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Summary. The problem of analysing longitudinal data that are complicated by possibly informa-
tive drop-out has received considerable attention in the statistical literature. Most researchers
have concentrated on either methodology or application, but we begin this paper by arguing
that more attention could be given to study objectives and to the relevant targets for infer-
ence. Next we summarize a variety of approaches that have been suggested for dealing with
drop-out. A long-standing concern in this subject area is that all methods require untestable
assumptions.We discuss circumstances in which we are willing to make such assumptions and
we propose a new and computationally efficient modelling and analysis procedure for these
situations. We assume a dynamic linear model for the expected increments of a constructed
variable, under which subject-specific random effects follow a martingale process in the absence
of drop-out. Informal diagnostic procedures to assess the tenability of the assumption are pro-
posed. The paper is completed by simulations and a comparison of our method and several
alternatives in the analysis of data from a trial into the treatment of schizophrenia, in which
approximately 50% of recruited subjects dropped out before the final scheduled measurement
time.
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1. Introduction

Our concern in this paper is with longitudinal studies in which a real-valued response Y is to be
measured at a prespecified set of time points, and the target for inference is some version of the
expectation of Y . Studies of this kind will typically include covariates X, which may be time con-
stant or time varying. Frequently, the interpretation of the data is complicated by drop-outs: sub-
jects who are lost to follow-up before completion of their intended sequence of measurements.
The literature on the analysis of longitudinal data with drop-outs is extensive: important early
references include Laird (1988), Wu and Carroll (1988) and Little (1995), for which the Web of
Science lists approximately 200, 170 and 300 citations respectively, up to the end of 2006.
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A useful classification of drop-out mechanisms is the hierarchy that was introduced by Rubin
(1976) in the wider context of missing data. Drop-out is missing completely at random (MCAR) if
the probability that a subject drops out at any stage depends neither on their observed responses
nor on the responses that would have been observed if they had not dropped out. Drop-out is
missing at random (MAR) if the probability of drop-out may depend on observed responses but,
given the observed responses, is conditionally independent of unobserved responses. Drop-out
is missing not at random (MNAR) if it is not MAR. Note that we interpret drop-out MCAR,
MAR and MNAR only as properties of the joint distribution of random variables representing
a sequence of responses Y and drop-out indicators R; Little (1995) developed a finer classifi-
cation by considering also whether drop-out does or does not depend on covariates X. From
the point of view of inference, the importance of Rubin’s classification is that, in a specific
sense that we discuss later in the paper, likelihood-based inference for Y is valid under drop-out
MAR, whereas other methods for inference, such as the original form of generalized estimating
equations (Liang and Zeger, 1986), require drop-out MCAR for their validity. Note also that,
if the distributional models for the responses Y and drop-out indicators R include parameters
in common, likelihood-based inference under drop-out MAR is potentially inefficient; for this
reason, the combination of drop-out MAR and separate parameterization is sometimes called
ignorable, and either drop-out MNAR or MAR with parameters in common is sometimes called
non-ignorable or informative. The potential for confusion through different interpretations of
these terms is discussed in a chain of correspondence by Ridout (1991), Shih (1992), Diggle
(1993) and Heitjan (1994).

Our reasons for revisiting this topic are threefold. Firstly, we argue that in the presence of
drop-outs the inferential objective is often defined only vaguely. Though there are other possi-
bilities, the most common target is the mean response, which we also adopt. However, many
possible expectations are associated with Y : in Section 2 we contend that, in different applica-
tions, the target may be one of several unconditional or conditional expectations. However, in
all applications careful thought needs to be given to the purpose of the study and the analysis,
with recognition that drop-out leads to missing data but should not be considered solely as
an indicator of missingness. The common notation Y = .Yobs, Ymiss/ blurs this distinction. The
complexity of some of the models and methods that are now available in the statistics literature
may obscure the focus of a study and its precise objective under drop-out. For this reason, we
use as a vehicle for discussion the very simple setting of a longitudinal study with only two
potential follow-up times and one drop-out mechanism. A second but connected issue is that
the assumptions underlying some widely used methods of analysis are subtle; Section 3 provides
a discussion of these assumptions and an overview of the development of some of the impor-
tant methodology. We discuss what can and cannot be achieved in practice, again by using the
two-time-point scenario for clarity. Our third purpose in this paper is to offer in Section 4 an
approach that is based on dynamic linear models for the expected increments of the longitudinal
process. The assumptions on which we base our models are easily stated and doubly weak: weak
with respect to both longitudinal and drop-out processes. None-the-less, all methods for dealing
with missing data require, to some extent, untestable assumptions, and ours is no exception.
However, we are willing to make such assumptions in the following circumstances. Firstly, the
targets for inference are parameters of a hypothetical drop-out-free world that describes what
would have happened if the drop-out subjects had in fact continued. Secondly, any unexplained
variability between subjects exhibits a certain stability before drop-out. Thirdly, such stability
is maintained beyond each drop-out time by the diminishing subset of continuing subjects.

The first point is discussed in Section 2 and the ‘stability’ requirement of the next two points
is defined formally in Section 4 as a martingale random-effects structure. Section 4 also presents



Analysis of Longitudinal Data with Drop-out 3

graphical diagnostics and an informal test procedure for critical assessment of this property. Our
methods are quite general but for discussion purposes we return to the two-time-point scenario
in Section 5, before demonstrating the methods through simulations in Section 6. Section 7
describes a comparative analysis of data from a trial into the treatment of schizophrenia. The
paper closes with brief discussion in Section 8. Appendix A describes an implementation of our
proposal in the S language.

