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Abstract

In a regression model, the joint distribution for each finite sample of
units is determined by a function px(y) depending only on the list
of covariate values x = (x(u1),...,z(uy)) on the sampled units. No
random sampling of units is involved. In biological work, random sam-
pling is frequently unavoidable, in which case the joint distribution
p(y,x) depends on the sampling scheme. Regression models can be
used for the study of dependence provided that the conditional distri-
bution p(y | x) for random samples agrees with px(y) as determined by
the regression model for a fixed sample having a non-random config-
uration x. This paper develops a model that avoids the concept of a
fixed population of units, thereby forcing the sampling plan to be in-
corporated into the sampling distribution. For a quota sample having
a predetermined covariate configuration x, the sampling distribution
agrees with the standard logistic regression model with correlated com-
ponents. For most natural sampling plans such as sequential or simple
random sampling, the conditional distribution p(y | x) is not the same
as the regression distribution unless pyx(y) has independent compo-
nents. In this sense, most natural sampling schemes involving binary
random-effects models are biased. The implications of this formulation
for subject-specific and population-averaged procedures are explored.
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1 Introduction

Regression models are the primary statistical tool for studying the depen-
dence of a response Y on covariates x in a population U. For each finite
sample of units or subjects uq,...,u,, a regression model specifies the joint
distribution px(y) of the response y = (Y (u1),...,Y(u,)) on the given
units. Implicit in the notation is the exchangeability assumption, that two
samples having the same list of covariate values have the same joint distri-
bution px(y). All generalized linear models have this property, and many
correlated Gaussian models have the same property, for example

px(A) = No(XB, o3I, + o1 K[x])(A), (1)

where N, (i, ¥)(A) is the probability assigned by the n-dimensional Gaus-
sian distribution to the event A C R". The mean p = X/ is determined
by the covariate matrix X, and K;j[x] = K(z(u;),2(u;)) is a covariance
function evaluated at the points x.

Depending on the area of application, it may happen that the target
population is either unlabelled, or random in the sense that the units are
generated by the process as it evolves. Consider, for example, the problem
of estimating the distribution of fibre lengths from a specimen of woolen
or cotton yarn, or the problem of estimating the distribution of speeds of
highway vehicles. Individual fibres are clearly unlabelled, so it is necessary
to select a random sample, which might well be size-biased. Highway ve-
hicles may be labelled by registration number, but the target population is
weighted by frequency or intensity of highway use, so the units (travelling
vehicles) are generated by the process itself. In many areas of application,
the set of units evolves randomly in time, for example, human or animal
populations. The concept of a fixed subset makes little sense physically or
mathematically, so random samples are inevitable. The sample might be
obtained on the fly by sequential recruitment in a clinical trial, by recording
passing vehicles at a fixed point on the highway, or it might be obtained by
simple random sampling, or by a more complicated ascertainment scheme in
studies of genetic diseases. The observation from such a sample is a random
variable, possibly bivariate, whose distribution depends on the sampling pro-
tocol. In the application of regression models, it is often assumed that the
joint distribution p(x,y) is such that the conditional distribution p(y |x) is
the same as the distribution px(y) determined by the regression model for a
sample having a pre-determined covariate configuration. The main purpose
of this paper is to reconsider this assumption in the context of binary and



polytomous regression models that incorporate random effects or correlation
among units.

2 Binary regression models

The conventional, most direct, and apparently most natural way to incorpo-
rate correlation into a binary response model is to include additive random
effects on the logistic scale (Laird and Ware, 1982; McCullagh and Nelder,
1989; Breslow and Clayton, 1993; McCulloch, 1994, 1997; Lee, Nelder and
Pawitan, 2006). The random effects in a hierarchical model need not be
Gaussian, but a generalized linear mixed model of that type with a binary re-
sponse Y and a real-valued covariate x suffices to illustrate the idea. The first
step is to construct a Gaussian process n on ‘R with zero mean and covariance
function K. For example, we might have K (z, ') = o2 exp(—|z — 2’| /7), so
that 7 is a continuous random function. Alternatively, K could be a block
factor expressed as a Boolean matrix, so that n is constant on blocks or
clusters, with block effects that are independent and identically distributed.
Given 7, the components of Y are independent and are such that

logit pr(Y(u) = 1]n) = a + Bz(u) + n(x(u)), (2)

where Y (u) is the response and z(u) the covariate value on unit u. As a con-
sequence, two units having the same or similar covariate values have iden-
tical or similar random contributions 7n(x(u)),n(z(u’)), and the responses
Y (u),Y (u') are positively correlated. Since 7 is a random variable, the joint

density at y = (y1, ..., yn) for any fixed sample of n units having covariate
values x = (z1,...,%,) is
/ ﬁ Ot B + 15)85) o ) a, (3)
ol . 1+ exp(a + Bz; +nj) ’

The word model refers to these distributions, not to the random variable (2).
In this instance we obtain a four-parameter regression model with parame-
ters («, 3,0, 7).

The simplest polytomous version of (3) requires k correlated processes,
no(z), ..., Mk—1(x), one for each class. The joint probability distribution

o(n; K) dn (4)

n eayj +6y]' $j+77yj (33])
px(Y) = /
Rnk

i Zg—l er+Brzitn-(z;)



depends only on the distribution of differences n,(x) — no(x). Setting ag =
Bo = no(x) = 0 introduces the asymmetry in (3), but no loss of generality.
In the econometrics literature, (4) is known as a discrete choice model with
random effects, and C = {0, ..., k—1} is the set of mutually exclusive choices
or brand preferences, which is seldom exhaustive.

The term regression model used in connection with (1), (3) and (4) does
not imply independence of components, but it does imply lack of interference
in the sense that the covariate value 2’ = x(u’) on one unit has no effect on
the response distribution for other units (Cox 1958, § 2.4; McCullagh 2005).
The mathematical definition for a binary model is

Px, (Y7 O) + Dx,z’ (Y7 1) = pX(Y)ﬂ (5)

which is satisfied by (3) regardless of the distribution of 7. Here py ,/(-) is
the response distribution for a set of n + 1 units, the first n of which have
covariate vector x. For further discussion, see sections 6 and 8.1.

In any extension of a regression model to a bivariate process, two possible
interpretations may be given to the functions px(y). Given x = (x1,...,2y),
the stratum distribution is the marginal distribution of Y (u1),...,Y (u,) for
a random set of units selected so that z:(u;) = z;. Ordinarily, this is different
from the conditional distribution p,(y | x) for a fixed set of n units having a
random configuration x. Stratum distributions automatically satisfy the no-
interference property, so the most natural extension uses px(y) for stratum
distributions, as in section 3. In the conventional hierarchical extension,
the two distributions are equal, and the regression model px(y) serves both
purposes.

