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Summary. We propose a new method for estimating parameters in models de�ned by a sys-
tem of non-linear differential equations. Such equations represent changes in system outputs
by linking the behavior of derivatives of a process to the behavior of the process itself. Current
methods for estimating parameters in differential equations from noisy data are computation-
ally intensive and often poorly suited to the realization of statistical objectives such as inference
and interval estimation. This paper describes a new method that uses noisy measurements
on a subset of variables to estimate the parameters de�ning a system of nonlinear differen-
tial equations. The approach is based on a modi�cation of data smoothing methods along
with a generalization of pro�led estimation. We derive estimates and con�dence intervals, and
show that these have low bias and good coverage properties, respectively, for data simulated
from models in chemical engineering and neurobiology. The performance of the method is
demonstrated using real-world data from chemistry and from the progress of the auto-immune
disease lupus.

Keywords: Differential equation, dynamic system, functional data analysis, pro�led estima-
tion, parameter cascade, estimating equation, Gauss-Newton method

1. Challenges in dynamic systems estimation

1.1. Basic properties of dynamic systems
We have in mind a process that transforms a set of m input functions u(t) into a set of
d output functions x(t). Dynamic systems model output change directly by linking the
output derivatives ẋ(t) to x(t) itself, as well as to inputs u:

ẋ(t) = f(x,u, t|θ), t ∈ [0, T ]. (1)

Vector θ contains any parameters defining the system whose values are not known from
experimental data, theoretical considerations or other sources of information. Systems
involving derivatives of x of order n > 1 are reducible to (1) by defining new variables,
x1 = x, x2 = ẋ1, . . . , xn = ẋn−1. Further generalizations of (1) are also candidates for the
approach developed in this paper, but will not be considered. Dependencies of f on t other
than through x and u arise when, for example, certain quantities defining the system are
themselves time-varying.

Differential equations as a rule do not define their solutions uniquely, but rather as a
manifold of solutions of typical dimension d. For example, d2x/dt2 = −ω2x(t), reduced to
ẋ1 = x2 and ẋ2 = −ω2x1, implies solutions of the form x1(t) = c1 sin(ωt)+c2 cos(ωt), where
coefficients c1 and c2 are arbitrary; and at least d = 2 observations are required to identify
the solution that best fits the data. Initial value problems supply x(0), while boundary
value value problems require d values selected from x(0) and x(T ).

However, we assume more generally that only a subset I of the d output variables
x may be measured at time points tij , i ∈ I ⊂ {1, . . . , d}; j = 1, ..., Ni, and that yij is a
corresponding measurement that is subject to measurement error eij = yij−xi(tij). We may
call such a situation a distributed partial data problem. If either there are no observations
at 0 and T , or the observations supplied are subject to measurement error, then initial or
boundary values may be considered as parameters that must be included in an augmented
parameter vector θ∗ = (x(0)′, θ′)′.

Solutions of the ordinary differential equation (ODE) system (1) given initial values x(0)
exist and are unique over a neighborhood of (0,x(0)) if f is continuously differentiable or,
more generally, Lipschitz continuous with respect to x. However, most ODE systems are
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not solvable analytically, which typically increases the computational burden of data-fitting
methodology such as nonlinear regression. Exceptions are linear systems with constant
coefficients, where the machinery of the Laplace transform and transform functions plays a
role, and a statistical treatment of these is available in Bates and Watts (1988) and Seber
and Wild (1989). Discrete versions of linear constant coefficient systems, that is, stationary
systems of difference equations for equally spaced time points, are also well treated in the
classical time series ARIMA and state-space literature, and will not be considered further
in this paper.

The insolvability of most ODEs has meant that statistical science has had comparatively
little impact on the fitting of dynamic systems to data. Current methods for estimating
ODEs from noisy data, reviewed below, are often slow, uncertain to provide satisfactory
results, and do not lend themselves well to follow-up analyses such as interval estimation and
inference. Moreover, when only a subset of variables in a system are actually measured, the
remainder are effectively functional latent variables, a feature that adds further challenges
to data analysis. For example, in systems describing chemical reactions, the concentrations
of only some reactants are easily measurable and inference may be based on measurements
of external quantities such as the temperature of the system.

This paper describes an extension of data smoothing methods along with a generalization
of profiled estimation to estimate the parameters θ defining a system of nonlinear differential
equations. High dimensional basis function expansions are used to represent the outputs
x, and our approach depends critically on considering the coefficients of these expansions
as nuisance parameters. This leads to the notion of a parameter cascade, and the impact
of nuisance parameters on the estimation of structural parameters is controlled through a
multi-criterion optimization process rather than the more usual marginalization procedure.

1.2. Two test-bed problems
1.2.1. FitzHugh-Nagumo equations

These equations were developed by FitzHugh (1961) and Nagumo et al. (1962) as simplifi-
cations of the Hodgkin and Huxley (1952) model of the behavior of spike potentials in the
giant axon of squid neurons:

V̇ = c

(
V − V 3

3
+ R

)

Ṙ = −1
c

(V − a + bR) (2)

The system describes the reciprocal dependencies of the voltage V across an axon membrane
and a recovery variable R summarizing outward currents. Although not intended to provide
a close fit to neural spike potential data, solutions to the FitzHugh-Nagumo ODEs do exhibit
features common to elements of biological neural networks (Wilson (1999)).

The parameters are θ = {a, b, c}, to which we will assign values (0.2, 0.2, 3), respectively.
The R equation is the simple constant coefficient linear system Ṙ = −(b/c)R with linear
inputs V and a. However, the V equation is nonlinear; when V > 0 is small, V̇ ≈ cV and
consequently exhibits nearly exponential increase, but as V passes ±√3, the influence of
−V 3/3 takes over and turns V back toward 0. Consequently, solutions corresponding to a
range of initial values quickly settle down to alternate between the smooth evolution and
the sharp changes in direction shown in Figure 1.
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Fig. 1. The limiting behavior of voltage V and recovery R variables de�ned by the FitzHugh-Nagumo
equations (2) with parameter values a = 0.2, b = 0.2 and c = 3.0 and initial conditions (V0, R0) =
(−1, 1). The horizontal axis is time in milliseconds.
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Fig. 2. A response surface for solutions of the FitzHugh-Nagumo equations (2) as parameters a and
b are varied. Surface values give the integrated squared difference between solutions at parameters
a = 0.2, b = 0.2 with solutions at the values of a and b given on the x and y axes, respectively; c = 3
and initial conditions V (0) = −1, R(0) = 1 are held constant.
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A concern in dynamic systems modeling is the possibly complex nature of the fit sur-
face. The existence of many local minima has been commented on in Esposito and Floudas
(2000); and a number of computationally demanding algorithms, such as simulated an-
nealing, have been proposed to overcome this problem. For example, Jaeger et al. (2004)
reported using weeks of computation to compute a point estimate. Figure 2 displays the
integrated squared difference between the paths in Figure 1 and those resulting from varying
only the parameters a and b. The features of this surface include “ripples” due to changes
in the shape and period of the limit cycle and breaks due to bifurcations, or sharp changes
in behavior.

1.2.2. Tank reactor equations
The chemical engineering concept of a continuously stirred tank reactor (CSTR) consists
of a tank surrounded by a cooling jacket containing an impeller which stirs its contents. A
fluid containing a reagent with concentration Cin enters the tank at a flow rate Fin and
temperature Tin. A reaction produces a product that leaves the tank with concentration C
and temperature T . A coolant in the cooling jacket has temperature Tco and flow rate Fco.

The differential equations used to model a CSTR, simplified by setting the volume of
the tank to one, are

Ċ = −βCC(T, Fin)C + FinCin

Ṫ = −βTT (Fco, Fin)T + βTC(T, Fin)C + FinTin + α(Fco)Tco. (3)

The input variables play two roles in the right sides of these equations: through added
terms such as FinCin and FinTin, and via the weight functions βCC , βTC , βTT and α that
multiply the output variables and Tco, respectively. These time-varying multipliers depend
on four system parameters as follows:

βCC(T, Fin) = κ exp[−104τ(1/T − 1/Tref )] + Fin

βTT (Fco, Fin) = α(Fco) + Fin

βTC(T, Fin) = 130βCC(T, Fin)
α(Fco) = aF b+1

co /(Fco + aF b
co/2), (4)

where Tref is a fixed reference temperature within the range of the observed temperatures,
and in this case was 350 deg K. These functions are defined by two pairs of parameters:
(τ, κ) defining coefficient βCC and (a, b) defining coefficient α. The factor 104 in βCC rescales
τ so that all four parameters are within [0.4, 1.8]. These parameters are gathered in the
vector θ in (1), and determine the rate of the chemical reactions involved, or the reaction
kinetics.