Our topic can be regarded as a special case of a wider class of problems concerning the joint
modelling of a longitudinal sequence of measured responses and times to events. Longitudinal
data with drop-out can formally be considered as joint modelling in which the time to event is
the drop-out time as, for example, in Henderson et al. (2000). In Section 7, we reanalyse the data
from their clinical example to emphasize this commonality and to illustrate our new approach.
For recent reviews of joint modelling, see Hogan et al. (2004) or Tsiatis and Davidian (2004).

Under our new approach, estimators are available in closed form and are easily interpretable.
Further, estimation is computationally undemanding, as processing essentially involves a least
squares fit of a linear model at each observation time. This is in contrast with many existing
approaches to drop-out prone data where, in our experience, the computational load of model
fitting can be a genuine obstacle to practical implementation when the data have a complex
structure and there is a need to explore a variety of candidate models.

2. Inferential objectives in the presence of drop-out

As indicated in Section 1, we consider in this section a study involving a quantitative response
variable Y , which can potentially be measured at two time points t = 1, 2 but will not be mea-
sured at t = 2 for subjects who drop out of the study. We ignore covariate effects and focus
on estimation of μt = E.Yt/, though similar arguments apply to the full distributions of the
response variables. We emphasize that this simple setting is used only to illustrate underlying
concepts without unnecessary notational complication. The general thrust of the argument
applies equally to more elaborate settings.

At time 1 the response is observed for all subjects, but at time 2 the response may be miss-
ing owing to drop-out. Leaving aside for the moment the scientific purpose of the study and
concentrating on statistical aspects, it is tempting to begin with the model

Y1 =μ1 +Z1,

Y2 =μ2 +Z2,

E.Z1/=E.Z2/=0:

⎫⎪⎬
⎪⎭ .1/

The parameter μ1 is the population mean at time 1. Writing down model (1) invites a similar
interpretation for μ2. In fact, the apparently straightforward adoption of model (1) brings with
it some interesting but usually unstated or ignored issues.

For the moment we ignore context and consider four abstract random variables, which we
shall call Y1, Y2a, Y2b and R, the last of which is binary. Our primary interest is in the expectations
of the Y -variables, and we write

Y2a =μ2a +Z2a,

Y1 =μ1 +Z1, P.R=0|S/=π.S/,

Y2b =μ2b +Z2b:

⎫⎪⎬
⎪⎭ .2/

In expression (2), E.Z1/= E.Z2a/= E.Z2b/= 0, S denotes a set of conditioning variables and
we allow π.·/ to depend arbitrarily on S. We make no assumption of independence between
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Z1, Z2a and Z2b, and for the unconditional case S =∅ we write π =π.∅/ = P.R = 0/. By con-
struction, the parameters μ1, μ2a and μ2b are the marginal expectations of Y1, Y2a and Y2b
respectively.

In the context of longitudinal data with drop-outs, subjects with R = 1 are the completers,
who are denoted group C. For each completer, Y1, Y2a and R are observed and have the obvious
interpretations as the responses at times 1 and 2 together with an indicator of response, whereas
Y2b is an unobserved counterfactual, representing the value of the response that would have
been observed if the subject had in fact dropped out.

The drop-outs, group D, are those subjects who have R = 0. These subjects experience the
event of dropping out of the study, which in different contexts may mean discontinuation of
treatment, cessation of measurement or both. If drop-out refers only to the discontinuation of
treatment, then Y2b is the observed response at time 2, and Y2a the counterfactual that would
have been observed if the subject had continued treatment. This situation, where drop-out does
not lead to cessation of measurement, is one which we discuss no further. Throughout the
remainder of the paper, we are concerned with the case when R= 0 does correspond to cessa-
tion of measurement, and consequently neither Y2a nor Y2b is observed for any subject in group
D. In this case, Y2b is the extant, but unobserved, longitudinal response at time 2 and Y2a is the
counterfactual that would have been observed if the subject in question had not dropped out.

In this framework we make explicit the possibility that the act of dropping out can influence
the response, rather than simply lead to data being missing. In other words, we separate the
consequence of dropping out from the observation of that consequence. At least conceptually,
the events ‘avoiding drop-out’ and ‘observing Y2a’ are considered to be distinct.

The above is reminiscent of the usual framework for causal inference, as described for instance
by Rubin (1991) or Rubin (2004), in which R would be a binary treatment assignment or other
intervention indicator. However, there are three important differences. The most obvious is
that with drop-out we never observe Y2b, whereas in causal inference it would be observed for
each subject in group D. The second difference is that, assuming no initial selection effect, in
the longitudinal setting we observe Y1 for all subjects, and this can be exploited in inference
through assumed or estimated relationships between responses before and after drop-out. The
third difference is that we assume R to be intrinsic to the subject rather than an assigned quantity
such as treatment, and between-subject independence is sufficient for us to avoid the need to
discuss assignment mechanisms.

In particular applications we need to consider the scientific objective of the study and conse-
quent target for inference. At time t =1 we can easily estimate μ1 =E.Y1/ by standard techniques.
Our focus will be the target for estimation at time t = 2, which we assume can be expressed as
some property of a random variable Y2, typically E.Y2/. We discuss this within the specific
setting of model (2).

2.1. Objective 1: realized second response
The first possible target for inference that we discuss is the realized, non-counterfactual, second
response

Y2 :=Y2aR+Y2b.1−R/, .3/

which is unobserved for subjects in group D. Further progress will therefore depend on the
strong and untestable assumption that Y2a =Y2b. This assumption seems to be implicit in most
published work and may be reasonable in circumstances where drop-out is deemed to have no
material effect on the measurement other than causing it to be missing. Applied uncritically,
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however, this can result in misleading inference about Y2. For example, drop-out might be
because of death, in which case Y2b could be assigned an arbitrary value such as 0 and the
definition of Y2 above is, for practical purposes, meaningless.