The distinction between conditional distribution and stratum distribu-
tion is critical in much of what follows. If the units were generated by a
random process or selected by random sampling, then x would indeed be
a random variable whose distribution depends on the sampling plan. In a
marketing study, for example, it is usual to focus on the subset of consumers
who actually purchase one of the study brands, in which case the sample
units are generated by the process itself. Participants in a clinical trial are
volunteers who satisfy the eligibility criteria and give informed consent. The
study units are not pre-determined, but are generated by a random process.
Such units, whether they be patients, highway vehicles or purchase events,
are called auto-generated; the non-mathematical term self-selected is too
anthropomorphic for general use. Without careful verification, we should
not expect the conditional distribution p,(y|x) for auto-generated units
to coincide with px(y) for a pre-determined configuration x. We could, of



course, extend the regression model (4) to an exchangeable bivariate pro-
cess by asserting that the components of x are independent and identically
distributed with px(y) as the conditional distribution. This extension guar-
antees p,(y |x) = px(y) by fiat, which is conventional but not necessarily
natural. It does not address the critical modelling problem, that labels are
usually affixed to the units after they have been generated by the process
itself.

In principle, the parameters in (3) or (4) can be estimated in the stan-
dard way using the marginal likelihood function, either by maximization or
by using a formal Bayesian model with a prior distribution on (o, 3,0, 7).
Alternatively, it may be possible for some purposes to avoid integration by
using a Laplace approximation or penalized likelihood function along the
lines of Schall (1991), Breslow and Clayton (1993), Wolfinger (1993), Green
and Silverman (1994) or Lee and Nelder (1996).

The binary model (3) and the polytomous version (4) are satisfactory in
many ways, but they suffer from at least four defects as follows.

1. Parameter attenuation: Suppose that z = (z,2’) has several compo-
nents, one of which is the treatment status, and that Sz is a linear
combination. The odds of success are p(; »)(1)/p1,+)(0) for a treated
unit having baseline covariate value 2, and p(g 5/)(1)/p(0,2/)(0) for an
untreated unit, and the treatment effect is the ratio of these numbers.
In ordinary linear logistic models with independent components, the
coefficient of treatment status is the treatment effect on the log scale.
However the treatment effect in (3) is a complicated function of all
parameters. In itself, this is not a serious drawback, but it does com-
plicate inferential statements about the principal target parameter if
model (3) is taken seriously.

2. Class aggregation: Suppose that two response classes r, s in (4) are
such that a, = ag, B, = Bs, and (9,,71s) ~ (ns,7n,) have the same
distribution. Although these classes are homogeneous, the marginal
distribution after aggregation of classes is not of the same form. In
other words, the binary model (3) cannot be obtained from (4) by
aggregation of homogeneous classes.

3. Class restriction: Suppose that the number of classes in (4) is initially
large, but we choose to focus on a subset, ignoring the remainder. In
a study of causes of death, for example, we might focus on cancer
deaths, ignoring deaths due to other causes. Patients dying of cancer
constitute a random subset of all deaths, so the x-values and y-values



are both random, with distribution determined implicitly by (4). On
this random subset, the conditional distribution of y given x does
not have the form (4). In particular, the binary model (3) cannot be
obtained from (4) by restriction of response classes.

4. Sampling distributions: If the sampling procedure is such that the
number of sampled units or configuration of z-values is random, the
conditional distribution of the response on the sampled units p,(y | x)
may be different from (3).

Parameter attenuation is not, in itself, a serious defect. The real de-
fect lies in the fact that, for many natural sampling protocols, parameter
attenuation is a statistical artifact stemming from inappropriate model as-
sumptions. The illusion of attenuation is attributable to sampling bias, the
fact that the sample units are not predetermined but are generated by a ran-
dom process that the conventional hierarchical model is incapable of taking
into account. The distinction frequently drawn between subject-specific ef-
fects and population-averaged effects (Zeger et al. 1988; Galbraith 1991) is
a manifestation of the same phenomenon (section 8.2).

3 An evolving population model

3.1 The process

Let X be the covariate space, and let v be a measure in X such that v is
finite and positive on non-empty open sets. In other words 0 < v(X') < oo,
and v(dx) = v(dx)/v(X) is a probability distribution on X with positive
density at each point. In addition, C = {0,...,k — 1} is the set of response
classes, and A(r,x) is the value at (r,z) of a random intensity function on
C x X, positive and bounded. For notational convenience we write \,(z)
for A(r,z) and A, (x) = > Aq(z) for the total intensity at x. A Poisson
process in C x X x (0, 00) evolves at a constant temporal rate A(r, z)v(dx) dt.
These events constitute the target population, which is random, infinite and
unlabelled.

Let Z; be the set of events occurring prior to time ¢, and Z = Z.,. Each
point in Z is an ordered triple z = (y, z,t) where z(z) is the spatial coor-
dinate, t(z) is the temporal coordinate, and y(z) is the class. Given A, the
number of events in Z; is Poisson with mean t [, A.(z) v(dz), proportional
to t and finite. The number of events in Z is infinite, and the set of points
{z(z):z € Z} is dense in X.



The Cox process provides a complete description of the random subset
Z C Cx X x(0,00). Since Z is a random set, there can be no concept of
a fixed subset or sample in the conventional sense. Nonetheless, the distri-
bution of Z is well defined, so it is possible to compute the distribution for
the observation generated by a well-specified sampling plan. It is convenient
for many purposes to take U = {1,2,...} to be the set of natural numbers,
and to order the elements of Z temporally, so that t; = ¢(j) is the time of
occurrence of the jth event, z(j) is the spatial coordinate and y(j) is the
type or class. The ordered event times 0 = tg < t; < to < --- are distinct
with probability one. With this convention, the sequence (z;,y;,t; —tj—1)
is infinitely exchangeable. The components are conditionally independent
given A, and identically distributed with joint density

AL (it A (zj)v(dzy) Ay (x;)
A(tj—tj-1) ) J J Yi\"J
E(A,e dtj x . X M()) )

averaged over the intensity function A. The total intensity A, = [\, (z) v(dx)
is the rate of accrual, which is random but constant in time.

3.2 Sampling protocols

Six sampling protocols are considered, some being more natural than others
because they can be implemented in finite time. The first is a quota sample
with covariate configuration x as the target. The second is a sequential
sample consisting of the first n events, and the third is the set Z; for fixed t.
The fourth is a simple random sample selected from Z; at some suitably
large time. The final protocol is a retrospective or case-control sample in
which the number of successes and failures is pre-determined.

Quota sample. Let x = (z1,...,z,) be a given ordered set of n points in X
and let dx; be an open interval containing ;. For convenience of exposition,
it is assumed that the points are distinct and the intervals disjoint. A sample
from U is an ordered list of distinct elements @1, ..., v,, and the quota is
satisfied if x(¢;) € dz;. The easiest way to select such a sample is to
partition the population by covariate values Zg, = {(z,y,t) € Z : x € dz}.
Each stratum is infinite and temporally ordered. Define ¢; to be the index
of the first event in Zgy;.