The plant engineer needs to understand the dynamics of the two output variables C and
T as determined by the five inputs Cin, Fin, Tin, Tco and Fco. A typical experiment designed
to reveal these dynamics is illustrated in Figure 3, where we see each input variable stepped
up from a baseline level, stepped down, and then returned to baseline. Two baseline levels
are presented for the most critical input, the coolant temperature Tco.

The behaviors of output variables C and T under the two experimental regimes, given
values 0.833, 0.461, 1.678 and 0.5 for parameters τ, κ, a and b, respectively, are shown in
Figure 4. When the reactor runs in the cool mode, where the baseline coolant temperature
is 335 degrees Kelvin, the two outputs respond smoothly to the step changes in all inputs.
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Fig. 3. The �ve inputs to the chemical reactor modeled by the equations (3) and (4): �ow rate F (t),
input concentration C0(t), input temperature T0(t), coolant temperature Tco(t) and coolant �ow F0(t).
Coolant temperature Tco(t) was set at two baseline levels, cool and hot.
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Fig. 4. The two outputs, for each of baseline coolant temperatures Tco of 335 and 365 deg. K, from
the chemical reactor modeled by the two equations (3): concentration C(t) and temperature T (t).
The input functions are shown in Figure 3. Times at which an input variable Tco(t) was stepped down
and then up are shown as vertical dotted lines.
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However, an increase in baseline coolant temperature by 30 degrees Kelvin generates oscil-
lations that come close to instability when the coolant temperature decreases, something
that is undesirable in an actual industrial process. These perturbations are due to the dou-
ble impact of a decrease in output temperature, which increases the size of both βCC and
βTC . Increasing βTC raises the forcing term in the T equation, thus increasing tempera-
ture. Increasing βCC makes concentration more responsive to changes in temperature, but
decreases the size of the response. This push–pull process has a resonant frequency that
depends on the kinetic constants, and when the ambient operating temperature reaches a
certain level, the resonance appears. For coolant temperatures either above or below this
critical zone, the oscillations disappear.

The CSTR equations present two challenges that are not an issue for the Fitz-Hugh
Nagumo equations. The step changes in inputs induce corresponding discontinuities in
the output derivatives that complicate the estimation of solutions by numerical methods.
Moreover, the engineer must estimate the reaction kinetics parameters in order to estimate
the cooling temperature range to avoid, but a key question is whether all four parameters
are actually estimable given a particular data configuration. Step changes in inputs and
near over-parameterization are common problems in dynamic systems modeling.

1.3. Review of current ODE parameter estimation strategies
Procedures for estimating the parameters defining an ODE from noisy data tend to fall
into three broad classes: linearization, discretization methods for initial value problems
and basis function expansion or collocation methods for boundary and distributed data
problems. Linearization involves replacing nonlinear structures by first order Taylor series
expansions, and tends only to be useful over short time intervals combined with rather mild
nonlinearities, and will not be considered further. There is a large literature on numerical
methods for solving constrained optimization problems, under which parameter estimation
usually falls; see Biegler and Grossman (2004) for an excellent overview.

1.3.1. Data fitting by numerical approximation of an initial value problem
The numerical methods most often used to approximate solutions of ODEs over a range
[t0, t1] use fixed initial values x0 = x(t0) and adaptive discretization techniques (Biegler
et al. (1986)). The data fitting process, often referred to by textbooks as the nonlinear least
squares or NLS method, works as follows. A numerical method such as the Runge-Kutta
algorithm is used to approximate the solution given a trial set of parameter values and initial
conditions, a procedure referred to by engineers as simulation. The fit value is input into
an optimization algorithm that updates parameter estimates. If the initial conditions x(0)
are unavailable, they must be appended to the parameters θ as quantities with respect to
which the fit is optimized. The optimization process can proceed without using gradients,
or these may also be approximated by solving the sensitivity differential equations

d

dt

(
dx
dθ

)
=

∂f
∂θ

+
∂f
∂x

dx
dθ

, with
dx
dθ

∣∣∣∣
t=0

= 0. (5)

In the event that x(0) = x0 must also be estimated, the corresponding sensitivity equations
are

d

dt

(
dx
dx0

)
=

∂f
∂x

dx
dx0

, with
dx
dx0

∣∣∣∣
t=0

= I. (6)



Systems for which solutions beginning at varying initial values tend to converge to a common
trajectory are called stiff, and require special methods that make use of the Jacobian ∂f/∂x.

The NLS procedure has many problems. It is computationally intensive since a numer-
ical approximation to a possibly complex process is required for each update of parameters
and initial conditions. The inaccuracy of the numerical approximation can be a problem,
especially for stiff systems or for discontinuous inputs such as step functions or functions
concentrating their masses at discrete points. The size of the parameter set may be in-
creased by the set of initial conditions needed to solve the system, and the data may not
provide much information for estimating them. NLS also only produces point estimates of
parameters, and where interval estimation is needed, a great deal more computation can
be required. As a consequence of all this, Marlin (2000) warns process control engineers to
expect an error level of the order of 25% in parameter estimates.

A Bayesian approach which may escape minor ripples in the optimization surface is
outlined in Gelman et al. (1996). This model uses a likelihood centered on the numerical
solution to the differential equation x̂(tj |θ̂), such as yj ∼ N [x̂(tj |θ), σ2]. Since x̂(tj |θ) has
no closed form solution, the posterior density for θ | y has no closed form and inference
must be based on simulation from a Metropolis-Hastings algorithm or other sampler. At
each iteration of the sampler θ is proposed and the numerical approximation x̂(tj |θ) is used
to compute the likelihood. Parallels between this approach and NLS mean that they share
many of the same optimization problems. To fix this, the Bayesian model often requires
strong finitely bounded priors. Extensions to this method are outlined in Campbell (2007).

1.3.2. Collocation methods or basis function expansions
Our own approach belongs in the family of collocation methods that express the approxi-
mation x̂i of xi in terms of a basis function expansion

x̂i(t) =
Ki∑

k

cikφik(t) = c′iφi(t), (7)

where the number Ki of basis functions in vector φi is chosen so as to ensure enough
flexibility to capture the variation in the approximated function xi and its derivatives.
Typically, this will require substantially more flexibility than is required to fit the data, since
x̂i and dx̂/dt must also satisfy the differential equation to an extent considered acceptable.
Although the original collocation methods used polynomial bases, spline basis systems are
now preferred because they allow control over the smoothness of the solution at specific
values of t, including discontinuities in dx̂/dt or higher order derivatives associated with
step and point changes in the inputs u. Using a spline basis to approximate an initial value
problem is equivalent to the use of an implicit Runge-Kutta method for stepping points
located at the knots defining the basis (Deuflhard and Bornemann (2000)). For solving
boundary value problems, collocation tries to satisfy (1) at a discrete set of points; resulting
in a large sparse system of nonlinear equations which must then be solved numerically.

Collocation with spline bases was applied to dynamic data fitting problems by Varah
(1982), who suggested a two-stage procedure in which each xi is first estimated by data
smoothing methods without considering (1), followed by the minimization of a least squares
measure of the fit of dx̂/dt to f(x̂,u, t|θ) with respect to θ. The method is attractive when
f is nearly linear in θ, but nonlinear in x. Varah’s approach worked well for the simple
equations that were considered, but considerable care was required in the smoothing step
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to ensure a satisfactory estimate of ẋ, and the technique also required that all variables in
the system be measured.

Ramsay and Silverman (2005) and Poyton et al. (2006) took Varah’s method further
by iterating the two steps, and replacing the previous iteration’s roughness penalty by a
penalty on ‖dx̂/dt − f(x̂,u, t|θ)‖ using the last minimizing value of θ. They found that
this process, iterated principal differential analysis (iPDA), converged quickly to estimates
of both x and θ that had substantially improved bias and precision. However, iPDA is a
joint estimation procedure in the sense that it optimizes a single roughness-penalized fitting
criterion with respect to both c and θ, an aspect that will be discussed further in the next
section.

A number of procedures have attempted to solve the parameter estimation problem at
the same time as computing a numerical solution to (1). Tjoa and Biegler (1991) proposes
to combine a numerical solution of the collocation equations with an optimization over
parameters to obtain a single constrained optimization problem, see also Arora and Biegler
(2004). Similar ideas can be found in Bock (1983), where the multiple shooting method is
proposed that breaks the time domain into a series of smaller intervals, over each of which
(1) is solved.

1.4. Overview of the paper
Our approach to fitting differential equation models is developed in Section 2, where we
develop the concepts of estimating functions and a generalization of profiled estimation.
Section 3 tests the method on simulated data for the FitzHugh-Nagumo and CSTR equa-
tions, and Section 4 estimates differential equation models for data drawn from chemical
engineering and medicine. Generalizations of the method are discussed in Section 5.