In contrast, the data that we analyse in Section 7 come from a longitudinal randomized
clinical trial of drug treatments for schizophrenia, in which drop-out implies discontinuation
of the assigned drug and the response could have been (but in fact was not) measured after
drop-out. In this setting, Y2 as defined at expression (3), is readily interpretable as the intention-
to-treat response.

2.2. Objective 2: conditional second response
A second possible target for inference is the response at time t =2 conditional on not dropping
out, or equivalently

Y2 :=
{

Y2a if R = 1,
undefined if R = 0.

Only complete cases, group C, contribute to inference, which is therefore always conditional on
R=1. This is perfectly proper if the objective is to study the response within the subpopulation
of subjects who do not drop out.

In the schizophrenia example, some subjects were removed from the study because their con-
dition did not improve. Objective 2 would therefore be appropriate in this context if interest
were confined to the subset of subjects who had not yet been removed from the study owing to
inadequate response to treatment.

2.3. Objective 3: hypothetical second response
Our third potential target for inference, again unobserved for group D subjects, is

Y2 :=Y2a,

which is appropriate if scientific interest lies in the (possibly hypothetical) response distribu-
tion of a drop-out-free population. We note that this is analogous to the usual estimand in
event history analysis, with drop-out equivalent to censoring. The assumption Y2a =Y2b makes
objectives 1 and 3 equivalent.

The essential difference between the interpretations of Y2 under objectives 2 and 3 is between
the marginal and conditional distributions of the response at time 2. This can be substantial, as
would be the case if, for example, drop-out occurs if and only if Z2a < 0. This might seem an
extreme example, but it could never be identified from the observed data.

It is important that the objectives be clearly stated and understood at the outset of a study,
especially for regulatory purposes. There are similarities with distinguishing intention-to-treat
and per-protocol analyses (Sommer and Zeger, 1991; Angrist et al., 1996; Little and Yau, 1996;
Frangakis and Rubin, 1999) and with causal inference in the presence of missing data or non-
compliance quite generally (Robins, 1998; Peng et al., 2004; Robins and Rotnitzky, 2004). The
hypothetical second response Y2a will be our inferential target for the analysis that we present
in Section 7 for the schizophrenia data. We argue that in this setting, where drop-out need not
be related to an adverse event, clinical interest genuinely lies in the hypothetical response that
patients would have produced if they had not dropped out. This is likely to be of greater value than
the realized or conditional second responses, since treatment performance is of more concern
than subject profiles. We emphasize, however, that this need not always be the so, and that in
some circumstances a combination of objectives may be appropriate. For example, Dufoil et al.
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(2004) and Kurland and Heagerty (2005) separately discussed applications in which there are
two causes of drop-out: death and possibly informative loss to follow-up. In these applications
the appropriate target for inference is the response distribution in the hypothetical absence of
loss to follow-up but conditional on not dying, thus combining objectives 2 and 3. In other
applications it is quite possible that a combination of all three objectives may be appropriate.

3. Approaches to the analysis of longitudinal data with drop-out

We now illustrate in the context of model (2) some of the variety of approaches that have been
proposed for the analysis of longitudinal data with drop-out. We do not attempt a complete
review (see Hogan and Laird (1997a, b), Little (1998), Hogan et al. (2004), Tsiatis and Davidian
(2004) or Davidian et al. (2005)) but hope to give a flavour of the broad classes of methods and
their underlying assumptions.

3.1. Complete case
Complete-case analysis is probably the simplest approach to dealing with drop-outs, as we
simply ignore all non-completers. As discussed earlier, this is appropriate for objective 2, or in
more formal language when our interest lies in the conditional distribution [Y1, Y2a|R=1]. The
relevant estimator within model (2) is

ȲC
2a = 1

|C|
∑
C

Y2a,

which estimates

μ2a +E.Z2a|R=1/:

3.2. Pattern–mixture
A complete-case analysis forms one component of a pattern–mixture approach (Little, 1993),
in which we formulate a separate submodel for each of [Y1|R= 0] and [Y1, Y2a|R= 1], perhaps
with shared parameters. From this, we can obtain valid inference for the marginal [Y1] by aver-
aging, but again only conditional inference for [Y2a|R=1], as with complete-case analysis. The
pattern–mixture approach is intuitively appealing from the perspective of retrospective data
analysis, in which context it is natural to compare response distributions in subgroups that are
defined by different drop-out times. From a modelling perspective it is also natural if we regard
the distribution of R as being determined by latent characteristics of the individual subjects.
In its most general form, the pattern–mixture approach is less natural if we regard drop-out
as a consequence of a subject’s response history, because it allows conditioning on the future.
However, Kenward et al. (2003) discussed the construction of pattern–mixture specifications
that avoid dependence on future responses.

3.3. Imputation methods
Imputation methods implictly focus on objective 3, sometimes adding the assumption that
Y2a =Y2b, in which case objectives 1 and 3 are equivalent.

3.3.1. Last observation carried forward
The last observation carried forward (LOCF) method imputes Y2a by Y1 for each subject in group
D. Writing π̂=|D|=n, the implied estimator for the mean response at time 2 is ȲC

2a.1− π̂/+ ȲD
1 π̂,

where ȲD
1 is the mean at time 1 for group D. The estimator is consistent for
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μ2a.1−π/+μ1π +E[Z2a{1−π.Z2a/}]+E{Z1π.Z1/}
and hence is not obviously useful. The LOCF method is temptingly simple and is widely used
in pharmaceutical trials, but it has attracted justifiable criticism (Molenberghs et al., 2004).

