those nodes where the SKLD between the marginal computed with the
Gaussian approximation and the one computed with the simplified Laplace approximation
exceeds 0.25. These nodes are potential candidates for further investigation, so we computed
their posteriors using also the Laplace approximation; the results agreed well with those
obtained from the simplified Laplace approximation. As an example, we display in (b)
the marginals for the “worst case” which is node (61, 73) with a SKLD of 0.50: Gaussian
(dashed), simplified Laplace (solid) and Laplace approximations (dash-dotted). Note that
the approximations becomes more close, as we improve the approximations. Panel (c) to
(e) display the posterior marginals computed with the Gaussian approximations (dashed)
and the one computed with the simplified Laplace approximations (solid) for β0, βAlt and
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(a)

(b)

(c)

Fig. 6. Data and covariates for the log-Gaussian Cox process example: (a) locations of the 3, 605
trees, (b) altitude, and (c) norm of the gradient.
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(a)

(b) (c)

(d) (e)

Fig. 7. LGCP example: (a) posterior mean of the spatial component with contour indicating a SKLD

above 0.25, (b) the marginals for node (61, 73) in the spatial component with maximum SKLD of

0.50, Gaussian (dashed), simplified Laplace (solid) and Laplace approximations (dash-dotted), (c)-(e)

posterior marginals of β0, βAlt and βGrad using simplified Laplace (solid) and Gaussian approximations

(dashed).
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βGrad. The difference is mostly due to a horizontal shift, a characteristic valid for all the
other nodes for this example.

This task required about 4 hours of computing due to the high dimension and the number
of computed posterior marginals. The total cost can be reduced to about 10 minutes if
only using the Gaussian approximation (4). To validate the approximations, we computed
pD(θ∗) ≈ 1714 and estimated a 95% interval for the remainder r(x;θ⋆,y)/nd as [0.004, 0.01]
using 1, 000 independent samples. Varying θ gave similar results. There are no indications
that the approximations does not works well in this case. Due to the size of the GMRF, the
comparison with results from long MCMC runs were performed on a cruder grid and the
conditional marginals in the spatial field for fixed values of θ, both with excellent results.
We used the one-block MCMC sampler described in Rue and Held (2005, Sec. 4.4.2).

6. Extensions

While this paper focuses on posterior marginals, INLA makes it possible to compute rou-
tinely other quantities as well. This section discusses some of these extensions.

6.1. Approximating posterior marginals for xS

A natural extension is to consider not only posterior marginals for xi, but for a subset
xS = {xi : i ∈ S}. S can be small, say from 2 to 5, but sometimes larger sets are required.
Although the Laplace approximation (12) can still be applied, replacing xi with xS , and
x−i with x−S , practicalities get more involved. We tentatively recommend, unless extreme
accuracy is required, the following approach for which the joint marginal for (near) any
subset is directly available. To fix ideas, let S = {i, j} where i ∼ j, and keep θ fixed. Let
Fi and Fj be the (approximated) cumulative distribution functions of xi|θ, y and xj |θ, y.
From the Gaussian approximation π̃G(x|θ,y) we know the Gaussian marginal distribution
for xi, xj |θ,y. We have usually observed in our experiments that the correction in the
mean (21) is far more important than the correction for skewness. Since correcting the
mean in a Gaussian distribution does not alter the correlations, we suggest to approximate
xi, xj |θ,y using the Gaussian copula and the marginals Fi and Fj . The benefit of this
approach is that the marginals are kept unchanged and the construction is purely explicit.

A simple choice is to use Gaussian marginals but with the mean-correction {γ(1)
i }; see (21).

Extending this approach to larger sets S is immediate, although the resulting accuracy may
possibly decrease with the size of S.