Distributions are computed for the limit in which each interval dz; tends
to a point, so the distribution of the spatial component is degenerate at x.
The temporal component t(y;) is conditionally exponential with parameter



A.(dzj), so t(yj) tends to infinity. The distribution of the class labels is

paty 1) = B(T] 320). ©)

i=1

The conditional distribution is independent of v, and coincides with px(y)
in (4) when we set

log Ar(‘r) = a; + Brr + nr(x)'

In other words, the Cox process is fully compatible with the standard logistic
model (3) or (4), and quota sampling is unbiased in the sense that the
conditional distribution p,(y |x) in (6) coincides with px(y) in (4).
Sequential sample. Let n be given, and let the sample ¢ consist of the
first n events in temporal order. Given the intensity function, the temporal
component of the events is a homogeneous Poisson process with rate A, =
J A.(x)v(dz). The conditional joint density of the sampled time points is
thus A?e‘A't" for0 <t; <..- <t,. The components of x¢ are conditionally
independent and identically distributed with density A, (z)v(dz)/A., and
the components of yy are conditionally independent given zyp = x with
distribution

pr(y(wi) = r|x) = Ar(zi) /A (25).
Given A, the joint density of the sample values at (x,y,t) is

(zi) A () v(da;)
(z:) A,

= exp(—A_tn) H )\yi (:L‘l) I/(d:El) dt;,

so the unconditional joint density is

Py, X, t | A) dxdt = A" exp(—A.t,) H /;Z dt;
=1 "

Py, x,t) dxdt = E(exp(—A,tn) H Ay, () v(dx;) dti)
i=1

averaged with respect to the distribution of A.
The joint density of (x,t) is computed in the same way:

n

pn(x,t) dx dt = E(exp(—A,tn) H A () v(dz;) dti)
i=1

so the conditional distribution of y given (x,t) is
Elexp(=A.tn) Tz Ay, (24))
E(exp(—A.ty) [Tim1 A (25))

Pu(y[x,t) =

8



These calculations assume that event times are observed and recorded. Oth-
erwise we need the conditional distribution of y given x, which is

In either case the conditional distribution is a ratio of expected values,
whereas (6) is the expected value of a ratio.

If the intensity ratio processes (Ar(x)/Xo(x)),cy are jointly indepen-
dent of the total intensity process (A.(z)),cy, the conditional distribution
pn(y | x) coincides with (4). Otherwise, sequential sampling is biased in the

sense that p(y | x) # p(y)-

Sequential sample for fixed time. In this sampling plan the observation
is the set Z; for fixed t. Given A, the number of sampled events n = #Z; is
Poisson with parameter tA,. The probability of observing a specific sequence
of events and class labels is

pe(y,x,t)dxdt = FE

/N

exp(—tA.) f[ Nyi () v(da) ) dt
=1

forn>0and 0 <t <---<t, <t. Likewise, the marginal density of (x,t)
is

pe(x,t) dx dt = E(exp(—tA,) ﬁ A () V(dfﬂi)) dt
i=1

so the conditional distribution of y given (x,t) for this protocol is
B(exp(—tA.) Ty Ay (1)) o)
E(exp(—tA,) [Tizg A (24))

The conditional distribution depends on the observation period, but is in-
dependent of the event times t. Consequently p;(y | x) coincides with (9).

p(y|x,t) =

Simple random sample. The aim of simple random sampling is to select
a subset uniformly at random among subsets of a given size n. In the
application at hand, the population is infinite, so simple random sampling
is not well defined. However, a similar effect can be achieved by selecting
N > n, and restricting attention to the finite subset Z; C Z where t is
the first time that #Z;, > N. By exchangeability, the distribution of (y,x)
on a simple random sample is the same as the distribution on the first n
events in temporal order. Apart from the temporal component, the sampling
distributions are the same as those in protocol II. Consequently, unless the
intensity ratio processes are independent of A (-), simple random sampling
is biased.



Weighted sample. A weighted sample is one in which individual units are
selected (thinned) with probability w(y, x) depending on the response value.
Examples with known weight functions arise in monetary unit sampling
(Cox and Snell 1979), and stereological sampling in mining applications
(Baddley and Jensen 2005). Restriction to a subset of C is an extreme special
case in which w is zero on certain classes and constant on the remainder.
More generally, the self-selection of patients that occurs through informed
consent in clinical trials may be modelled as an unknown weight function.
One way to generate such a sample is to observe the units as they arise
in temporal order, retaining units independently with probability w(y, z).
This amounts to replacing the intensity function A(y, z) with the weighted
version w(y, z)\(y, x). Weighted sampling is clearly biased.

Case-control sample. Case-control sampling is essentially the same as
weighted sampling, except that £ = 2 and the quota sizes ng,n; are pre-
determined. The sample for a case-control study consists of the first ng
events having y = 0 and the first n; events having y = 1. Event times are
not observed. An observation consists of a list x of n points in X together
with a parallel list y of labels or class types. The joint probability is
_ o 1Ty (i) v(dei)
pnan (y7 X) - n n
Ao ()0 Ay (X)™
and the conditional probability given x is proportional to
[T Ay, (i) )
Ag(X)mo A (X))
The approximation derived in section 4 is equivalent to assuming that, for
some measure v, the random normalized function A\g(x)/Ag(X) is indepen-

dent of the integral Ay = [ Ao(x)v(dz), and likewise for A\;. Using this
approximation, the conditional probability is proportional to

sy |%) o B(

Pning (y | X) x E H )\yi (‘731)
=1

In essence, this means that the observation from a case-control design can
be analyzed as if it were obtained from a prospective sequential sample or
simple random sample as in II, IIT or IV above.

3.3 Exchangeable sequences and conditional distributions

The sequence (y1, 1), (y2,x2), ... generated in temporal order by the evolv-
ing population model is exchangeable. In contexts such as this, two interpre-
tations of conditional probability and conditional expectation are prevalent

10



in applied work. The probabilistic interpretation is not so much an inter-
pretation as a definition; pr(y, = y |z, = ) = p1(y, z)/p1(x) as computed
in (8) for n = 1. Here, u is fixed, x,, is random, and we select from the fam-
ily of conditional distributions the one corresponding to the event z, = =x.
The stratum interpretation refers to the marginal distribution of the ran-
dom variable y(u*), where u* is the first element for which z,~ = z. Here,
u* is random, 1z, is fixed, and p,(y) is the marginal distribution of each
component in stratum z as defined in (6) or (4) for n = 1.

In an exchangeable bivariate process, each finite-dimensional joint dis-
tribution factors p,(y,x) = pn(X)pn(y | x). If the conditional distributions
satisfy the ‘no interference’ condition (5), the stratum distributions coincide
with the conditional distributions, the conditional distributions determine
a regression model, and the bivariate process is called conventional or hi-
erarchical. Otherwise, if the conditional distributions do not determine a
regression model, the stratum distributions are not the same as the condi-
tional distributions. The risk in applied work is that the marginal mean
p(x) = [yp.(dy) in stratum 2 might be mistaken for the conditional mean
k() = [ yp(dy| o).

The notation E(y, |z, = x) is widely used and dangerously ambigu-
ous. The preferred interpretation has the index u fixed and z, random,
so E(y;|z; = 3) = k(3) is a legitimate expression. In biostatistical work
on random-effects models, the stratum interpretation with fixed x and ran-
dom wu is predominant. This interpretation is not unreasonable if properly
understood and consistently applied, but it would be less ambiguous if writ-
ten in the form u(x) = E(y, |u: x, = x). The longer version makes it clear
that

E(y1 — p(z1) |71 = 3) = k(3) — u(3) #0,

with obvious implications for estimating equations (section 7.1).