3.3.2. Last residual carried forward
A variant of the LOCF method would be to carry forward a suitably defined residual. Suppose,
for example, that we define

Y2 =
{

Y2a if R=1,
ȲC

2a + .Y1 − Ȳ1/ if R=0.

The implicit estimator is then

Ȳ2 = ȲC
2a − .1− π̂/.ȲC

1 − Ȳ1/, .4/

which is consistent for μ2a + E.Z2a|R= 1/− .1 −π/ E.Z1|R= 1/. Typically, if completers were
high responders at time 1, then we might expect the same to apply at time 2, and vice versa. The
variables Z1 and Z2a would then have the same sign. The expectation of Ȳ2 will be closer to μ2a
than the expectation of ȲC

2a, which is a desirable shift from the complete-case estimand if μ2a is
the target for inference.

For these reasons the last residual carried forward method must be preferable to the LOCF
approach as a means of overcoming potentially informative drop-out, but in our opinion it does
not provide an adequate solution to the problem. We describe it here principally to highlight two
important points. Firstly, the unspoken question underlying the estimator (4) is ‘how unusual
were the completers at time 1?’. If they were unusual, then we presume that this may also have
been true at time 2, and consequently adjust the observed time 2 average accordingly. Second,
this adjustment is downweighted by a factor 1− π̂. We observe, anticipating results in Section 4,
that in our hypothetical drop-out-free universe π =0, suggesting the estimator ȲC

2a − .ȲC
1 − Ȳ1/

as another alternative.

3.3.3. Multiple imputation
One of several possible criticisms of both the LOCF and the last residual carried forward meth-
ods is that, at best, they ignore random variation by imputing fixed values. Hot deck imputation
addresses this by sampling post-drop-out values from a distribution; in principle, this could be
done either by sampling from an empirical distribution, such as that of the observed values from
other subjects who did not drop out but had similar values of available explanatory variables,
or by simulating from a distributional model. Multiple-imputation methods (Rubin, 1987) take
this process one step further, by replicating the imputation procedure to enable estimation of,
and if necessary adjustment for, the component of variation that is induced by the imputation
procedure.

3.4. Missing at random: parametric modelling
Any assumed parametric form for the joint distribution [Y1, Y2a, R] cannot be validated empiri-
cally, because we can check only the marginal [Y1] and conditional [Y1, Y2a|R=1] distributions.
The assumption of drop-out MAR is useful because it allows one part of the joint distribution to
remain unspecified. This assumption assumes that the probability of drop-out does not depend
on the outcome at time 2 given the value at time 1, whence π.Y1, Y2a, Y2b/ simplifies to π.Y1/. In
general this assumption is untestable, but if we combine it with a parametric model for [Y1, Y2a]
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we obtain the beguiling result that likelihood inference is possible without any need to model
π.Y1/. The likelihood contribution in the C group is

P.R=1|Y1, Y2a/[Y1, Y2a]={1−π.Y1/}[Y1, Y2a],

whereas in the D group it is just π.Y1/[Y1]. The combined likelihood is thus L=LR|Y LY , where

LR|Y =∏
[R|Y1],

LY =∏
C

[Y1, Y2a]
∏
D

[Y1]:

The factorization [Y , R]= [R|Y ][Y ] is usually called a selection model (e.g. Michiels et al. (1999)),
although we prefer the term selection factorization, to contrast with the pattern–mixture factor-
ization [Y , R]= [Y |R][R], and to emphasize the distinction between how we choose to model the
data and how we subsequently conduct data analysis.

As an illustration, suppose that .Z1, Z2a/′ is distributed as N.0, σ2V/, with

V =
(

1 ρ
ρ 1

)
: .5/

Then the maximum likelihood estimator of μ2a under drop-out MAR is

μ̂2a = ȲC
2a − ρ̂.ȲC

1 − Ȳ1/, .6/

which again adjusts the observed time 2 sample mean according to how unusual the fully
observed group were at time 1, with shrinkage. Once more we call attention to this estima-
tor, and note an interpretation of the estimator ȲC

2a − .ȲC
1 − Ȳ1/ as being appropriate when

within-subject variability is small (ρ→1).
Parametric modelling under the combined assumption of drop-out MAR and separate param-

eterization has the obvious attraction that a potentially awkward problem can be ignored and
likelihood-based inference using standard software is straightforward. A practical concern with
this approach is that the ignorability assumption is untestable without additional assumptions.
A more philosophical concern arises if, as is usually so, the data derive from discrete time
observation of an underlying continuous time process. In these circumstances, it is difficult to
imagine any mechanism, other than adminstrative censoring, under which drop-out at time
t could depend on the observed response at time t − 1 but not on the unobserved response
trajectory between t −1 and t.

3.5. Missing at random: unbiased estimating equations
If interest is confined to estimating μ2a, or more generally covariate effects on the mean, then an
alternative approach, which is still within the framework of drop-out MAR, is to model π.Y1/

but to leave [Y1, Y2a] unspecified.
Under drop-out MAR we can estimate the probability of drop-out consistently from the

observed data: we need only R and Y1 for each subject, both of which are always available. This
leads to an estimated π̂.Y1/ of drop-out probability, often via a logistic model. The marginal
mean of Y2a can now be estimated consistently by using a weighted average of the observed Y2a,
where the weights are the inverse probabilities of observation (Horvitz and Thompson, 1952;
Robins et al., 1995):
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μ̂2a =∑
C

Y2a

1− π̂.Y1/

/∑
C

1
1− π̂.Y1/

: .7/

Use of equation (7) requires 1 − π̂.Y1/ to be strictly positive for all subjects, and it encoun-
ters difficulties in practice if this probability can be close to 0. This will not often be a material
restriction within the current simplified setting, but it can be problematic in more complex study
designs with high probabilities of drop-out in some subgroups of subjects.