6.2. Approximating the marginal likelihood

The marginal likelihood π(y) is a useful quantity for comparing models, as Bayes factors
are defined as ratios of marginal likelihoods of two competing models. It is evident from (3)
that the natural approximation to the marginal likelihood is the normalising constant of
π̃(θ|y),

π̃(y) =

∫
π(θ,x,y)

π̃G(x|θ,y)

∣∣∣∣∣
x=x⋆(θ)

dθ. (30)

where π(θ,x,y) = π(θ)π(x|θ)π(y|x,θ). An alternative, cruder estimate of the marginal
likelihood is obtained by assuming that θ|y is Gaussian; then (30) turns into some known
constant times |H|−1/2, where H is the Hessian matrix in Section 3.1, see Kass and
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Vaidyanathan (1992). Our approximation (30) does not require this assumption, since
we treat π̃(θ|y) in a ‘nonparametric’ way. This allows for taking into account the departure
from Gaussianity which, for instance, appears clearly in Figure 4. Friel and Rue (2007) use
a similar expression as (30) to approximate the marginal likelihood in a different context.

As an example, let us reconsider the stochastic volatility example in Section 5.3. Us-
ing (30), the log marginal likelihoods were computed to be −924.0 and −924.8 for the
Gaussian and Student-tν observational model, respectively. The cruder approximation by
Kass and Vaidyanathan (1992) gave similar results: −924.0 and −924.7. There is no evi-
dence that a Student-tν observational model is required for these data.

As pointed out by a referee, this method could fail in case the posterior marginal π(θ|y)
is multi-modal (if not detected), but this is not specific to the evaluation of the marginal like-
lihood but applies to our general approach. Fortunately, latent Gaussian models generates
unimodal posterior distributions in most cases.

6.3. Predictive measures

Predictive measures can be used both to validate and compare models (Gelfand, 1996;
Gelman et al., 2004), and as a device to detect possible outliers or surprising observa-
tions (Pettit, 1990). One usually looks at the predictive density for the observed yi based
on all the other observations, i.e. π(yi|y−i). We now explain how to approximate this quan-
tity simply, without reanalysing the model. First, note that removing yi from the dataset
affects the marginals of xi and θ as follows:

π(xi | y−i,θ) ∝ π(xi|y,θ)

π(yi|xi,θ)
and π(θ | y−i) ∝

π(θ|y)

π(yi|y−i,θ)

where a one-dimensional integral is required to compute

π(yi|y−i,θ) =

∫
π(yi|xi,θ) π(xi|y−i,θ) dxi.

The effect of θ can then be integrated out from π(yi|y−i,θ), in the same way as (5).
Unusually small values of π(yi|y−i) indicate surprising observations, but what is meant
by ‘small” must be calibrated with the level of xi. Pettit (1990) suggests calibrating with
the maximum value of π(·|y−i), but an alternative is to compute the probability integral
transform PITi = Prob(ynew

i ≤ yi|y−i) using the same device as above. (See also Gneiting
and Raftery (2007) of a discussion of other alternatives.) An unusually small or large PITi

(assuming continuous observations) indicates a possibly surprising observation which may
require further attention. Furthermore, if the histogram of the PITi’s is too far from a
uniform, the model can be questioned (Czado et al., 2007).

As an example, let us reconsider the stochastic volatility example of Section 5.3. The
Gaussian observational model indicates that three of the observations are surprising, i.e.
PITi is close to one for i = 331, 651 and 862. These observations are less surprising under
the Student-tν observation model: i.e. the same PITi are then about 1 − 5 × 10−4.

6.4. Deviance Information Criteria

The Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) is a popular infor-
mation criterion designed for hierarchical models, and (in most cases) is well defined for
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improper priors. Its main application is Bayesian model selection, but it also provides a
notion of the effective number of parameters, which we have used already; see (24). In our
context, the deviance is

D(x,θ) = −2
∑

i∈I

log π(yi|xi,θ) + constant.