2. Generalized pro�ling estimation procedure

We first give an overview of our estimation strategy, and then provide further details below.
As we noted above, our method is a variant of the collocation method, and as such, repre-
sents each variable in terms of a basis function expansion (7). Let c indicate the composite
vector of length K =

∑
i∈I Ki that results from concatenating the ci’s. Let Φi be the

Ni by Ki matrix of values φk(tij), and let Φ be the N =
∑

i∈I Ni by K super–matrix
constructed by placing the matrices Φi along the diagonals and zeros elsewhere. According
to this notation, we have the composite basis expansion x̂ = Φc.

2.1. Overview of the estimation procedure
Defining x̂ as a set of basis function expansions implies that there are two classes of param-
eters to estimate: the parameters θ defining the equation, such as the four reaction kinetics
parameters in the CSTR equations; and the coefficients in ci defining each basis function
expansion. The equation parameters are structural in the sense of being of primary interest,
as are the error distribution parameters in σi, i ∈ I. But the coefficients ci are considered
as nuisance parameters that are essential for fitting the data, but usually not of direct con-
cern. The sizes of these vectors are apt to vary with the length of the observation interval,
density of observation, and other aspects of the structure of the data; and the number of
these nuisance parameters can be orders of magnitude larger than the number of struc-



tural parameters, with a ratio of about 200 applying in the CSTR and FitzHugh-Nagumo
problems.

In our profiling procedure, the nuisance parameter estimates are defined to be implicit
functions ĉi(θ, σ; λ) of the structural parameters, in the sense that each time θ and σ
are changed, an inner fitting criterion J(ĉ|θ,σ, λ) is re-optimized with respect to ĉ alone.
The estimating function ĉi(θ,σ; λ) is regularized by incorporating a penalty term in J that
controls the size of the extent that x̂ = ĉ′φ fails to satisfy the differential equation exactly,
in a manner specified below. The amount of regularization is controlled by smoothing
parameters in vector λ. This process of eliminating the direct impact of nuisance parameters
on the fit of the model to the data resembles the common practice of eliminating random
effect parameters in mixed effect models by marginalizing over c with respect a prior density.

A data fitting criterion H(θ,σ|λ) is then optimized with respect to the structural pa-
rameters alone. The dependency of H on (θ,σ) is two-fold: directly, and implicitly through
the involvement of ĉi(θ, σ;λ) in defining the fit x̂i. Because ĉi(θ, σ; λ) is already regular-
ized, criterion H does not require further regularization, and is a straightforward measure
of fit such as error sum of squares, log likelihood or some other measure that is appropriate
given the distribution of the errors eij .

For the examples in this paper, λ has been adjusted manually using some numerical
and visual heuristics. However, we also envisage that λ may be estimated automatically
through the use of a measure F (λ) of model complexity or mean squared error, such as the
generalized cross-validation or GCV criterion often used in least squares spline smoothing.
In this event, the vector λ defines a third level of parameters, and leads us to define a pa-
rameter cascade in which structural parameter estimates are in turn defined to be functions
θ̂(λ) and σ̂(λ) of regularization or complexity parameters, and nuisance parameters now
also become functions of λ via their dependency on structural parameters. We have applied
this notion to semi-parametric regression in Cao and Ramsay (2006) where the estimation
procedure is a multi-criterion optimization problem, and we can refer to J,H and F as
inner, middle and outer criteria, respectively. Keilegom and Carroll (2006) use a similar
approach, also in semi-parametric regression.

We motivate this approach as follows. Fixing complexity parameters λ for the purposes
of discussion, we appreciate here, as in random effects modeling and nonparametric regres-
sion, that it would be unwise to employ joint estimation using a fixed data-fitting criterion
H with respect to all of θ, σ and c since the overwhelmingly larger number of nuisance
parameters would tend to lead to over-fitting the data and consequently unacceptable bias
and sampling variance in θ̂ and σ̂. By assessing smoothness of the fit x̂ to the data in
terms of departure from satisfying (1), we are, in effect, bringing additional “data” into the
fitting process in the form of the roughness penalty in much the same way that a Bayesian
brings prior information to parameter estimation in the form of the logarithm of a prior
density. However, the Bayesian strategy suffers from the problem that the integration in
the marginalization process is seldom available analytically, thus leading to computationally
intensive MCMC technology. We show here that our parameter cascade approach leads to
analytic derivatives required for efficient optimization, and also for linear approximation to
interval estimates.

2.2. Data �tting criterion
Let ei indicate the vector of errors associated with observed variable i ∈ I, and let gi(ei|σi)
indicate the joint density of these errors conditional on a parameter vector σi. In practice
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it is usual to assume independently distributed Gaussian errors with mean 0 and standard
deviation σi. However autocorrelation structure and non-stationary variance are often ev-
ident in the data, and when these features are also modeled, these parameters are also
incorporated into error distribution parameters σi. Let σ indicate the concatenation of the
σi vectors. Although our notation is consistent with assuming that errors are independent
across variables, inter-variable error dependencies, too, can be accommodated by the ap-
proach developed in this paper. In general, the data-fitting criterion can be taken to be the
negative log likelihood

H(θ, σ|λ) = −
∑

i∈I
ln g(ei|σi, θ,λ) (8)

where
eij = yij − ĉi(σi, θ; λ)′φ(tij).

The output variables xi will as a rule have different units; the concentration of the
output in the CSTR equations is a percentage, while temperature is in degrees Kelvin.
Consequently, fit measures such as error sum of squares must be multiplied by a normalizing
weight wi that, ideally, should be 1/σ2

i , so that the normalized error sums of squares are
of roughly comparable sizes. However, given enough data per variable, it can suffice to
use data-defined values, such as the squared reciprocals of initial values wi = xi(0) or
the variance taken over values x̂i(tij) for some trial or initial estimate of a solution of the
equation. Letting yi indicate the data available for variable i consisting of observations
at time points ti, and x̂i(ti) indicate the vector of fitted values corresponding to yi, the
composite error sum of squares criterion is

H(θ|λ) =
∑

i∈I
wi‖yi − x̂i(ti)‖2, (9)

where the norm may allow for features like autocorrelation and heteroscedasticity.

2.3. Assessing �delity to the equations
We may express each equation in (1) as the differential operator equation

Li,θ(xi) = ẋi − fi(x,u, t|θ) = 0. (10)

The extent to which an actual function x̂i satisfies the ODE system can then be assessed
by

PENi(x̂) =
∫

[Li,θ(x̂i(t))]2dt (11)

where the integration is over an interval which contains the times of measurement. The
normalization constant wi may be required here, too, to allow for different units of mea-
surement. Other norms are also possible, and total variation, defined as

PENi(x̂) =
∫
|Li,θ(x̂i(t))|dt (12)

has turned out to be an important alternative in situations where there are sharp breaks
in the function being estimated, such as in image analysis (Koenker and Mizera (2002)). A
composite fidelity to equation measure is

PEN(x̂|Lθ,λ) =
n∑

i

λiPENi(x̂) (13)



where Lθ denotes the vector containing the d differential operators L
i,θ. Note that in this

case the summation will be over all d variables in the equation. The multipliers λi ≥ 0
permit us to weight fidelities differently, and also control the relative emphasis on fitting
the data and solving the equation for each variable.

2.4. Estimating ĉ(θ; λ)
Finally, the data-fitting and equation-fidelity criteria are combined into the penalized log
likelihood criterion

J(c|θ, σ,λ) = −
∑

i∈I
ln g(ei|σi, θ, λ) + PEN(x̂|λ), (14)

or the least squares criterion

J(c|θ, σ, λ) =
∑

i∈I
wi‖yi − x̂i(ti)‖2 + PENi(x̂|λ). (15)

In general the minimization of J will require numerical optimization, but in the least squares
case and linear ODEs, it is possible to express ĉ(θ; λ) analytically (Ramsay and Silverman
(2005)).

2.5. Optimizing with respect to θ
In this and the remainder of the section, we simplify the notation considerably by dropping
the dependency of criterion H on σ and λ; and regarding the latter as a fixed parameter.
These results can easily be extended to get the results for the joint estimation of system
parameters θ and error distribution parameters σ where required. It is assumed that H is
twice continuously differentiable with respect to both θ and c, and that the second partial
derivative or Hessian matrices ∂2H/∂θ2 and ∂2H/∂ĉ2 are positive definite over a nonempty
neighborhood N of y in data space.

The gradient or total derivative with respect to θ is

dH

dθ
=

∂H

∂θ
+

∂H

∂ĉ
dĉ
dθ

. (16)

Since ĉ(θ) is not available explicitly, we apply the Implicit Function Theorem to obtain

dĉ
dθ

= −
(

∂2J

∂ĉ2

)−1
∂2J

∂ĉ∂θ
. and

dH

dθ
=

∂H

∂θ
− ∂H

∂ĉ

(
∂2J

∂ĉ2

)−1
∂2J

∂ĉ∂θ
. (17)

The matrices used in these equations and those below have complex expressions in terms
of the basis functions in Φ and the functions f on the right side of the differential equation.
Appendix A provides explicit expressions for them for the case of least squares estimation.