3.6. Missing not at random: Diggle–Kenward model
Diggle and Kenward (1994) discussed a parametric approach to the problem of analysing lon-
gitudinal data with drop-outs, based on a selection factorization. In the special case of model
(2), the Diggle and Kenward model reduces to .Z1, Z2/′ ∼N.0, σ2V/ with V as in equation (5),
and

π.Y1, Y2/= exp.α+γ1Y1 +γ0Y2/

1+ exp.α+γ1Y1 +γ0Y2/
, .8/

with the tacit assumption that Y2 =Y2a =Y2b. Drop-out is MAR if γ0 =0 and MCAR if γ0 =γ1 =
0. The model therefore maps directly onto Rubin’s hierarchy, and in particular MAR drop-out is
a parametrically testable special case of a drop-out MNAR model. Although the likelihood does
not separate in the same way as under parametric drop-out MAR, likelihood inference is still
possible by replacing π with its conditional expectation, which is derived from the conditional
distribution of Y2 given Y1. The price that is paid for this facility is that correct inference now
depends on two untestable modelling assumptions, the normal distribution model for .Y1, Y2/

and the logistic model for drop-out (Kenward, 1998). There is no closed form for the estimator
of μ2a.

3.7. Missing not at random: random effects
Under the Diggle and Kenward model the probability of drop-out is directly determined by the
responses Y1 and Y2, again assuming that Y2a =Y2b. If measurement error contributes substan-
tially to the distribution of Y , a random-effects model may be more appealing. In this approach,
the usual modelling assumption is that Y and R are conditionally independent given shared,
or more generally dependent, random effects. See, for example, Wu and Carroll (1988), Little
(1995), Berzuini and Larizza (1996), Wulfsohn and Tsiatis (1997), Henderson et al. (2000) and
Xu and Zeger (2001). A simple model for our simple example is

Y1 =μ1 +U + "1,

Y2 =μ2 +U + "2,

U ∼N.0, τ2/,

"1, "2 ∼N.0, σ2/,

π.U, "1, "2/=π.U/= exp.α+γU/

1+ exp.α+γU/

with independence between U, "1 and "2. Models of this type are in general drop-out MNAR
models, because random effects are always unobserved and typically influence the distribution
of Y at all time points. It follows that the conditional distribution of the random effects, and
hence the probability of drop-out given Y , depends on the values of Y at all time points, and in
particular on values that would have been observed if the subject had not dropped out.
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For maximum likelihood estimation for the simple model above, the shared effect U can be
treated as missing data and methods such as the EM or Markov chain Monte Carlo algorithms
used, or the marginal likelihood can be obtained by numerical integration over U, and the
resulting likelihood maximized directly. Implementation is computationally intensive, even for
this simple example, and there is again no closed form for μ̂2a.

Models of this kind are conceptually attractive, and parameters are identifiable without any
further assumptions. But, as with the Diggle–Kenward model, the associated inferences rely on
distributional assumptions which are generally untestable. Furthermore, in our experience the
computational demands can try the patience of the statistician.

3.8. Missing not at random: unbiased estimating equations
A random-effects approach to joint modelling brings yet more untestable assumptions and we
can never be sure that our model is correct for the unobserved data, although careful diag-
nostics can rule out models that do not even fit the observed data (Dobson and Henderson,
2003). Rotnitzky et al. (1998), in a follow-up to Robins et al. (1995), argued strongly for a
more robust approach, on the assumption that the targets for inference involve only mean
parameters. They again left the joint distribution of responses unspecified but now modelled the
drop-out probability as a function of both Y1 and Y2a, e.g. by the logistic model (8). As applied
within the simple framework of model (2), the most straightforward version of the procedure
of Rotnitzky et al. (1998) is two stage: first, estimate the drop-out parameters from an unbi-
ased estimating equation; second, plug drop-out probability estimates into another estimating
equation.

For example, the drop-out parameters α, γ0 and γ1 in equation (8) might be estimated by
solving

∑
C

π̂.Y1, Y2a/

1− π̂.Y1, Y2a/
φ.Y1/−∑

D
φ.Y1/=0, .9/

where φ.Y1/ is a user-defined vector-valued function of Y1. As there are three unknowns in our
example, φ.Y1/ needs to be three dimensional, such as φ.Y1/= .1, Y1, Y2

1 /′. Since we need only
π.Y1, Y2a/ in the fully observed group, all components of equation (9) are available, and for esti-
mation there is no need for assumptions about Y2b. Assumptions would, however, be needed
for estimands to be interpretable. Rewriting equation (9) as

∑{
1.R=1/

π̂.Y1, Y2a/

1− π̂.Y1, Y2a/
−1.R=0/

}
φ.Y1/=0,

it is easy to see that the equation is unbiased by taking conditional expectations of the indicator
functions given .Y1, Y2a/.

At the second stage, the newly obtained estimated drop-out probabilities are plugged into an
inverse probability weighted estimating equation to give

μ̂2a =∑
C

Y2a

1− π̂.Y1, Y2a/

/∑
C

1
1− π̂.Y1, Y2a/

:

Rotnitzky et al. (1998) indicated that efficiency can be improved by augmenting the estimating
equation for μ2a by a version of equation (9) (with a different φ) and simultaneously solving
both equations for all parameters. Fixed weight functions may also be introduced as usual. They
also argued that estimation of the informative drop-out parameter γ0 will be at best difficult
and that the validity of the drop-out model cannot be checked if γ0 �=0. Their suggestion is that
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γ0 be treated as a known constant but then varied over a range of plausible values to assess
sensitivity of inferences for other parameters to the assumed value of γ0.