DIC is defined as two times the mean of the deviance minus the deviance of the mean. The
effective number of parameters is the mean of the deviance minus the deviance of the mean,
for which (24) is a good approximation. The mean of the deviance can be computed in
two steps: first, compute the conditional mean conditioned on θ using univariate numerical
integration for each i ∈ I; second, integrate out θ with respect to π(θ | y). The deviance
of the mean requires the posterior mean of each xi, i ∈ I, which is computed from the
posterior marginals of xi’s. Regarding the hyperparameters, we prefer to use the posterior
mode θ∗, as the posterior marginal for θ can be severely skewed.

As an illustration, let us reconsider the example in Section 5.4. The effect of the age
group was modelled as a smooth curve (7), but Figure 4(b) seems to indicate that a linear
effect may be sufficient. However, this alternative model increases DIC by 33, so we reject
it.

6.5. Moderate number of hyperparameters

Integrating out the hyperparameters as described in Section 3.1 can be quite expensive if
the number of hyperparameters, m, is not small but moderate, say, in the range of 6 to 12.
Using, for example, δz = 1 and δπ = 2.5, the integration scheme proposed in Section 3.1 will
require, if θ|y is Gaussian, O(5m) evaluation points. Even if we restrict ourselves to three
evaluation points in each dimension, the cost O(3m) is still exponential in m. In this section
we discuss an alternative approach which reduces the computational cost dramatically for
high m, at the expense of accuracy with respect to the numerical integration over π̃(θ|y).
The aim is to be able to provide useful results even when the number of hyperparameters
is so large that the more direct approach in Section 3.1 is unfeasible.

Although many hyperparameters make the integration harder, it is often the case that
increasing the number of hyperparameters increases also variability and the regularity, and
makes the integrand more and more Gaussian. Meaningful results can be obtained even
using an extreme choice akin to empirical Bayes, that is, using only the modal configuration
to integrate over π(θ|y). This ‘plug-in’ approach will obviously underestimate variability,
but it will provide reasonable results provided the uncertainty is the latent field is not
dominated by the uncertainty in the hyperparameters.

An intermediate approach between full numerical integration and the ‘plug-in’ approach
is now described. We consider the integration problem as a design problem where we layout
some ‘points’ in a m-dimensional space. Based on the measured response, we estimate the
response surface at each point. As a first approximation, we can consider only response
surfaces of second order, and use a classical quadratic design like the central-composite
design (CCD) (Box and Wilson, 1951). A CCD contains an embedded factorial or fractional
factorial design with centre points augmented with a group of 2m + 1 ‘star points’ which
allow for estimating the curvature. For m = 5, the design points are chosen (up to an
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arbitrary scaling) as

(1, 1, 1, 1, 1, 1), (−1, 1, 1, 1,−1), (1,−1, 1, 1,−1), (−1,−1, 1, 1, 1),

(1, 1,−1, 1,−1), (−1, 1,−1, 1, 1), (1,−1,−1, 1, 1), (−1,−1,−1, 1,−1),

(1, 1, 1,−1,−1), (−1, 1, 1,−1, 1), (1,−1, 1,−1, 1), (−1,−1, 1,−1,−1),

(1, 1,−1,−1, 1), (−1, 1,−1,−1,−1), (1,−1,−1,−1,−1) and (−1,−1,−1,−1, 1).

They are all on the surface of the m dimensional sphere with radius
√

m. The star points
consist of 2m points located along each axis at distance ±√

m and the central point in the
origin. For m = 5 this makes np = 27 points in total, which is small compared to 55 = 3, 125
or 35 = 243. The number of design-points is 8 for m = 3, 16 for m = 4 and 5, 32 for m = 6,
64 for m = 7 and 8, 128 for m = 9, 10 and 11, and 256 from m = 12 to 17; see Sanchez
and Sanchez (2005) for how to compute such designs. For all designs, there are additional
2m + 1 star-points. To determine the integration weights ∆k in (5) and the scaling of the
points, assume for simplicity that θ|y is standard Gaussian. We require that the integral
of 1 equals 1, and that the integral of θT θ equals m. This gives the integration weight for
the points on the sphere with radius f0