The evolving population model shows clearly that the response distri-
bution for a set of units having a predetermined covariate configuration x
is not necessarily the same as the conditional distribution for a simple ran-
dom sample that happens to have the same covariate configuration. Thus,
the sampling protocol cannot be ignored with impunity. For practical pur-
poses, the plausible protocols are those that can be implemented in finite
time, which implies sequential sampling, weighted sampling or case-control
sampling.

11



3.4 Variants and extensions

Up to this point, no assumptions have been made about the distribution
of A. The evolving population model has two principal variants, one in
which the k intensity functions \o(),..., A\x_1(-) are independent, and the
conventional one in which the total intensity process (A, (z))zcx is indepen-
dent of the intensity ratios (A, (z)/Ao(x))zex. The two types are not disjoint,
but the intersection is small and relatively uninteresting. The characteristic
property of the second variant is that the conditional sampling distribution
for a sequential or simple random sample coincides with the distribution
px(y) for predetermined x. Ambiguities concerning the sampling distribu-
tion do not arise. Otherwise it is necessary to calculate the conditional
distribution that is appropriate for the sampling protocol. Each version of
the evolving population model has merit. Both are closed under aggregation
of classes because this amounts to replacing k£ by £ —1 and adding two of the
intensity functions. Deletion or restriction of classes necessarily introduces a
strong sampling bias. The total intensity is reduced so only the first variant
is closed under this operation. The Gaussian sub-model (4) is not closed
under aggregation of classes, nor is the log Gaussian process described in
section 5.2.

In the evolving population model, the response on each unit is a point
y(z) in the finite set C. It is straightforward to modify this for a continuous
response such as the speed of a vehicle passing a fixed point on the highway.
Counting measure in C must be replaced by a suitable finite measure in the
real line. To extend the model to a crossover design in which each unit
is observed twice, it is necessary to replace C by C2, or by (C x {C,T})?
for randomized treatment (section 5.4). The random intensity function A
on (C x {C,T})? x X governs the joint distribution of the z-values and the
response-treatment pair at both time points. In a longitudinal design, obser-
vations made on the same unit over time are understood to be correlated,
and there may also be correlations among distinct units. To extend the
model in this way, it is necessary to replace C by a higher-order product
space, and to construct a suitable random intensity on this space. Such an
extension is well beyond the scope of this paper.

4 Limit distributions

The conditional probability distribution

E(e MM Ay, (i t\y, X
pe(y | x) = E((e_A.tll_‘I[lgil )\.((xi)))) B pp(t}(rx)) 1o
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derived in (7) and (9) is the ratio of the joint density and the marginal
density. Ideally, the conditional distribution should be independent of the
baseline measure, but this is not the case because v enters into the definition
of A, = [ A.(z) v(dz). However, this dependence is not very strong, so it is
reasonable to proceed by selecting a baseline measure that is both plausible
and convenient, rather than attempting to estimate . Plausible means that
v should be positive on open sets.

The numerator and denominator both have non-degenerate limits as
either t — 0 for fixed v, or the scalar v(X) — 0 for fixed ¢. The limiting
low-intensity conditional distribution

BT Ay (i)
BT A ()

is convenient for practical work because it is independent of v. In addition,
the product densities in the numerator and denominator are fairly easy
to compute for a range of processes such as log Gaussian process (Mgller,
Syversveen and Waagpetersen 1998) and certain gamma processes (Shirai
and Takahashi 2003; McCullagh and Mgller 2006). One can argue about the
plausibility or relevance of the limit, but the fact that the limit distribution
is independent of v is a definite plus.

The same limit distribution is obtained by a different sort of argument
as follows. Suppose that there exists a measure v such that the nk ratios
Xo(z)/A., ..., Ae—1(x) /A, for x € x are jointly independent of A,. Then the
numerator in (10) can be expressed as a product of expectations

E(exp(—tA.) H Ay; (%)) = E(A?e_tA-)E()‘yl (1) o Ayn ($n)>

A, A,
E(Ame A
- (E'(A@ E(TDwe)

The denominator can be factored in a similar way, so the ratio in (10) sim-
plifies to (11). Note that if this condition is satisfied by v, it is satisfied by all
positive scalar multiples of v, and the conditional distribution is unaffected.

The condition here is one of existence of a measure v satisfying the
independence condition for the particular finite configuration x. In other
words, the measure may depend on x, so the condition of existence is not
especially demanding. Examples are given in McCullagh and Mgller (2006)
of intensity functions such that the ratios are independent of the integral
with respect to Lebesgue measure on a bounded subset of R or R?. It is
also possible to justify the independence condition by a heuristic argument

an(y [x) = (11)

13



as follows. Suppose that \(z) = Tj\(a:) where X is ergodic on R with unit
mean, and T’ > 0 is distributed independently of A\. Then if v(dz) = dz/(2L)
for —L < 2 < L, we find that A, = TA, =T + o(1) for large L, while the
ratios A(z)/A. = M(z)/A. are jointly independent of T' by assumption. The
independence assumption is then satisfied in the limit as L. — oo, and v is,
in effect, Lebesgue measure. For these reasons, the limit distribution (11) is
used for certain calculations in the following section.

5 Two parametric models

5.1 Product densities and conditional distributions

All of the models described in this section are such that Ag,...,Ap_1 are
independent intensity functions. The conditional distribution (11) is a dis-
tribution on partitions of x into k labelled classes, some of which might be
empty. Denote by x(™) the subset of x for which y = . The numerator in
(11) is the product

k-1
11 E( 11 )\g(x)) = mo(x?) - my_q (x*D)

r=0 zex(T)

where m,. is the product density for A, and m,(0)) = 1. The denominator
is the product density at x for the superposition process with intensity A..
In other words, (11) is

m0<x(0)) . e mkil(x(kfl))

m.(x)

an(y [x) = (12)
for partitions of x into k labelled classes. For prediction, the Papangelou
conditional intensity is used. Suppose that (y,x) has been observed in a
sequential sample up to time ¢, and that the next subsequent event occurs
at 2/. The prognostic distribution for the response 3’ is the conditional
distribution given y,x and the value 2/, which is

i1 (Y =7 (y,x,2)) o< mp (xT U {a'}) fmy (x7). (13)

In general, the one-dimensional prognostic distribution is considerably easier
to compute than the joint distribution.
The first task is to find product densities for specific parametric models.
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5.2 Log Gaussian model

Let log A be a Gaussian process in X with mean p and covariance function
K. In other words

E(log (@) = u(z), cov(log A(x), log M) = K (, ).
Then the expected value of the product m(x) = E(A(z1) - -+ A(zy)) is

logm(x) =Y pu(x)+35 > K(z,a).