Carpenter et al. (2006) compared inverse probability weighting (IPW) methods with multiple
imputation. In particular, they considered a doubly robust version of IPW, which was intro-
duced by Scharfstein et al. (1999) in their rejoinder to the discussion, which gives consistent
estimation for the marginal mean of Y2a provided that at most one of the models for R or for
Y2a is misspecified. Their results show that doubly robust IPW outperforms the simpler version
of IPW when the model for R is misspecified, and it outperforms multiple imputation when the
model for Y2a is misspecified.

3.9. Sensitivity analysis
Rotnitzky et al. (1998) are not the only researchers to suggest sensitivity analysis in this con-
text. Other contributions include Copas and Li (1997), Scharfstein et al. (1999, 2003), Kenward
(1998), Rotnitzky et al. (2001), Verbeke et al. (2001), Troxel et al. (2004), Copas and Eguchi
(2005) and Ma et al. (2005).

Sensitivity analysis with respect to a parameter that is difficult to estimate is clearly a sensible
strategy and works best when the sensitivity parameter is readily interpretable in the sense that a
subject-matter expert can set bounds on its reasonable range; see, for example, Scharfstein et al.
(2003). In that case, if the substantively important inferences show no essential change within
the reasonable range, all is well. Otherwise, there is some residual ambiguity of interpretation.

Most parametric approaches can also be implemented within a Bayesian paradigm. An alter-
native to a sensitivity analysis is then a Bayesian analysis with a suitably informative prior
for γ0.

3.10. Conclusions
Existing approaches to the analysis of longitudinal data subject to drop-out may, if only implic-
itly, be addressing different scientific or inferential objectives. In part this may be because meth-
ods and terminology that are designed for general multivariate problems with missing data do
not explicitly acknowledge the evolution over time of longitudinal data. In the next section
we offer an alternative, which we believe is better suited to the longitudinal set-up and which
borrows heavily from event history methodology. We consider processes evolving in time and
propose a martingale random-effects model for the longitudinal responses, combined with a
drop-out mechanism that is allowed to depend on both observed and unobserved history, but
not on the future. The martingale assumption formalizes the idea that adjusting for missing data
is a defensible strategy provided that subjects’ longitudinal response trajectories exhibit stability
over time. Our drop-out model is formally equivalent to the independent censoring assumption
that is common in event history analysis; see, for example, Andersen et al. (1992). We do not
claim that the model proposed is universally appropriate nor suggest that it be adopted uncrit-
ically in any application. We do, however, offer some informal diagnostic procedures that can
be used to assess the validity of our assumptions.

4. Proposal

4.1. Model specification
4.1.1. Longitudinal model
We suppose that τ measurements are planned on each of n independent subjects. The measure-
ments are to be balanced , i.e. the intended observation times are identical for each subject, and
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without loss of generality we label these times 1, . . . , τ . For the time being, let us suppose that
all n subjects do indeed provide τ measurements. In the notation of Section 2, Ya is therefore
observed for every subject at every observation time, and Yb is counterfactual in every case.

We presume that covariates are also available before each of the τ observation times. These
we label Xa, noting that in theory there are also counterfactual covariates Xb: the values of
covariates if a subject had dropped out. We understand Xa to be an n×p matrix process, which
is constant if only base-line covariates are to be used, but potentially time varying and possibly
even dependent on the history of a subject or subjects. Note that we shall write Xa.t/ for the
particular values at time t, but that by Xa without an argument we mean the entire process, and
we shall follow this same convention for other processes.

At each observation time t we acknowledge that the underlying hypothetical response may be
measured with mean 0 error "a.t/. We assume that this process is independent of all others and
has the property that "a.s/ and "a.t/ are independent unless s= t. We make no further assump-
tions about this error process, and in particular we do not insist that its variance is constant
over time.

We denote the history of the hypothetical response processes Ya, the potentially counterfactual
covariates Xa and the measurement error process "a, up to and including time t, by

�t ={Xa.s/, Ya.s/, "a.s/ : s=1, . . . , t}:

We are not particularly interested in how the covariates Xa.t/ are obtained, but for estimation
we shall require that they become known at some point before time t: possibly this is at time
t − 1, or at time 0 for base-line covariates. It is useful to formalize this requirement by way of
the history

�t− =�t−1 ∪{Xa.t/},

which can be thought of as all information pertaining to Xa, Ya and "a that is available strictly be-
fore time t. Since �t contains information about exogenous covariates and measured responses,
functions of either or both may be included in the matrix Xa, allowing considerable flexibility
in the specification of a model.

We argue that the expected increments in Ya are a natural choice for statistical modelling.
Asking ‘What happened next?’ allows us to condition on available information such as the cur-
rent values of covariates and responses. Later, it will also be useful to condition on the presence
or absence of subjects.