√
m

∆ =

[
(np − 1)

(
f2
0 − 1

) {
1.0 + exp

(
−mf2

0

2

)}]−1

where f0 > 1 is any constant. The integration weight for the central point is 1− (np − 1)∆.
The CCD integration scheme seems to provide useful results in all the cases we have

considered so far. For all the examples in Section 5, as well as other models with higher
dimension of θ (Martino, 2007; Martino and Rue, 2008), the CCD scheme speeds computa-
tions up significantly while leaving the results nearly unchanged. There are cases where the
integration of θ has to be done more accurately, but these can be detected by comparing
the results obtained using the empirical Bayes and the CCD approach. For these cases,
the CCD integration seems to provide results half-way between the empirical and the full
Bayesian approaches.

7. Discussion

We have presented a new approach to approximate posterior marginals in latent Gaussian
models, based on integrated nested Laplace approximations (INLA). The results obtained
are very encouraging: we obtain practically exact results over a wide range of commonly
used latent Gaussian models. We also provide tools for assessing the approximation error,
which are able to detect cases where the approximation bias is non-negligible; we note
however that this seems to happen only in pathological cases.

We are aware that our work goes against a general trend of favouring ‘exact’ Monte Carlo
methods over non-random approximations, as advocated for instance by Papaspiliopoulos
et al. (2006) in the context of diffusions. Our point however is that, in the specific case of
latent Gaussian models, the orders of magnitude involved in the computational cost of both
approaches are such that this idealistic point of view is simply untenable for these models.
As we said already, our approach provides precise estimates in seconds and minutes, even
for models involving thousands of variables, in situations where any MCMC computation
typically takes hours or even days.
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The advantages of our approach are not only computational. It also allows for greater
automation and parallel implementation. The core of the computational machinery is based
on sparse matrix algorithms, which automatically adapt to any kind of latent field, e.g. 1D,
2D, 3D and so on. All the examples considered in this paper were computed using the same
general code, with essentially no tuning. In practice, INLA can be used almost as a black
box to analyse latent Gaussian models. A prototype of such a program, inla, is already
available (Martino and Rue, 2008) and all the latent Gaussian models in Section 5 were
specified and analysed using this program. inla is built upon the GMRFLib-library (Rue
and Held, 2005, Appendix), which is open source and available from the first author’s web
page. (An interface to the inla program from R (R Development Core Team, 2007) is
soon to come.) With respect to parallel implementation, we take advantage of the fact
that we compute the approximation of xi|θ,y independently for all i for fixed θ. Both the
inla program and GMRFLib use the OpenMP API (see www.openmp.org) to speedup the
computations for shared memory machines (read multi-core processors); however, we have
not focused on these computational issues and speedups in this report. Parallel computing
is particularly important for spatial or spatio-temporal latent Gaussian models, but also
smaller models enjoy good speedup.

The main disadvantage of the INLA approach is that its computational cost is expo-
nential with respect to the number of hyperparameters m. In most applications m is small,
but applications where m goes up to 10 do exist. This problem may be less severe that it
appears at first glance: the central composite design approach seems promising and provides
reasonable results when m is not small, in the case where the user do not want to take an
empirical Bayes approach and will not wait for a full Bayesian analysis.

It is our view that the prospects of this work are more important than this work itself.
Near instant inference will make latent Gaussian models more applicable, useful and ap-
pealing for the end user, who has no time or patience to wait for the results of a MCMC
algorithm, notably if he or she has to analyse many different datasets with the same model.
It also makes it possible to use latent Gaussian models as baseline models, even in cases
where non-Gaussian models are more appropriate. The ability to easily validate assump-
tions like linear or smooth effect of a covariate is important, and our approach also gives
access to Bayes factors, various predictive measures and DIC, which are useful tools to
compare models and challenge the model under study.
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A. Variational Bayes for latent Gaussian models: An example