TEX T,z ex

This expression enables us to simplify the numerator in (11). Unfortunately,
the sum of log Gaussian processes is not log Gaussian, so the normalizing
constant is not available in closed form. The log of the conditional distribu-
tion (11) is given in an obvious notation by

k
log gn(y | x) =const + > iy, (z) + 3> > Kp(x,2).

r=1g x/ex(r)

The prognostic distribution for a subsequent event at z’ is obtained from
the product density ratios

ani1 (V' =7 [ (y, x,2)) ccexp(pr (2/) + JE (2, 2) + Y Ko(w, ).

zex(T)

Without loss of generality, we may set po(x) = 0. If the covariance functions
are equal, the prognostic log odds are

logodds(Y' = 1] --+) = pu1(z’) + Z K(z,2') — Z K(z,)

zex(M 2€x(0)

for k = 2. The conditional log odds is a kernel function, an additive function
of the sample values formally the same as Markov random field models (Be-
sag, 1974) except that the z-configuration is not predetermined or regular.

The log Gaussian model with independent intensity functions is closed
under restriction of classes. However, the sum of two independent log Gaus-
sian variables is not log Gaussian, so the model is not closed under ag-
gregation of homogeneous classes. This remark applies also to the model
in section 2. Failure of this property for homogeneous classes is a severe
limitation for practical work.
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5.3 Gamma models

Let Z1,..., Z4 be independent zero-mean real Gaussian processes in X with
covariance function K, and let A(z) = Z7(x) + - - - + Z2(x). Denote by K|[x|
the matrix with entries K (x;, ;). For any such matrix, the a-permanent is
a weighted sum over permutations

per, (K[x]) = Z ot H K(zi, xo,)
o i=1
where #o is the number of cycles. The product density of A at x is

E(A(x1) - Man)) = pergys (K[x]).

If K(z,2") > 0 for all z, 2, the process can be extended from the integers
to all positive values of d. For a derivation of these results, see Shirai and
Takahashi 2003 or McCullagh and Mgller 2006.

In the homogeneous version of the gamma model, A, has product density
per, (K[x"]), and A, has product density per, (K[x]). The conditional
distribution (11) is

perg, (K [x")]) - -per,,  (K[x*V])

(K [x]) ’

wm(y|x) =

per,,

which is a generalization of the multinomial and Dirichlet-multinomial dis-
tributions. The prognostic distribution for a subsequent event at x’ is

Gy =7 ) ox pery, (K[x, 2/])/ per,, (K[x").

By contrast with the log Gaussian model, the prognostic log odds is not
a kernel function. For an application of this model to classification, see
McCullagh and Yang (2006).

The homogeneous gamma model can be extended in various ways, for
example by replacing \.(z) with e 8%\ (z). Then the product density at
x(") becomes emrar+Brxl” per, (K[x™]), where n, = #x and x(") is the
sum of the components. Alternatively, if A, is replaced by 7, \.(z), where
T0,-..,Tk—1 are independent scalars independent of A, the product density
is replaced by h.(n,)per,, (K [x("]) where h,(n) is the nth moment of 7,.
Finally, there is a non-trivial limit distribution as k& — oo and o, = a/k
with « fixed (McCullagh and Yang, 2006).

16



5.4 Treatment effects and randomization

To incorporate a non-random treatment effect, we replace C by C x {C, T},
where {C,T'} are the two treatment levels. Consider the binary model with
multiplicative intensity function

)‘(yv’U?x) = )\(y,x)’y(y,v,x) (14)

in which v is a fixed parameter, and v is treatment status. Given A,
the treatment effect as measured by the conditional odds ratio is 7(x) =
~(1,T,z)v(0,C,z)/(~v(0,T,z)y(1,C, z)), which is a non-random function
of z, possibly a constant. Given an event z € Z with x(z) = z, the four pos-
sibilities for response and treatment status have probabilities proportional
to

pr(y(z) = y,v(z) = v|z € Z) < E(A(y, v, 2)) = my(z)¥(y, v, ).

Consequently the treatment effect as measured by the unconditional odds
ratio is also 7(z) with no attenuation. The stratum distribution p,(-) as
defined in (3) for fixed x gives a different definition of treatment effect, one
that is seldom relevant in applications.

For simplicity we now assume that the treatment effect is constant in z.
The conditional distribution (11) for a sequential sample reduces to

n
gn(y, v | %) oc mo(x?) ma (xM) TT v(wi, vi),

i=1
which is a bi-partition model for response and treatment status. If mg,m;
are known functions, this is the exponential family generated from (12) with
canonical parameter logy(r, s) and canonical statistic the array of counts in
which n,s is the observed number of events for which y = r and v = s.

Suppose that (y,v,x) has been observed in a sequential sample. The

prognosis for the response 3/ for a subsequent event at 2’ depends on whether
v/ =T or v/ = C as follows:

ma (x0, 2/) mo(x©) 5(1,v)

dd / — 1 P / =
o S(y ’ U ) ml(x(l)) mo(X(O), x/) ’Y(Ov U/)

However, the prognostic odds ratio is equal to the treatment effect, again
without attenuation.

The preceding formulation of treatment effects is an attempt to incorpo-
rate into the sampling model the notion that treatment status is the outcome
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of a random process. The model with constant treatment effect can be writ-
ten in multiplicative form A(y, z)y(y,v) as an intensity on C x {C, T} x X.
The graphical representation with one node for each random element

A
shows that treatment status is conditionally independent of (A, x) given y.
Although the concept of treatment assignment is missing, the multiplicative
intensity model describes accurately what is achieved by randomization. The

point process of events is such that treatment status v(z) is conditionally
independent of x(z) given the response y(z).

6 Interference

6.1 Definition

Let px(+) or p(-|x) be a set of distributions defined for arbitrary finite con-
figurations x. Lack of interference is a mathematical property ensuring that
the n-dimensional distribution py(-) is the marginal distribution of the n+1-
dimensional distribution px ,/(-) after integrating out the last component. In
symbols px(A) = px (A x C) for A C C", or

ply € Alx) =p((y,y') € AxC|(x,2"))

if applied to conditional distributions. When this condition is satisfied, the
distribution of the first n components is unaffected by the covariate value for
subsequent components. This is also the Kolmogorov consistency condition
for a C-valued process in which the joint distribution of Y (uq),...,Y (u,) de-
pends on the covariate values x(uy),...,z(u,) on those units. It is satisfied
by regression models such as (1), (3) and (4).

In the statistical literature on design, interference is usually understood
in the physical or biological sense, meaning carry-over effects from treatment
applied to neighbouring plots. For details and examples, see Cox (1958) or
Besag and Kempton (1986). The definition does not distinguish between
physical interference and sampling interference, but this paper emphasizes
the latter.

To understand how sampling interference might arise, consider the sim-
plest evolving-population model in which X = {z} is a set containing a single
point denoted by x. Let Y7, ... be the class labels in temporal order. Given
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A, the number m of events in unit time is Poisson with parameter \,, so m
could be zero. However, given m, the values Y7,...,Y,, are exchangeable
with one- and two-dimensional distributions

e
p(Yi=rm>1)= B A /A)  E(y)

E(1l—eM) - E(\)
E((1— (L4+X)e)NA/A2) B\
1 =nrY=s|m22)= s E((l —+(1 J)r /\.)e)—k-) Pl E((A?))
B _ B = (e N/ B
pe(V1=r|m =2)= EQ—1+A)e ™) B\

#p1(Y1=r[m >1).