For convenience, we set Xai.0/=Yai.0/="ai.0/=0 for all i, adopting the notation of continu-
ous time processes to avoid complicated subscripts. It is possible to specify a mean model for the
hypothetical response vector Ya = .Ya1, . . . , Yan/′ in terms of the discrete time local characteristics

E{ΔYa.t/|�t−}=E{Ya.t/−Ya.t −1/|�t−}
of the process (Aalen, 1987). The local characteristics capture the extent to which the vector
process Ya is expected to change before the next observations are recorded. Local characteristics
are a generalization of the intensity of a counting process. It is often possible to specify the local
characteristics in terms of linear models, and in this paper we consider models of the form

E{ΔYa.t/|�t−}=Xa.t/ β.t/− "a.t −1/ .10/

for t =1, . . . , τ . Setting aside for one moment the issue of measurement error, we have a linear
(also referred to as additive) model Xa.t/ β.t/ for the expected increment E{ΔYa.t/|�t−}. Linear
models on the increments of a process were proposed in the counting process literature by Aalen
(1978), and more recently by Fosen et al. (2006b) for a wider class of stochastic processes. Since
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a different model is specified at each time, linear models on increments can be quite general and
may incorporate random intercepts, random slopes and other, more complicated, structures.
We denote by β the deterministic p-vector of regression functions representing the effects on the
local characteristics of the covariates Xa. Recall once again that β represents the hypothetical
effects of covariates, assuming that drop-out does not occur. Since β is an unspecified function
of time, equation (10) can be thought of as a kind of varying-coefficient model (Hastie and
Tibshirani, 1993). This type of approach for longitudinal data has been taken by others: see
for example Lin and Ying (2001, 2003) or Martinussen and Scheike (2000) and Martinussen
and Scheike (2006), chapter 11. The crucial distinction between their work and ours is that it
is the increments, not the measured responses, that are the subject of our linear model. We
then accommodate measurement error by noting that, before time t, no information is available
about "a.t/, so the expected change in measurement error is simply −"a.t −1/, which is known
through �t−.

Incremental models correspond, on the cumulative scale, to models where the residuals form
a kind of random walk, which can be thought of as additional random effects. To see this, the
notion of a transform from the theory of discrete stochastic processes is required. Defining the
cumulative regression functions B.t/ by Σt

s=1β.s/, with B.0/ = 0, the transform of B by Xa,
denoted Xa ·B, is given by

.Xa ·B/.t/=
t∑

s=1
Xa.s/{B.s/−B.s−1/}

=
t∑

s=1
Xa.s/ β.s/

and forms part of the compensator, or predictable component, of Ya. Note that Xa · B differs
from the ordinary matrix product XaB and is the discrete time analogue of a stochastic integral.
The transform thus captures the cumulative consequences of covariates Xa and their effects β,
both of which may vary over time.

The residual process is Ma =Ya −Xa ·B−"a. This process has a property that makes it a kind
of random walk: it takes zero-mean steps from a current value to a future value. More formally,
for s� t we have that E{Ma.t/|�s}= Ma.s/, and the process is thus a martingale. Model (10)
may therefore be appropriate when, having accounted for fixed effects and measurement error,
the random effects can be modelled as a martingale.

Although their conditional mean properties may seem restrictive, martingales represent, from
the modeller’s perspective, a wide range of processes. Neither continuity nor distributional sym-
metry is required of Ma, and for our purposes its variance need only be constrained to be finite.
Further, the variance of the martingale increments may change over time. Serial correlation in
the Ma-process induces the same in the Ya-process, which is often a desirable property in models
for longitudinal data.

The linear increments model is, on the cumulative scale, a random-effects model for Ya of the
form (

measured
response

)
=

(
covariate

effects

)
+

(
random
effects

)
+

(
measurement

error

)
:

The sample vector of martingale random effects is free to be, among other things, heteros-
cedastic, where the variance of a martingale may change over time and between subjects, and
completely non-parametric, since the distribution of a martingale need not be specified by a finite
dimensional parameter. We reiterate, however, that martingale residuals impose a condition
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on the mean of their distribution given their past. This single condition, of unbiased estimation
of the future by the past, is sufficiently strong to be easily dismissed in many application areas—
though we note that this can often be overcome by suitable adjustment of the linear model.
It seems to us that in many applications an underlying martingale structure seems credible, at
least as a first approximation. We reiterate that the linear model may be adapted to include
summaries of previous longitudinal responses if appropriate. Including dynamic covariates, e.g.
summaries of the subject trajectories to date, may sometimes render the martingale hypothe-
sis more tenable, although the interpretation of the resulting model is problematic if observed
trajectories are measured with appreciable error.

We have shown that models for the hypothetical response Ya can be defined in terms of linear
models on its increments, and that such models are quite general. At no extra cost, these com-
prise subject-specific, martingale random effects. We do not discuss in detail the full generality
of this approach; instead, we now turn to the problem of drop-out.

4.1.2. Drop-out model
Unfortunately, not all the hypothetical longitudinal responses Ya are observed. Rather, subject
i gives rise to 1 �Ti � τ measurements, i.e. we observe Yai.1/, . . . , Yai.Ti/. Although both the
hypothetical responses Yai.Ti + 1/, . . . , Yai.τ / and the realized responses Ybi.Ti + 1/, . . . , Ybi.τ /

go unobserved, we restrict our assumptions to the former.
We can also consider drop-out as a dynamic process. Let Ri denote an indicator process that

is associated with subject i, with Ri.t/ = 1 if subject i is still under observation at time t, and
Ri.t/ = 0 otherwise. We let �t be the history of these indicator processes up to time t. We do
not distinguish between competing types of drop-out, for instance between administrative cen-
soring, treatment failure or death, because we need not do so to make inferences regarding the
hypothetical responses Ya.