2.6. Approximating the sampling variation of θ̂ and ĉ
Let Σ be the variance–covariance matrix for y. Making explicit the dependency of H on
the data y by using the notation H(θ|y), the estimate θ̂(y) of θ is the solution of the
stationary equation ∂H(θ, |y)/∂θ = 0. Here and below, all partial derivatives as well as
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total derivatives are assumed to be evaluated at θ̂ and ĉ(θ̂), which are in turn evaluated at
y.

The usual δ-method employed in nonlinear least squares produces a variance estimate
of the form

VarGN [θ̂(y)] ≈ σ2

[(dx̂
dθ

)′(dx̂
dθ

)]−1

(18)

by making use of the approximation

d2H

dθ2 ≈ (dx̂
dθ

)′(dx̂
dθ

)
.

We will instead provide an exact estimation of the Hessian above and employ it with a
pseudo δ-method. Although this implies considerably more computation, our experiments
in Section 3.1 suggest that this method provides more accurate results that the usual δ-
method estimate.

By applying the Implicit Function Theorem to ∂H/∂θ as a function of y, we may say that
for any y in N there exists a value θ̂(y) satisfying ∂H/∂θ = 0. By taking the y-derivative
of this relation, we obtain:

d

dy

(
dH

dθ

∣∣∣∣ˆθ(y)

)
=

d2H

dθdy

∣∣∣∣ˆθ(y)

+
d2H

dθ2

∣∣∣∣ˆθ(y)

dθ̂

dy
= 0 , (19)

where

d2H

dθ2 =
∂2H

∂θ2 +
∂2H

∂θ∂ĉ
∂ĉ
∂θ

+
(

∂ĉ
∂θ

)′
∂2H

∂ĉ∂θ
+

(
∂ĉ
∂θ

)′
∂2H

∂ĉ2

∂ĉ
∂θ

+
∂H

∂ĉ
∂2ĉ
∂θ2 , (20)

and
d2H

dθdy
=

∂2H

∂θ∂y
+

∂2H

∂ĉ∂y
∂ĉ
∂θ

+
∂2H

∂θ∂ĉ
∂ĉ
∂y

+
∂2H

∂ĉ2

∂ĉ
∂y

∂ĉ
∂θ

+
∂H

∂ĉ
∂2ĉ

∂θ∂y
. (21)

The formulas (20) and (21) involve the terms ∂ĉ/∂y, ∂2ĉ/∂θ2 and ∂2ĉ/∂θ∂y, which can
also be derived by the Implicit Function Theorem and are given in Appendix A. Solving
(19), we obtain the first derivative of θ̂ with respect to y:

dθ̂

dy
= −

(
∂2H

∂θ2

∣∣∣∣ˆθ(y)

)−1(
∂2H

∂θ∂y

∣∣∣∣ˆθ(y)

)
. (22)

Let µ = E(y), the first order Taylor expansion for dθ̂/dy is:

dθ̂

dy
≈ dθ̂

dµ
+

d2θ̂

d2µ
(y− µ) . (23)

When d2θ̂/d2µ is uniformly bounded, we can take the expectation on both sides of (23)
and derive E(dθ̂/dµ) ≈ E(dθ̂/dy). We can also approximate θ̂(y) by using the first order
Taylor expansion:

θ̂(y) ≈ θ̂(µ) +
dθ̂

dµ
(y− µ) .



Taking variance on both sides of (24), we derive

Var[θ̂(y)] ≈
[

dθ̂

dµ

]
Σ

[
dθ̂

dµ

]′
≈

[
dθ̂

dy

]
Σ

[
dθ̂

dy

]′
, since E

(
dθ̂

dµ

)
≈ E

(
dθ̂

dy

)
. (24)

Similarly, the sampling variance of ĉ[θ̂(y)] is estimated by

Var[ĉ(θ̂(y))] =
( dĉ
dy

)Σ
( dĉ
dy

)′ , where
dĉ
dy

=
dĉ

dθ̂

dθ̂

dy
+

∂ĉ
∂y

. (25)

2.7. Numerical integration in the inner optimization
The integrals in PENi will normally require approximation by the linear functional

PENi(x̂) ≈
Q∑
q

vq[Li(x̂i(tq))]2 (26)

where Q, the evaluation points tq, and the weights vq are chosen so as to yield a reasonable
approximation to the integrals involved.

Let ξ` indicate a knot location or a breakpoint, and recall that there will be multiple
knots at such a location in order to deal with step function inputs that will imply discontin-
uous derivatives. We divide each interval [ξ`, ξ`+1] into four equal-sized intervals, and using
Simpson’s rule weights [1, 4, 2, 4, 1](ξ`+1 − ξ`)/5. The total set of these quadrature points
and weights along with basis function values may be saved at the beginning of the compu-
tation so as to save time. If a B-spline basis is used, improvements in speed of computation
may be achieved by using sparse matrix methods.

Efficiency in the inner optimization is essential since this will be invoked far more often
than the outer optimization. In the case of least squares fitting, the minimization of (14)
can be expressed as a large nonlinear least squares approximation problem by observing
that we can express the numerical quadrature approximation to

∑
i λiPENi(x̂) as

∑

i

∑
q

[(λivq)1/2Li(x̂i(tq))]2.

These squared residuals can then be appended to those in H, and Gauss-Newton minimiza-
tion can then be used.

2.8. Choosing the amount of smoothing
We now consider two rationales for choosing λ, corresponding to the need for robustness with
respect to poor initial parameter values or model mis-specification, respectively. Although λ
was chosen manually for our examples, this choice can be automated under either paradigm,
and we suggest some ways of doing so.

2.8.1. Robustness with respect to initial parameter values
Figure 2 shows the severe non-convexity of least-squares fitting criteria for θ when using an
exact solution of the FitzHugh-Nagumo ODE, implying a small neighborhood of the opti-
mal parameter values from which convergence is assured using the Gauss-Newton method.
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However, Figure 5, displaying the much more regular surface corresponding to λ = 105,
suggests a much wider region of convergence; and our experience for other problems con-
firms this robustness with respect to poor initialization of parameters for smaller λ values.
Because the criterion H(θ, σ|λ) is increasing in each λi, it underestimates the response
surface for exact solutions to the differential equation. Moreover, results in Appendix A
imply that ‖dc/dθ‖ increases in λ, implying that relaxing the differential equation model
regularizes the search for θ.

However, as λ becomes smaller, the estimates obtained for θ become both more biased
and more variable. Theorem 2.2, on the other hand, demonstrates that, ignoring error
due to (7), parameter estimates must approximate those that would have been obtained
from a straightforward maximum-likelihood fit as λ increases. This suggests the following
algorithm:

(a) Choose initial value λ0 so that H(θ|σ,λ0) dominates PEN(x̂|Lθ, λ0).
(b) Increase λi iteratively, and estimate θi, initializing the Gauss-Newton algorithm with

parameter estimates θi−1. We typically choose λi = 10i−k where k represents a
starting value.

(c) Stop when λ0 becomes so large that the collocation approximation (7) starts to distort
the estimate of x.

In order to assess when λ has become too large:

(a) Calculate solutions x̃(t) to (1) with the current estimate of θ and x0.
(b) Smooth x̃(t), the solution at the observation times, using the model-based criterion

(14) to get an estimate x̃∗.
(c) Stop when ‖x̃− x̃∗‖ begins to increase after attaining a minimum.

We have observed that there is usually a large range of λ values that provide stable and
accurate estimates for θ.

For the simulated examples in Section 3 and for the Nylon production data, we chose λ
large enough to guarantee that we could reproduce solutions to (1) to a visually high degree
of accuracy without suffering distortion from the use of a basis expansion.

2.8.2. Robustness with respect to model mis-specification

For the Lupus data in Section 4.2, the ODE model provides only a partially adequate fit
to the data, and consequently the optimal value of λ is not infinite. In such situations,
a practical method of choosing λ is by visual inspection of the fit to the observed data,
aided by examining the corresponding ODE solution at the estimated parameters. Initial
conditions x(0) may be taken from the smooth x̂(0), or may be separately optimized.