In general, the probability assigned to the event Y; = r by the bivariate
distribution ps is not the same as the probability assigned to the same event
by the one-dimensional distribution p;. The condition m > 2 in py implies
an additional event at x, which may change the probability distribution
of Y7.

Two specific models are now considered, one exhibiting interference, the
other not. In the log Gaussian model

log Ao ~ N(po, 1), log A1 ~ N(u1,1)

are independent random intensities. For a low-intensity value (o, 1) =
(=5, —4), we find by numerical integration that p;(Y; = 0) = 0.272 whereas
p2(Y1 = 0) = 0.201, so the interference effect is substantial. The lim-
iting low-intensity approximations are 0.269 and 0.193 respectively. For
(10, p11) = (—1,0) the mean intensities are (e=1/2,¢'/2), and the difference
is less marked: p;(Y; = 0) = 0.310 versus pa(Y; = 0) = 0.291.

By contrast, consider the gamma model in which

)\0 ~ G(Ozo@, ao), )\1 ~ G(Oq@, 041),

are independent with mean FE(\,) = «,f and variance a,02. The total
intensity is distributed as A\, ~ G(«.6, a,) independently of the ratio, which
has the beta distribution \g/A, ~ B(ap, @1). On account of independence,
we find that p1 (Y1 = 0) = p2(Y1 = 0) = o/, so interference is absent.

6.2 Over-dispersion

Suppose that events are grouped by covariate value, so that T, (z) is the ob-
served number of events at x, and T, (x) is the number of those who belong
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to class r. Over-dispersion means that the variance of T, (z) exceeds the bi-
nomial variance, and the covariance matrix of T'(x) exceeds the multinomial
covariance. However, units having distinct z-values remain independent.
This effect is achieved by a Cox process driven by a completely independent
random intensity taking independent values at distinct points in X'. Since
units having distinct z-values remain independent, it suffices to describe the
one-dimensional marginal distributions of the class totals at each point in X.

Under the gamma model, the class totals at « are independent negative
binomial random variables with means E(T;) = ya, and variances ya, (1 +
7). Given the total number of events at z, the conditional distribution is
Dirichlet-multinomial

m!T'(a,) H L(t, + ay)

P =T =m) = rray U5,

reC

for non-negative t, such that ¢, = m. The sequence of values Y7,...,Y,, is
exchangeable, and, since there is no interference, the marginal distributions
are independent of m:

pr(Yi=7r|m)=a,/a, =7,
(1l —m)/(a, +1) r=s

pr(Yi =7Ys =s|m)=mms + { —m7s /(o + 1) otherwise.

Because of interference, no similar results exist for the log Gaussian model.

7 Computation

7.1 Parameter estimation

Since x and y are both generated by a random process, the likelihood func-
tion is determined by the joint density. However, the joint distribution
depends on the infinite-dimensional nuisance parameter v(dz), which gov-
erns primarily the marginal distribution of x. It appears that the marginal
distribution of x must contain very little information about intensity ratios,
so it is natural to use the conditional distribution given x for inferential
purposes. Likelihood calculations using the exact conditional distribution
(7)—(9) or the limit distributions (11) and (12) are complicated, though
perhaps not impossible. We focus instead on parameter estimation using
unbiased estimating equations.
Let m,(z) = E(A\-(z)) be the mean intensity function for class r, m,(z) the

expected total intensity at x, p,(z) = E(\-(z)/A.(z)) the expected value of
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the intensity ratio at z, and 7.(z) = m,(z)/m.(x) the ratio of expected
intensities. Sampling bias is the key to the distinction between p(z), the
marginal distribution for fixed x, and 7(x), the conditional distribution for
random x generated by a sequential sample from the process.

Consider a sequential sampling plan in which the observation consists of
the events Z; for fixed t. The number of events #Z,, the values y(z), z(z)
and 7(z) = w(x(2)) for z € Z; are all random. It is best to regard Z; as a
random measure in C x X whose mean has density ¢ my(x)v(dz) at (y,x).
The expected number of events in the interval dz is ¢ m,(x)v(dx), and the
expected number of events of class r in the same interval is ¢t m,(z)v(dz).
For a function h: X — R, additive functionals have expectation

E(; h(a:(z))) —¢ /X h(z) m.(z) v(de),
E(; h(x(z))yT(z)> ¢ /X h(w) my () v(dz),

where y(z) is the indicator function for the class, i.e. y,(z) = 1 if the class
is r. It follows that the sum 7, = Y.z h(z) (y-(2) — m-(z)) has exactly
zero mean for each function h. This first-moment calculation involves only
the first-order product densities. If it were necessary to calculate E(T'|x)
given the configuration x, we should begin with the joint distribution or the
conditional distribution (9). Because of interference, F(T |x) is not zero,
nor is E(T|#Z;). Consequently, the moment calculations in this section
are fundamentally different from those of McCullagh (1983) or Zeger and
Liang (1986).

The covariance of T, and T} is a sum of three terms, one associated with
intrinsic Bernoulli variability, one with spatial correlation, and one with
interference. The expressions are simplified here by setting h(x) = 1.

cov(T,, Ty) = ¢ /X [0 ()55 — 70 (25 ()] . (2) v (de)

+ 2 / 2[7@5(37,3:’) — 7 (2, 2 s, (2, 2) . (2, 2) v(dx) v(da')
X
+ ¢ / , Ay (z,2) As. (2, 2) m, (2, 2") v(dz) v(dz'). (15)
X
In these expressions, m,s(x, ') = E(\.(z)A\s(2’)) is the second-order prod-
uct density, and m,s(z,z') = mys(z,2")/m..(x,2’) is the bivariate distribu-

tion for ordered pairs of distinct events. Roughly speaking, .. (x,z’) is the
probability that the event at z is of class r given that another event occurs
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at 2/. The difference A, (z,2") = m,.(x,2’) — 7.(z), which is a measure of
second-order interference, is zero for conventional models. Both the gamma
and log-normal models exhibit interference, but the homogeneous gamma
model has the special property of zero second-order interference.

The first integral in (15) can be consistently estimated by summation
of mp(z)bys — mp(z)ms(z) over x. The second and third integrals can be
estimated in the same way by summation over distinct ordered pairs.

The marginal mean for an event in stratum z is E(y,(z)) = pr(x) as
determined by the logistic-normal integral, and the difference y,(z) — p,(x)
is the basis for estimating equations associated with hierarchical regression
models (Zeger and Liang 1986; Zeger, Liang and Albert 1988). If in fact
the z-values are generated by the process itself, the estimating function
32 h() (9 (2) — pr ((2)) has expectation [y h(x)(x(z) — p(x))m. (z) v(dz),
which is not zero and is of the same order as the sample size. Conventional
estimating equations are biased for the marginal mean and give inconsistent
parameter estimates. Similar remarks apply to likelihood-based estimates.
The correct likelihood function (9) takes account of the sampling plan and
gives consistent estimates; the incorrect likelihood (3) gives inconsistent es-
timates.