We consider a simple latent Gaussian model defined by

θ ∼ Γ(a, b), x | θ ∼ N
(
0,

1

θ
R−1

)
and y | x, θ ∼ N

(
x,

1

κ
I

)
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where κ is a fixed hyper-parameter. Standard calculations lead to x|θ,y ∼ N
(
m(θ),Q(θ)−1

)

where m(θ) = κQ(θ)−1y, Q(θ) = θR + κI and

π(θ | y) ∝ θa+n/2−1

|Q(θ)|1/2
exp

{
−bθ +

κ2

2
yT Q(θ)−1y

}
.

When κ → 0, π(θ|y) → Γ(θ; a, b), but in general, π(θ|y) is not a Gamma density. The
Laplace approximation for θ|y is exact since y is conditionally Gaussian. We now derive
the VB approximation q(x, θ) of π(θ,x|y) under the assumption that q(x, θ) minimises
the Kullback-Leibler contrast of π(x, θ|y) relatively to q(x, θ), constrained to q(x, θ) =
qx(x)qθ(θ). The solution is obtained iteratively, see e.g. Beal (2003)

q(t+1)
x (x) ∝ exp

{
E

q
(t)
θ

(θ)
log π(x,y|θ)

}
,

q
(t+1)
θ (θ) ∝ π(θ) exp

{
E

q
(t)
x

(x)
log π(x,y|θ)

}
.

For our model, this gives q
(t+1)
x (x) = N (x; mt+1,Q

−1
t+1) where mt+1 = κQ−1

t+1y, Qt+1 =

R(a + n/2)/bt+κI, and q
(t+1)
θ (θ) is a Γ(θ; a+n/2, bt+1) density with bt+1 = b+mT

t+1Rmt+1+

Trace
(
RQ−1

t+1

)
. The limit b∞ of bt is defined implicitly by equation:

b∞ = b + κ2yT

(
a + n/2

b∞
R + κI

)−1

R

(
a + n/2

b∞
R + κI

)−1

y

+ Trace

({
a + n/2

b∞
I + κR−1

}−1
)

which is not tractable. However, when κ → 0, this transforms into b∞ = b + nb∞/{2(a +
n/2)} hence limκ→0 b∞ = b(a + n/2)/a. This means that, for data that are not very
informative, the posterior marginal for θ is close to a Γ(a, b) density, whereas the VB
approximation is a Γ(a+n/2, b(a+n/2)/a) density. The expectations agree, but the variance
ratio is O(n). Numerical experiments confirmed these findings; for most reasonable values
of κ, the variance estimated by VB is significantly smaller than the true posterior variance
of θ. For non-Gaussian data we obtained similar empirical results.

B. Fitting the skew-Normal distribution

We explain here how to fit the skew-Normal distribution (23) to an expansion of the form

log π(x) = constant − 1

2
x2 + γ(1)x +

1

6
γ(3)x3 + · · · . (31)

To second order, (31) is Gaussian with mean γ(1) and variance 1. The mean and the
variance of the skew-Normal distribution are ξ + ωδ

√
2/π and ω2(1 − 2δ2/π), respectively,

where δ = a/
√

1 + a2. We keep these fixed to γ(1) and 1, respectively, but adjust a so the
third derivative at the mode in (23) equals γ(3). This gives three equations to determine
(ξ, ω, a). The modal configuration is not available analytically, but a series expansion of the
log skew-Normal density around x = ξ gives:

x⋆ =
( a

ω

) √
2π + 2ξ( a

ω )

π + 2( a
ω )2

+ higher order terms.
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We now compute the third derivative of the log-density of the skew-Normal at x⋆. In order
to obtain an analytical (and computationally fast) fit, we expand this third order derivative
with respect to a/ω: √

2(4 − π)

π3/2

( a

ω

)3

+ higher order terms. (32)

and imposes that (32) equals γ(3). This gives explicit formulae for the three parameters of
the skewed-normal.
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