When the objective is filtering the data, a GCV-type approach may be appropriate.
The estimation of x̂ given λ is in general a nonlinear problem, so standard cross-validation
measures are not available. Instead, the following GCV-like criterion has been adapted from
Wahba (1990):

F (λ) =
∑
I ‖yi − x̂i(ti)‖2[∑

I
(
Ni −

∑
j

dx̂i(tij)
dyij

)]2 , (27)
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Fig. 5. The squared discrepancy between exact solutions to the FitzHugh-Nagumo equations and a
model based smooth that minimizes (14) with λ = 105. Values of the surface are calculated using
the same data as in Figure 2.

where the derivatives in the denominator are exactly the diagonal elements of the smoothing
matrix in a linear smoothing problem. For the profiling procedure outlined above we have

dx̂i(tij)
dyij

=
∂x̂i(tij)

∂c
dc

dyij

where dx̂i(tij)/dc is simply the value of the basis expansion (7) at tij and dc/dy has
been calculated in (24). Note that this explicitly takes the dependence of ŷ on θ̂ into
account. This construction is offered as speculation; it is well known that the first order
approximation used in F (λ) can be biased (Friedman and Silverman (1989)). Furthermore,
F (λ) is only indirectly related to θ, and our experience suggests that, for mis-specified
models, estimators based on cross-validation tend select λ at values that produce good
estimates of x, but which are smaller than optimal for estimating θ.

2.9. Parameter estimate behavior as λ →∞
In this section, we consider the behavior of our parameter estimate as λ becomes large.
This analysis takes an idealized form in the sense that we assume that this optimization
may be done globally and that the function being estimated can be expressed exactly and
without the approximation error that would come from a basis expansion. We show that
as λ becomes large, the estimates defined through our profiling procedure converge to the
estimates that we would obtain if we estimated θ by minimizing negative log likelihood over
both θ and the initial conditions x̂0. In other words, we treat x̂0 as nuisance parameters
and estimate θ by profiling. When f is Lipschitz continuous in x̂ and continuous in θ, the
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likelihood is continuous in θ and the usual consistency theorems (e.g. Cox and Hinkley
(1974)) hold and in particular, the estimate θ̂ is asymptotically unbiassed.

For the purposes of this section, we will make a few simplifying conventions. Firstly, we
will take:

l(x) = −
∑

i∈I
ln g(ei|σi, θ, λ).

Secondly, we will represent

PEN(x|θ) =
n∑

i=1

ciwi

∫
(ẋi(t)− fi(x,u, t|θ))2 dt

where the ci are taken to be constants and the λi used in the definition (13) are given by
λci for some λ.

We will also assume that solutions to the data fitting problem exist and are well defined,
and that there are objects x that satisfy PEN(x|θ) = 0. Such objects are guaranteed to exist
locally whenever f is locally Lipschitz continuous. That is, there is a time interval [t0, t0 +h]
on which x exists. On this interval x is uniquely determined by x(t0); see Deuflhard and
Bornemann (2000). Existence on the interval of the experiment is more difficult to show in
general.

Finally, we will need to make some assumptions about the spline smooths minimizing

l(x) + λPEN(x|θ).

Specifically, we will assume that the minimizers of these are well-defined and bounded
uniformly over λ. Guarantees on boundedness may be given whenever x · f(x,u, t|θ) < 0
for ‖x‖ greater than some K (see Hooker (2007)). This condition is also sufficient for
the global uniqueness of solutions to (1). It is true for reasonable parameter values in all
systems presented in this paper. More general characteristics of functions f for which these
properties hold is a matter of continued research.

Solutions of interest lie in the Hilbert space H = (W 1)n; the direct sum of n copies of
W 1 where W 1 is the Sobolev space of functions on the the time-observation interval [t1, t2]
whose first derivatives are square integrable. The analysis will examine both inner and
outer optimization problems as λ →∞. For the inner optimization, we can show

Theorem 2.1. Let λk →∞ and assume that

xk = argmin
x∈(W 1)n

l(x) + λkPEN(x|θ)

is well defined and uniformly bounded over λ. Then xk converges to x∗ with PEN(x∗|θ) = 0.

Further, when PEN(x|θ) is given by (13), x∗ is the solution of the differential equations
(1) that is obtained by minimizing squared error over the choice of initial conditions. The
proof of this, and of the theorem below, is given in Hooker (2007).

Turning to the estimation of θ, we obtain the following:

Theorem 2.2. Let X ⊂ (W 1)n and Θ ⊂ Rp be bounded. Assume that for λ > K,

xθ,λ = argmin
x∈X

l(x) + λPEN(x|θ)



is well defined for each θ. Define x∗θ to be such that

l(x∗θ) = min
x:P (x|θ)=0

l(x)

and let
θ(λ) = argmin

θ∈Θ

l(xθ,λ
) and θ∗ = argmin

θ∈Θ

l(x∗θ)

also be well defined. Then
lim

λ→∞
θ(λ) = θ∗.

The conditions listed in this theorem are natural, in the sense that we merely require
that the smoothing, parameter estimation and NLS optimization problems to have unique
solutions. However, verifying that this is the case, even for the NLS problem, many not be
straightforward for any given f. We note a substantial literature on system identifiability:
for example Denis-Vidal et al. (2003). We conjecture that it will hold for any f such that
the parameter estimation problem is well defined for exact solutions to (1).

Taken together, these theorems state that as λ is increased, the solutions obtained from
this scheme tend to those that would be obtained by estimating the parameters directly
while profiling out the initial conditions. In particular, the path of parameter values as λ
changes is continuous, motivating a successive approximation scheme. This analysis also
highlights the distinction between these methods and traditional smoothing; our penalties
are highly informative and it is, in fact, the data which plays the minor role in finding a
solution.

3. Simulated data examples

3.1. Fitting the FitzHugh-Nagumo equations
We set up simulated data for V alone by adding Gaussian error with standard deviation 0.5
to the solution for parameters {a, b, c} = {0.2, 0.2, 3} and initial conditions {V, R} = {−1, 1}
at times 0.0, 0.05, . . . , 20.0. Collocation fit x̂ was a third order B-spline with knots at each
data point.

Figure 6 gives quartiles of the parameter estimates for 60 simulations as λ is varied from
10−2 to 105. There is large bias for small values of λ, where smoothing is emphasized and
θ has little impact on ĉ; but, as λ increases, parameter estimates become nearly unbiased.
Table 3.1 provides bias and variance estimates from 500 simulations at λ = 104, along with
our estimate (24) and the Gauss-Newton standard error (18). We obtain good coverage
properties for our estimates of variance while the Gauss-Newton estimates are somewhat
less accurate. We note, however, that computing (24) increased computational effort by a
factor of about 10 for this simulation. As a practical matter, using (18) may be considered
sufficient if (24) becomes too costly.

3.2. Fitting the tank reactor equations
Data for concentration C and temperature T were simulated by adding zero mean Gaussian
noise with standard deviations 0.0223 and 0.79, respectively to the values for the cool mode
experimental condition shown in Figure (4). These error levels were about 20% of the vari-
ation of the respective outputs over the experimental conditions, an error level considered
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Fig. 6. 25%, 50% and 75% quantiles of parameter estimates for the FitzHugh-Nagumo Equations as
λ is varied. Horizontal lines represent the true parameter values.

Table 1. Summary statistics for parameter estimates
for 500 simulated samples of data generated from the
FitzHugh-Nagumo equations.

a b c

True value 0.2000 0.2000 3.0000
Mean value 0.2005 0.1984 2.9949
Bias Std. Err. 0.0007 0.0029 0.0012

Actual Std. Dev. 0.0149 0.0643 0.0264
Estimate (24) Std. Dev. 0.0143 0.0684 0.0278
Estimate (18) Std. Dev. 0.0167 0.0595 0.0334



Table 2. Summary statistics for parameter estimates for 1000 simulated samples.
Results are for measurements on both concentration and temperature, and also for
temperature measurements only. The estimate of the standard deviation of parameter
values is by the delta method usual in nonlinear least squares analyses.

C and T data Only T data

κ τ a κ τ a

True value 0.4610 0.8330 1.6780 0.4610 0.8330 1.6780
Mean value 0.4610 0.8349 1.6745 0.4613 0.8328 1.6795
Bias Std. Err. 0.0002 0.0004 0.0012 0.0005 0.0005 0.0024

Actual Std. Dev. 0.0034 0.0057 0.0188 0.0084 0.0085 0.0377
Estimate (18) Std. Dev. 0.0035 0.0056 0.0190 0.0088 0.0090 0.0386

typical for many chemical engineering processes. We estimated only the parameters κ, τ
and a, keeping b fixed at 0.5 because we had determined that the accurate estimation of
all four parameters is impossible within the data design described above. Since the data
are generated here from functions satisfying the differential equation system, we can expect
the fit to improve with larger and larger values for smoothing parameters λC and λT . Re-
sults are reported here for 100 and 10, respectively, which are sufficiently large that further
increases were found to yield negligible improvement in parameter estimates.