For the binary case k = 2, we write 7(z) = m1(z) and revert to the usual
notation with y = 0 or y = 1. If we use a linear logistic parameterization
logit(w(z)) = [z, the parameters can be estimated consistently using a
generalized estimating equation of the form X' W(Y — @) = 0 with a suitable
choice of weight matrix W depending on x. Recognizing that the target is
7(x) rather than p(z), the general outline described by Liang and Zeger
(1986) can be followed, but variance calculations need to be modified to
account for interference as in (15).

The functional y,y. — m.s(z, 2’) of degree two for ordered pairs of dis-
tinct events also has zero expectation for each r, s. The additive combination
> h(x, ") (yryl, —mrs(z, 2')) can be used as a supplementary estimating func-
tion for variance and covariance components. However, variance calculations
are much more complicated.

7.2 Classification and prognosis

By contrast with likelihood calculations, the prognostic distribution for a
subsequent event at z’ is relatively easy to compute. For the log Gaussian
model in section 5.2, the prognostic distribution is a kernel function

logpr(Y(2') =7r]| ) = logm,(z') + Z K(z,2") 4 const
zex(r)
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Figure 1: Prognostic probability computed for the homogeneous gamma
model with K (x,2') = exp(—(z —z')?) and four values of o from 0.05 to 0.5.
The two sample configurations of 50 events are indicated by dots at y = 0
and y = 1.

for r € C. If necessary, unknown parameters can be estimated by cross-
validation (Wahba, 1985). The theory in section 3 requires K to be a proper
covariance function defined pointwise, but the prognostic distribution is well
defined for generalized covariance functions such as —vy|x — 2/|? for v > 0,
provided that the functions logm, (x) span the kernel of the process.

The gamma model presents more of a computational challenge because
the prognostic distribution is a ratio of permanents,

pr(Y(;g’) =7 | .. ) X per,, (K[X(T), ﬂC/])/perar (K[X(T)]),

which are notoriously difficult to compute. As it happens, the permanent
ratio is easier to approximate than the permanent itself. For two configu-
rations of 50 events, Fig. 1 shows the prognostic probability pr(Y (z') = 1)
computed for the homogeneous gamma model with £ = 2 and X = (0,4).
Permanent ratios were approximated analytically using a cycle expansion
truncated after cycles of length 4. In the homogeneous gamma model, the
one-dimensional conditional probability ¢i(y = 1|z) for a single event is
1/2 for every x, so the prognostic probability graphs in Fig. 1 should not be
confused with regression curves.
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8 Summary

8.1 Conventional random effects models

The statistical model (3) has an observation space {0, 1}" for each sample of
size n, and a parameter space with four components («, 3,0, 7). Everything
else is incidental. The random process n used as an intermediate construct
in the derivation of the distribution is not a component of the observation
space nor is it a component of the parameter space. In principle, model (3)
could have been derived directly without the intermediate step (2), so direct
inference for 7 is impossible in (3). On account of the consistency condition
(5), we can compute the conditional probability of any event such as

a+Bz'+n(z')

/ - € _ Pxa (y7 1)

B ) |y) = B( T o | ¥) = 225 19
using the model distribution with an additional unit having z(u') = z’.

Sample-space inferences of this sort are accessible directly from (3), but
inference for 7 is not. Similar remarks apply to the Gaussian model (1), in
which case the conditional expected value (16) is a generalized smoothing
spline in z’.

Since the likelihood function does not determine the observation space,
we look to the likelihood function only for parameter estimation, not for
inferences about the sample space or subsequent values of the process. This
interpretation of model and likelihood is neutral in the Bayes/non-Bayes
spectrum. It is consistent with (2) as a partially Bayesian model with pa-
rameters (a, 3,7), in which the Gaussian process serves as the prior distri-
bution for 1. The Bayesian formulation enables us to compute a posterior
distribution for n(z") whether it is of interest or not. Despite the formal
equivalence of (2) as a partially Bayesian model, and (3) as a non-Bayesian
model, the two formulations are different in a fundamental way. The treat-
ment effect is ordinarily defined as the ratio of success odds for a treated
individual to that of an untreated individual having the same baseline co-
variate values. Because of parameter attenuation, the value obtained for
the partially Bayesian model (2) is not the same as that for the marginal
model (3). Both calculations are unit-specific, so this distinction is not a
difference between subject-specific and population-averaged effects. This
paper argues that neither definition is appropriate because neither model
accounts properly for sampling biases.
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8.2 Subject-specific and population-average effects

For all models considered in this paper, including (1)—(4), the probabilities
are unit specific. That is to say, each regression model specifies the response
distribution for every unit, and the joint distribution for each finite subset
of units. Treatment effect is measured by the odds ratio, which may vary
from unit to unit depending on the covariate value. The population average
effect, if it is to be used at all, must be computed after the fact by averaging
the treatment effects over the distribution of z-values for the units in the
target population. Note the distinction between unit u and subject s(u):
two distinct units w,u’ in a crossover or longitudinal design correspond to
the same patient or subject if s(u) = s(u’). This block structure is assumed
to be encoded in z.

Numerous authors have noted a close parallel between (2) and the one-
dimensional marginal distributions associated with (3). Specifically, if 7, is
a zero-mean Gaussian variable,

logit pr(Y (u) = 1|n;2) = a + Br(u) + Ny, (17)

implies
logit pr(Y(u) = 1;2) ~ o™ + f*z(u) (18)

by averaging over 7, for fixed u. Zeger, Liang and Albert (1988) give an ac-
curate approximation for the attenuation ratio 7 = 5* /3 < 1, which depends
on the variance of 7,. Neuhaus, Kalbfleisch and Hauck (1991) confirm the
accuracy of this approximation. They also give a convincing demonstration
of the magnitude of the attenuation effect by analyzing a study of breast dis-
ease in two different ways. Maximum likelihood estimates &, B were obtained
by maximizing an approximation to the integral (3) using a software pack-
age egret. The alternative, generalized estimating equations using (18) for
expected values supplemented by an approximate covariance matrix, gives
estimates &*, B* of the attenuated parameters. The attenuation ratios 3* /3
were found to be approximately 0.35, in good agreement with the Taylor
approximation.

In biostatistical terminology, the regression parameters «, 3 in (17) are
called subject-specific or cluster-specific, while the parameters in (18) are
called population-averaged effects (Zeger et al. 1988). The terms ‘marginal
parameterization’ (Glonek and McCullagh 1995), ‘marginal model’ (Hea-
gerty 1999), and even ‘marginalized model” (Schildcrout and Heagerty 2007),
are also used in connection with (18). Certainly, it is important to distin-
guish one from the other because the parameter values are very different.
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Nonetheless, the population-average terminology is misleading because both
expressions (17), (18) refer to a specific unit labelled u, and hence to a spe-
cific subject s(u), not to a randomly selected unit or subject. The bivariate
and multivariate version (3) is also specific to the particular set of units hav-
ing covariate configuration x. In other words, both of these are conventional
regression models in which concept of random sampling of units is absent.