We found, in applying the NLS method described in Section 1.3.1, that the approxi-
mation to T (t) at the times of input step changes using the Runge-Kutta algorithm were
inaccurate and unstable with respect to small changes in parameters. As a consequence,
the estimation of the gradient of fit (9) by differencing was so unstable that gradient-free
optimization was impossible. When we estimated the gradient by solving the sensitivity
equations (5) and (6), we could only achieve optimization when starting values for param-
eters and initial values were much closer to the optimal values than could be realized in
practice. By contrast, our approach was able to converge reliably from random starting
values far removed from the optimal estimates.

Table 3.2 displays bias and sampling precision results for parameter estimates by our
parameter cascade method for 1000 simulated samples for each of two measurement regimes:
both variables measured, and only temperature measured. The first two lines of the table
compare the true parameter values with the mean estimates, and the last two lines compare
the biases of the estimates with the standard errors of the mean estimates. We see that
the estimation biases can be considered negligible for both measurement situations. The
third and fourth lines compare the actual standard deviations of the parameter estimates
with the values estimated with the Gauss-Newton method in (18), and the two values
seem sufficiently close for all three parameters to permit us to trust the Gauss-Newton
estimates in this case. As one might expect, the main impact of having only temperature
measurements is to increase the sampling error in the parameter estimates.

When the equations were solved using the parameters estimated from measurements on
both variables, the maximum absolute discrepancy between the fitted and true curves was
0.11% and 0.03%, respectively, and when these parameter estimates were used for the hot
mode of operation, the the discrepancies became 1.72% and 0.05%, respectively. Finally,
when the parameters were estimated from only the temperature data, the concentration
and temperature discrepancies in cool mode became 0.10% and 0.04%, respectively, so that
using only the quickly and cheaply attainable temperature measurements is sufficient for
identifying this system in either mode of operation.
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4. Two real data examples

4.1. Modeling nylon production
If water (W ) in the form of steam is bubbled through molten nylon (L) under high tem-
peratures, W will split L into amine (A) and carboxyl (C) groups. To produce nylon, on
the other hand, A and C are mixed together under high temperatures, and their reaction
produces L and W , water then escaping as steam. These competing reactions are depicted
symbolically by A + C  L + W . The reaction dynamic equations are

−L̇ = Ȧ = Ċ = −kp ∗ 10−3(CA− LW/Ka)

Ẇ = kp ∗ 10−3(CA− LW/Ka)− km(W −Weq) (28)

where
Ka =

[(
1 +

g

1000
Weq

)
CT

]
Ka0 exp

[
− ∆H

R

( 1
T
− 1

T0

)]

and R = 8.3145 ∗ 10−3, CT = 20.97 exp[−9.624 + 3613/T ] and a reference temperature
T0 = 549.15 was chosen to be in the middle of the range of experimentally manipulated
temperatures. Rate parameter km = 24.3 was estimated in previous studies. Due to the
reaction mass balance, if A,C and W are known then L can be algebraically removed from
the equations, so that we will only estimate those three components.

In an experiment described in Zheng et al. (2005), a mixture of steam and an inert
gas was bubbled into molten nylon to maintain a constant W , causing A,C, L and W
to move towards equilibrium concentrations. Within each of six experimental runs the
steam pressure was stepped down from its initial level at times τi1, i = 1, . . . , 6, and then
returned to its initial pressure at times τi2. The temperature Ti and concentration difference
Ai(t)−Ci(t) varied over runs but were constant within a run. Samples of the molten mixture
were extracted at irregularly spaced intervals, and the A and C concentrations measured.
The goal was to estimate the rate parameters θ = [kp, g, Ka0,∆H]. Figure 7 shows the data
for the runs aligned by experiment within columns. Since concentrations of A and C are
expected to differ only by a vertical shift, their plots within an experimental run are shifted
versions of the same vertical spread. The temperature of each run is given above the plots
for each set of components.

The profile estimation process was run initially with λ = 10−4. Upon convergence of θ̂,
λ was increased by a factor of ten and the estimation process rerun using the most recent
estimates as the latest set of initial parameter guesses, increasing λ up to 103. Beginning
with such a small value of λ made the results robust to choice of initial parameter guesses.
Further details concerning the data analysis are available in Campbell et al. (2007).

The parameter estimates along with 95% limits were: kp = 20.59±3.26, g = 26.86±6.82,
Ka0 = 50.22 ± 6.34 and ∆H = −36.46 ± 7.57. The solutions to the differential equations
using the final parameter estimates for θ̂ and the initial system states estimated by the data
smooth are shown in Figure 7.

4.2. Modeling �are dynamics in lupus
Lupus is a disease characterized by sudden flares of symptoms caused by the body’s immune
system attacking various organs. The name derives from a rash on the face and chest that is
characteristic, but the most serious effects tend to be in the kidneys. The resulting nephritis
and other symptoms can require immediate treatment, usually with the drug Prednisone,
a corticosteroid that itself has serious long-term side effects such as osteoporosis.
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Fig. 8. Symptom level s(t) for a patient suffering from lupus as assessed by the SLEDAI scale.
Changes in SLEDAI score corresponding to a �are are shown as heavy solid lines, and other the
remaining changes are shown as dashed lines.

Various scales have been developed to measure the severity of symptoms, and Figure
8 shows the course of one of the more popular measures, the SLEDAI scale, for a patient
that experienced 48 flares over about 19 years before expiring. A definition of a flare event
is commonly agreed to be a change in a scale value of at least 3 with a terminal value of at
least 8, and the figure shows flare events as heavy solid lines.

Because of the rapid onset of symptoms, and because the resulting treatment program
usually involves a SLEDAI assessment and a substantial increase in Prednisone dose, we
can pin down the time of a flare with some confidence. Thus, the set of flare times combined
with the accompanying SLEDAI score constitute a marked point process. Our goal here is
to illustrate a simple model for flare dynamics, or the time course of symptoms over the
onset period and the period of recovery. We hope that this model will also show how these
short-term flare dynamics interact with longer term trends in symptom severity.

We postulated that the immune system goes on the attack for a fixed period of δ years,
after which it returns to normal function due to treatment or normal recovery. For purposes
of this illustration, we took δ = 0.02 years, or about two weeks, and represented the time
course of attacks as a box function u(t) that is 0 during normal functioning and 1 during a
flare.

This first order linear differential equation was proposed for symptom severity s(t) at
time t:

ṡ(t) = −β(t)s(t) + α(t)u(t), (29)

and has the solution

s(t) = Cs0(t) + s0(t)
∫ t

0

α(z)u(z)/s0(z) dz



where

s0(t) = exp[−
∫ t

0

β(z) dz].

Function α(t) tracks the long-term trend in the severity of the disease over the 19 years,
and we represented this as a linear combination of 8 cubic B-spline basis functions defined
by equally spaced knots, with about three years between knots. We expected that a flare
plays itself out over a much shorter time interval, so that α(t) cannot capture any aspect
of flare dynamics.

The flare dynamics depend directly on weight function β(t). At the point where an
attack begins, a flare increases in intensity with a slope that is proportional to β, and rises
to a new level in roughly 4/β(t) time units if β(t) is approximately constant. Likewise,
when an attack ceases, s(t) decays exponentially to zero with rate β(t).

It seemed reasonable to propose that β(t) is affected by an attack as well as s(t). This is
because β(t) reflects to some extent the health of the individual in the sense that responding
to an attack in various ways requires the body’s resources, and these are normally at their
optimum level just before an attack. The response drains these resources, and thus the
attack is likely to reduce β(t). Consequently, we proposed a second equation to model this
mechanism:

β̇(t) = −γβ(t) + θ[1− u(t)]. (30)

This model suggests that an attack results in an exponential decay in β with rate γ, and
that the cessation of the attack results in β(t) returning to its normal level in about 4/γ
time units. This normal level is defined by the gain K = θ/γ. However, if γ is large, the
model behaves like

β̇(t) = θ[1− u(t)], (31)

which is to say that β(t) increases and decreases linearly.
The top panel in Figure 9 shows how β(t) responds to an attack indicated by the box

function u(t) when γ = θ = 4, corresponding to a time to reach a new level of about 1 time
unit. The initial value β(0) = 0 in this plot. The bottom panel shows that the increase
in symptoms is nearly linear during the period of attack, but that when the attack ceases,
symptom level declines exponentially and takes around 3 time units to return to zero.

When we estimated this model with smoothing parameter value λ = 1, we obtained the
results shown in Figure 10. We found that parameter γ was indeed so high that the fitted
symptom rise was effectively linear, so we deleted γ and used the simpler equation (31).
This left only the constant θ to estimate for β(t), which now controls the rate of decrease
of symptoms after an attack ceases. This was estimated to be 1.54, corresponding to a
recovery period of about 4/1.54 = 2.6 years. Figure 10 shows the variation in α(t) as a
dashed line, indicating the long-term change in the intensity of the symptoms, which are
especially severe around year 6, 11, and in the patient’s last three years.

The fitted function s(t) is shown as a solid line, and was defined by positioning three
knots at each of the flare onset and offset times in order to accommodate the sudden break
in ṡ(t), and a single knot midway between two flare times. Order 4 B-splines were used, and
this corresponded to 290 knot values and 292 basis functions in the expansion ŝ(t) = c′φ(t).
We see that the fitted function seems to do a reasonable job of tracking the SLEDAI scores,
both in the period during and following an attack and also in terms of its long-term trend.

The model also defines the differential equation (29), and the solution to this equation
is shown as a dashed line. The discrepancy between the fit defined by the equation and the
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Fig. 9. The top panel shows the effect of a lupus attack on the weight function β(t) in differential
equation (29). The bottom panel shows the time course of the symptom severity function s(t).
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Fig. 10. The circles indicate SLEDAI scores, the jagged solid line is the smoothing functions s(t),
the dashed jagged line is the solution to the differential equation and the smooth dashed line is the
smooth trend α(t).



smoothing function s(t) is important in years 8 to 11, where the equation solution over-
estimates symptom level. In this region, new flares come too fast for recovery, and thus build
on each other. Nevertheless, the fit to the 208 SLEDAI scores achieved by an investment of
9 structural parameters seems impressive for both the smoothing function s(t) and equation
solution, taking into consideration that the SLEDAI score is a rather imprecise measure.
Moreover, the model goes a long way to modeling the within-flare dynamics, the general
trend in the data, and the interaction between flare dynamics and trend.

5. Generalizations and further problems

5.1. More general equations
We have discussed the methods presented here with respect to systems of ODEs. However,
these methods can be applied to the following situations in a direct manner:

• Differential-algebraic equations (DAEs), in which some components of x are specified
directly rather than on the derivative scale:

xi(t) = fi(x,u, t|θ). (32)

Such systems are common in chemical engineering; see (Biegler et al. (1986)) for a
classical example.

• Lagged equations:
ẋ(t) = f(x(t− δ1),u(t− δ2), t|θ),

where δ1 and δ2 are vectors of time lags for state and forcing functions, respectively.

• Partial differential equations (PDEs)in which a system x(s, t) is described over spatial
variables s as well as time t:

∂x
∂t

= f
(
x,

∂x
∂s

,u, t|θ
)

.

Both lagged and partial differential equations require the specification of an infinite
dimensional boundary condition, rather than a finite set of initial conditions.

5.2. Stochastic differential equations
Criterion (14) may be interpreted as the log likelihood for an observation from the stochastic
differential equation:

ẋ(t) = f(x,u, t|θ) + λ
dW(t)

dt

where W(t) is a d-dimensional Brownian motion. Thus for a fixed λ, interpreted as the
ratio of the Brownian motion variance to that of the observational error, the procedure may
be thought of as profiling an estimate of the realized Brownian motion. This approach has
been used for the problem of data assimilation in Apte et al. (2007), where they use criteria
closely related to our own (14). This notion is appealing and suggests the use of alternative
smoothing penalties based on the likelihood of other stochastic processes. The flares in the
Lupus data, for example, could be considered to be triggered by events in a Poisson process,
and we expect this to be a fruitful area of future research. However, this interpretation



Parameter Estimation for Differential Equations: A Generalized Smoothing Approach 27

relies on the representation of dW(t)/dt in terms of the discrepancy ẋ(t) − f(x,u, t|θ)
where x is given by a basis expansion (7). For nonlinear f the approximation properties
of this discrepancy are not clear. Moreover, it is frequently the case that lack of fit in
nonlinear dynamics is due more to mis-specification of the system under consideration than
to stochastic inputs, and we are correspondingly wary of this interpretation.

5.3. Further statistical problems
Diagnostic tools are needed for differential equation models. Particularly in biological appli-
cations, these models often provide the right qualitative behavior and may take values orders
of magnitude different from the observed data. Diagnostic analyses can estimate additional
components of u that will provide good fits. These may be correlated with observed values
of the system, or external factors, to suggest new model formulae.

Experimental design is a relatively unexplored area of research for nonlinear dynamical
systems. Engineers plan experiments in which inputs are varied under various regimes;
including step, ramp, periodic and other perturbations. These inputs are then continuous
functions which join sampling rates for each component and replicated experiments as design
variables. See Bauer et al. (2000) for an approach to these problems.

Finally, there are a large class of theoretical and inferential problems in fitting nonlinear
differential equations to data, including inference near bifurcation boundaries, about system
stability and on the relationship between statistical information and chaotic behavior.

6. Conclusions

Differential equations have a long and illustrious history in mathematical modeling. How-
ever, there has been little development of statistical theory for estimating such models or
assessing their agreement with observational data. Our approach, a variety of collocation
method, combines the concepts of smoothing and estimation, providing a continuum of
trade-offs between fitting the data well and fidelity to the hypothesized differential equa-
tions. This has been done by defining a fit through a penalized spline criterion for each
value of θ and then estimating θ through a profiling scheme in which the fit is regarded as
a nuisance parameter.

We have found that this procedure has a number of important advantages relative to
older methods such as nonlinear least squares. Parameter estimates can be obtained from
data on partially measured systems, a common situation where certain variables are expen-
sive to measure or are intrinsically latent. Comparisons with other approaches suggest that
the bias and sampling variance of these estimates is at least as good as for other approaches,
and rather better relative to methods such as NLS. The sampling variation in the estimates
is easily estimable, and our simulation experiments and experience indicate that there is
good agreement between these estimation precision indicators and the actual estimation ac-
curacies. Our approach also gains from not requiring a formulation of the dynamic model as
an initial value problem in situations where initial values are not available or not required.

On the computational side, the algorithm is as fast or faster than NLS and other ap-
proaches. Unlike Bayesian MCMC, the generalized profiling approach is relatively straight-
forward to deploy to a wide range of applications, and software in Matlab described below
merely requires that the user to code the various partial derivatives that are involved, and
which are detailed in the Appendix. Finally, the method is also robust in the sense of con-
verging over a wide range of starting parameter values. The possibility of beginning with



smaller values of λ so as to work with a smooth criterion, and then stepping these values
up toward those defining near approximations to the ODE further adds to the method’s
robustness.

Finally the fitting of a compromise between an actual ODE solution and a simple smooth
of the data adds a great deal of flexibility that should prove useful to users wishing to explore
variation in the data not representable in the ODE model. By comparing fits with smaller
values of λ with fits that are near or exact ODE solutions, the approach offers a diagnostic
capability that can guide further extensions and elaborations of the model.

6.1. Software
All the results in this paper have been generated in the MATLAB computing language,
making use of functional data analysis software intended to compliment Ramsay and Sil-
verman (2005). A set of software routines that may be applied to any differential equation
is available from the URL: http://www.functionaldata.org.
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Appendices

A. Matrix calculations for pro�ling

The calculations used throughout this paper have been based on matrices defined in terms
of derivatives of F and H with respect to θ and c. In many cases, these matrices are non-
trivial to calculate and expressions for their entries are derived here. For these calculations,
we have assumed that the outer criterion, F is a straight-forward weighted sum of squared
errors and only depends on θ through x.

A.1. Inner optimization
Using a Gauss-Newton method, we require the derivative of the fit at each observation
point:

dxi(t)
dci

= φi(t)

where matrix φi is the vector corresponding to the evaluation of all the basis functions used
to represent xi evaluated at t. This gradient of xi with respect to cj is zero.

A numerical quadrature rule allows the set of errors to be augmented with the evaluation
of the penalty at the quadrature points and weighted by the quadrature rule:

(λivq)1/2 (ẋi(tq)− fi(x(tq),u(tq), tq|θ)) .

Each of these then has derivative with respect to cj :

(λivq)1/2 (ẋi(tq)− fi(x(tq),u(tq), tq|θ)) I(i = j)φ̇i(tq)

−
(

n∑

k=1

(λivq)1/2 dfk

dxj
(Dxi(tq)− fi(x(tq),u(tq), tq|θ))

)
φj(tq)

and the augmented errors and gradients can be used in a Gauss-Newton scheme. I(·) is
used as the indicator function of its argument.

A.2. Estimating structural parameters
As in the inner optimization, in employing a Gauss-Newton scheme, we merely need to
write a gradient for the point-wise fit with respect to the parameters:

dx(t)
dθ

=
dx(t)
dc

dc
dθ

where dx(ti)/dc has already be calculated and

dc
dθ

= −
[
d2H

dc2

]−1
d2H

dcdθ

by the implicit function theorem.