Apart from minor differences introduced by approximating the one-
dimensional integral by (18), and similar approximations for bivariate and
higher-order distributions, these are in fact the same model. They have
different parameterizations, and they use different methods to estimate the
parameters, but the distributions are the same. The distinction between the
population-average approach and the cluster-specific approach is not a dis-
tinction between models, but a distinction between two parameterizations
of essentially the same model, and two methods for parameter estimation.

Having established the point that there is only one regression model, it
is necessary to focus on the parameterizations and to ask which parame-
terization is most natural, and for what purpose. Heagerty (1999) points
out that individual components of 3 in the subject-specific parameteriza-
tion are difficult to interpret unless the subject-specific effect 7, is known.
Neuhaus et al. (1991, section 6) note that since each individual has her
own latent risk, the model invites an unwarranted causal interpretation.
Galbraith (1991) criticizes the interventionist interpretation of parameters
in (17), and points out correctly that additional assumptions are required
to justify this interpretation in an observational study. If each pair of units
having different treatment levels is necessarily a distinct pair of individuals
or subjects, the treatment effect involves a comparison of distributions for
two distinct subjects.

From this author’s point of view, ephemeral unit-specific, subject-specific
or cluster-specific effects such as 7, or n(z(u)) are best regarded as ran-
dom variables rather than parameters, a distinction that is fundamental in
statistical models. Given the parameters, the conventional model specifies
the probability distribution for each unit and each set of units by integra-
tion. The intermediate step (17) shows a random variable arising in this
calculation, leading to the joint distribution (3) whose one-dimensional dis-
tributions are well approximated by (18). Two units u,« having the same
baseline covariate values but different treatment levels have different re-
sponse distributions. The treatment effect is the difference between these
probabilities, usually measured on the log odds ratio scale. Although es-
tablished terminology suggests otherwise, the treatment component of 3*
in (18) is the treatment effect specific to this pair of units u,u’. If these
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units represent the same subject in a controlled crossover design, an in-
terventionist interpretation is appropriate. Otherwise, if two units having
different treatment levels necessarily represent distinct subjects, 8* is the
difference of response probabilities for distinct subjects, so there can be no
interventionist interpretation.

8.3 Implications for applications

Consider a market research study of consumer preferences for a set of prod-
ucts such as breakfast cereals. The relevant information is extracted from a
database in which each purchase event is recorded together with the store
information and consumer information. Breakfast cereal purchases are the
relevant events. Following conventional notation, i denotes the purchase
event, Y; is the brand purchased, and z; is a vector of covariates, some store-
specific and some consumer-specific. The aim is to study how the market
share pr(Y; = r | z; = ) depends on z, possibly using a multinomial response
model of the form (4). The random effects may be associated with store-
specific variables such as geographic location, or consumer-specific variables
such as age or ethnicity. The treatment effect may be connected with pric-
ing, product placement or local advertising campaigns.

As I see it, the conventional paradigm of a stochastic process defined on
a fixed set of units is indefensible in applications of this sort. Most purchase
events are not purchases of breakfast cereals, so the relevant events (cereal
purchases) are defined by selecting from the database those that are in
the designated subset C. An arbitrary choice must be made regarding the
inclusion of dual-use materials such as grits and porridge oats. Rationally,
the model must be defined for general response sets, and we must then insist
that the model for the subset ' C C be consistent with the model for C.
Consistency means only that the two models are non-contradictory; they
assign the same probability to equivalent events. The evolving population
model with a fixed observation period is consistent under class restriction,
but the conventional logistic model (4) with random effects is not.

The notation used above is conventional but ambiguous. The market
share of brand r in stratum z is the limiting fraction of events in stra-
tum z that are of class r, which is A, (x)/A.(z) for both (4) and the evolving
population model. The expected market share is the stratum probability
pr(Y; = r|i:x; = x), which may be different from the conditional probabil-
ity given z; for fixed 7. However, the central concept of a fixed unit 7 is clearly
nonsense in this context, so the standard interpretation of pr(Y; = r | z; = x)
for fixed ¢ is unsatisfactory.
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The situation described above arises in numerous areas of application
such as studies of animal behaviour, studies of crime patterns, studies of
birth defects, and the classification of bitmap images of handwritten decimal
digits. The events are animal interactions, crimes, birth defects and bitmap
images. The response is the type of event, so C is a list of behaviours, crime
types, birth defects or the ten decimal digits. This list is exhaustive only
in the sense that events of other types are excluded. Hence the need for
consistency under class restriction.

In the biostatistical literature, which deals exclusively with hierarchical
models, an expression such as F(Y; | X; = z) is usually described as a condi-
tional expectation, but is often interpreted as the marginal mean response
for those units 4 such that X; = z. I don’t mean to be unduly critical here
because there can be no ambiguity if these averages are equal, as they are
in a hierarchical model for an exchangeable process. For an auto-generated
process, these averages are usually different. It is not easy to make sense of
the literature in this broader context given that one symbol is used for two
distinct purposes. In order to make the hierarchical formulation compatible
with the broader context of the evolving population model, it is necessary
to interpret (3) and (4) as stratum distributions, not conditional distribu-
tions. Once the distinction is made, it is immediately apparent that the
stratum distribution does not determine the conditional probability given x
for a sequential sample. Consequently, probability calculations using the
stratum distribution, and efforts to estimate the parameters by using the
wrong likelihood function (3) must be abandoned.

8.4 Sampling bias

The main thrust of this paper is that, when the units are unlabelled and
sampling effects are properly taken into account using the evolving popu-
lation model as described in sections 3, 5.4, and 7.1, there is no parameter
attenuation. If the intensities are such that Aj(z) has the same mean as
et \o(z), the correct version of (17) and (18) for an auto-generated unit
u € Zt is

logit pr(Y (u) = 1|\, u € Z;) =log A\ (z(u)) — log Ao(x(u))
= a+ fr(u) +n(z(u),
logit pr(Y (u) = 1|u € Z;) =logmi(x(u)) — log mo(z(u))
= a+ fBx(u),
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with no approximation and no attenuation. The distinction described in
section (8.2) between two parameterizations is simply incorrect for auto-
generated units.

The subject-specific approach takes aim at the right target parameter
n (17), but the conventional likelihood or hierarchical Bayesian calculation
leads to inconsistency when sampling bias is ignored in the steps leading
to (3). Sample z-values occur preferentially at points where the total in-
tensity A, () is high, which is not the case for a predetermined x. As a re-
sult, parameter estimates from (6) are inflated by the factor 1/7 where 7 is
the apparent attenuation factor. The inflation factor reported by Neuhaus
et al. (1991) is a little less than 3, so the bias in parameter estimates is far
from negligible. The population-average procedure commits the same error
twice, by first defining the stratum probability p(x) as the target, and then
failing to recognize that E(Y |z) # p(x) for a random sample. But a fortu-
itous ambiguity of the conventional notation E(Y |x) allows it to estimate
the right parameter 7(z) consistently by estimating the wrong parameter
p(x) inconsistently.

For a sequential sample, the parameters «, 3 in (17) are exactly equal
to the parameters o*, 3* in the marginal distribution (18). The apparent
attenuation arises not because of a real distinction between subject-specific
and population-averaged effects, but because of failure to recognize and
make allowance for sampling effects in the statistical model.
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