The Hessian matrix d2H/dc2 may be expressed as a block form, the (i, j)th block cor-
responding to the cross-derivatives of the coefficients in the ith and jth components of x.
This block’s (p, q)th entry is given by:

(
ni∑

k=1

φip(t)φjq(t) + λ

∫
φip(t)φjq(t)dt

)
I(i = j)

− λi

∫
φ̇ip(t)

dfi

dxj
φjq(t)dt− λj

∫
φip(t)

dfi

dxj
φ̇jq(t)dt

+
∫

φip(t)

[
n∑

k=1

λk

(
d2fk

dxidxj
(fk − ẋk(t)) +

dfk

dxi

dfk

dxj

)]
φjq(t)dt

with the integrals evaluated by numeric integration. The arguments to fk(x,u, t|θ) have
been dropped in the interests of notational legibility.

We can similarly express the cross-derivatives d2H/dcdθ as a block vector, the ith block
corresponding to the coefficients in the basis expansion for the ith component of x. The
pth entry of this block can now be expressed as:

λi

∫
dfi

dθ
φip(t)dt−

∫ (
n∑

k=1

λk

[
d2fk

dxidθ
(fk − ẋk(t)) +

dfk

dxi

dfk

dθ

])
φip(t)dt.

A.3. Estimating the variance of θ̂
The variance of the parameter estimates is calculated using

dθ̂

dy
= −

[
d2H

dθ2

]−1
d2H

dθdy
,

where

d2H

dθ2 =
∂2H

∂θ2 +
(

∂ĉ
∂θ

)′
∂2H

∂ĉ∂θ
+

∂2H

∂θ∂ĉ
∂ĉ
∂θ

+
(

∂ĉ
∂θ

)′
∂2H

∂ĉ2

∂ĉ
∂θ

+
∂H

∂ĉ
∂2ĉ
∂θ2 , (33)

and
d2H

dθdy
=

∂2H

∂θ∂y
+

∂2H

∂ĉ∂y
∂ĉ
∂θ

+
∂2H

∂θ∂ĉ
∂ĉ
∂y

+
∂2H

∂ĉ2

∂ĉ
∂y

∂ĉ
∂θ

+
∂H

∂ĉ
∂2ĉ

∂θ∂y
. (34)

The formulas (33) and (34) for d2H/dθ2 and d2H/dθdy involve the terms ∂ĉ/∂y, ∂2ĉ/∂θ2

and ∂2ĉ/∂θ∂y. In the following, we derive their analytical formulas by the Implicit Function
Theorem. We introduce the following convention, which is called Einstein Summation
Notation. If a Latin index is repeated in a term, then it is understood as a summation with
respect to that index. For instance, instead of the expression

∑
i aixi, we merely write aixi.

• ∂ĉ
∂y
Similar as the deduction for dĉ/dθ, we obtain the formula for ∂ĉ/∂y by applying the
Implicit Function Theorem:

∂ĉ
∂y

= −
[
∂2J(c|θ,y)

∂c2

∣∣∣∣
ĉ

]−1[
∂2J(c|θ,y)

∂c∂y

∣∣∣∣
ĉ

]
. (35)
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• ∂c2

∂θ∂y
By taking the second derivative on both sides of the identity ∂J(c|θ,y)/∂c|ĉ = 0 with
respect to θ and yk, we derive:

d2

dθdyk

(
∂J(c|θ,y)

∂c

∣∣∣∣
ĉ

)
∂3J(c|θ,y)
∂c∂θ∂yk

∣∣∣∣
ĉ

+
∂3J(c|θ,y)
∂c∂θ∂ci

∣∣∣∣
ĉ

∂ĉi

∂yk

+
∂3J(c|θ,y)

∂c2∂yk

∣∣∣∣
ĉ

∂ĉ
∂θ

+
∂3J(c|θ,y)

∂c2∂ci

∣∣∣∣
ĉ

∂ĉi

∂yk

∂ĉ
∂θ

+
∂2J(c|θ,y)

∂c2

∣∣∣∣
ĉ

∂2ĉ
∂θ∂yk

. (36)

Solving for ∂2ĉ
∂θ∂yk

, we obtain the second derivative of ĉ with respect to θ and yk:

∂2ĉ
∂θ∂yk

= −
[
∂2J(c|θ,y)

∂c2

∣∣∣∣
ĉ

]−1[
∂3J(c|θ,y)
∂c∂θ∂yk

∣∣∣∣
ĉ

+
∂3J(c|θ,y)
∂c∂θ∂ci

∣∣∣∣
ĉ

∂ĉi

∂yk

+
∂3J(c|θ,y)

∂c2∂yk

∣∣∣∣
ĉ

∂ĉ
∂θ

+
∂3J(c|θ,y)

∂c2∂ci

∣∣∣∣
ĉ

∂ĉi

∂yk

∂ĉ
∂θ

]
. (37)

• ∂2ĉ
∂θ2

Similar to the deduction of ∂2ĉ/∂θ∂yk, the second partial derivative of c with respect
to θ and θj is:

∂2ĉ
∂θ∂θj

= −
[
∂2J(c|θ,y)

∂c2

∣∣∣∣
ĉ

]−1[
∂3J(c|θ,y)
∂c∂θ∂θj

∣∣∣∣
ĉ

+
∂3J(c|θ,y)
∂c∂θ∂ci

∣∣∣∣
ĉ

∂ĉi

∂θj

+
∂3J(c|θ,y)

∂c2∂θj

∣∣∣∣
ĉ

∂ĉ
∂θ

+
∂3J(c|θ,y)

∂c2∂ci

∣∣∣∣
ĉ

∂ĉi

∂θj

∂ĉ
∂θ

]
. (38)

When estimating ODEs, we define J(c|θ,y) as (14) and H(θ, ĉ(θ)|y) as (8), and further
write the above formulas in terms of the basis functions in φ and the functions f on the
right side of the differential equation. For instance, d2H/dc2 is a block-diagonal matrix
with the ith block being wiφi(ti)T φi(ti) and dF/dc is a block vector containing blocks
−wiφi(ti)T (yi − xi(ti)).

The three-dimensional array ∂3J/∂c∂cp∂cq can be written in the same block vector form
as ∂2J/∂c∂θ with the uth entry of the kth block given by

∫ (
n∑

l=1

λl

[
d2fl

dxidxj

dfl

dxk
+

d2fl

dxidxk

dfl

dxj
+

d2fl

dxjdxk

dfl

dxi

])
φip(t)φjq(t)φku(t)dt

+
∫ n∑

l=1

λl

(
d3fk

dxidxjdxk
(fl − ẋl(t))

)
φip(t)φjq(t)φku(t)dt

− λi

∫
d2fi

dxjdxk
φ̇ip(t)φjq(t)φku(t)dt− λj

∫
d2fj

dxidxk
φip(t)φ̇jq(t)φku(t)dt

− λk

∫
d2fk

dxidxj
φip(t)φjq(t)φ̇ku(t)dt

assuming cp is a coefficient in the basis representation of xi and cq a corresponds to xj . The
array ∂3J/∂c∂θi∂θj is also expressed in the same block form with entry p in the kth block



being:

∫ (
n∑

l=1

λl

[
d2fl

dθidθj

dfl

dxk
+

d2fl

dθidxk

dfl

dθj
+

d2fl

dθjdxk

dfl

dθi

])
φkp(t)dt

+
∫ n∑

l=1

λl

(
d3fk

dxkdθidθj
(fl − ẋl(t))

)
φkp(t)dt− λk

∫
d2fk

dθidθk
φkp(t)dt.

The term ∂3J/∂c∂cp∂θi is in the same block from, with the qth entry of the jth block being:

∫ (
n∑

l=1

λl

[
d2fl

dθidxj

dfl

dxk
+

d2fl

dθidxk

dfl

dxj
+

d2fl

dxjdxk

dfl

dθi

])
φkp(t)φjq(t)dt

+
∫ n∑

l=1

λl

(
d3fk

dxjdxkdθi
(fl − ẋl(t))

)
φkp(t)φjq(t)dt

− λj

∫
d2fj

dθidxk
φ̇jq(t)φkp(t)dt− λk

∫
d2fk

dθidxj
φjq(t)φ̇kp(t)dt

where cp corresponds to the basis representation of xk.
Similar calculations give matrix d2H/dθdy explicitly as:

dĉ
dθ

T [
∂2H

∂ĉ∂y
+

∂2H

∂c2

dĉ
dy

]

− ∂H

∂c

[
∂2H

∂c2

]−1
{

N∑
p,q=1

dĉp

dθ

T ∂3J

∂c∂cp∂cq

dĉq

dy
+

N∑
p=1

∂3J

∂c∂cp∂θ

dĉp

dy

}

with dĉ/dy given by

−
[
∂2J

∂c2

]−1
∂2J

∂c∂y

and ∂2J/∂cdy being block diagonal with the ith block containing wiφi(ti).