Like the covariate processes, we assume that the drop-out processes are predictable, in the
sense that Ri.t/ is known strictly before time t. More formally, we shall denote by �t− the infor-
mation that is available about drop-out before time t, and assume that Ri.t/∈�t−. Although in
this instance it follows that �t− = �t , it is useful to distinguish notationally between informa-
tion that is available at these different points in time. We think of Ri as a process in continuous
time, but in practice we are only interested in its values at discrete time points. Predictability is a
sensible philosophical assumption, disallowing the possibility that drop-out can be determined
by some future, unrealized, event. Note that this does not preclude the possibility that future
events might depend on past drop-out.

The second important requirement that we impose on the processes Ri is that of independent
censoring. This terminology, though standard in event history analysis, suggests more restric-
tions than are in fact implied. We give the formal definition and then discuss its implications for
drop-out in longitudinal studies. Recall that �t− is the history of the drop-out process before
time t. Censoring (or drop-out) is said to be independent of the hypothetical response processes
Ya if, and only if,

E{ΔYa.t/|�t−, �t−}=E{ΔYa.t/|�t−}
(Andersen et al. (1992), page 139). Independent censorship says that the local characteristics
of Ya are unchanged by additional information about who has been censored already, or by
knowledge of who will, or will not, be observed at the next point in time. Fundamentally, this
assumption ensures that the observed increments remain representative of the original sample
of subjects, if drop-out had not occurred. This requirement is similar in spirit to the sequential
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version of drop-out MAR (Hogan et al. (2004), after Robins et al. (1995)), which states that

[Ya.t/|Ya.s/ : s< t; Xa.s/, R.s/ : s� t]= [Ya.t/|Ya.s/ : s< t; Xa.s/ : s� t]:

We emphasize that independent censoring is a weaker assumption than sequential drop-out
MAR, since the former conditions on the complete past, and not just the observed past, and
so allows drop-out to depend directly on latent processes. Moreover, it is a statement about
conditional means, whereas the assumption of sequential drop-out MAR concerns conditional
distributions.

Having laid out our assumptions concerning the drop-out process, we make a few comments
on what has not been assumed. We have not specified any model, parametric or otherwise, for
the drop-out process. Consequently, the drop-out process may depend on any aspect of the lon-
gitudinal processes, e.g. group means, subject-specific time trends or within-subject instability.
The only requirement is that this dependence is not on the future behaviour of Ya. Though often
plausible, this is usually untestable.

4.1.3. Combined model
As we have already discussed, our target for inference will be the hypothetical effects of covari-
ates supposing, contrary to fact, that subjects did not drop out of observation. More explicitly,
we seek to make inference about β in the local characteristics model,

E{ΔYa.t/|�t−}=Xa.t/ β.t/− "a.t −1/,

for the hypothetical response Ya, drawing on the Ti observed covariates Xai.1/, . . . , Xai.Ti/ and
responses Yai.1/, . . . , Yai.Ti/ for every i.

Recall that Ri is an indicator process, 1 if subject i is still under observation. We shall write

R.t/=

⎛
⎜⎜⎜⎝

R1.t/ 0 · · · 0

0 R2.t/
:::

:::
: : : 0

0 · · · 0 Rn.t/

⎞
⎟⎟⎟⎠,

for the diagonal matrix with the Ri.t/ along the diagonal. We claim that the processes R, X=RXa
and Y =R ·Ya are all fully observed. Clearly, R is observed; RXa (the ordinary matrix product
of these processes) is observed since, whenever Xa is unobserved, R=0. Recall that R ·Ya is the
transform of Ya by R, and is defined by

.R ·Ya/.t/=
t∑

s=1
R.t/ ΔYa.t/:

So R · Ya is the process Ya whose individual elements are stopped , i.e. held constant, after the
time Ti of their last observations. Hence this process, also, is observable. We denote the history
of the observed data X, Y and R as

�t ={X.s/, Y.s/, R.s/ : s=1, . . . , t}
and define �t− =�t−1 ∪{X.t/, R.t/}. The following model is induced for the observed longitu-
dinal responses Y :

E{ΔY.t/|�t−}=X.t/ β.t/−E{".t −1/|�t−} .11/

where "=R · "a. This equality may be derived directly from the linear model for the local char-
acteristics of Ya, the fact that R is predictable and the independent censoring assumption. The
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key point is that the same parameters β appear in the local characteristics of both Y and Ya, and
hence are estimable from observed data. These parameters represent the effects of covariates
on the expected change in hypothetical longitudinal response at a given time and so will often
have scientific relevance. In Section 4.2 we demonstrate how to estimate these parameters.

4.2. Model fitting
4.2.1. Estimation
To estimateβ= .β1, . . . , βp/′ we seek a matrix-valued process X− having the property that X−X=
I. However, owing to drop-out such a process does not always exist. Let �={t :det{X′.t/ X.t/} �=
0}, the set of times t at which the matrix X′.t/ X.t/ is invertible. This � is a random set over which
estimation may be reasonably undertaken, often an interval whose upper end point is reached
only when very few subjects remain under observation. On � the matrix {X′.t/ X.t/}−1X′.t/
exists, making the process X− given by

X−.t/=
{

{X′.t/ X.t/}−1X′.t/ t ∈�,
0 t �∈�

well defined. So on � our estimate

β̂.t/=X−.t/{Y.t/−Y.t −1/}
of β.t/ is just the ordinary least squares (OLS) estimate of this parameter, based on all available
increments. Outside � we simply have β̂.t/=0. This leads to the estimator B̂ of B that is given by

B̂.t/=
t∑

s=1
β̂.s/

=
t∑

s=1
X−.s/{Y.s/−Y.s−1/}= .X− ·Y/.t/:

.12/

Thus we set B̂ = X− · Y , the transform of Y by X−. So defined, B̂ is an estimator of B on �;
specifically, it estimates B� =1� ·B, and there may be some small bias in estimating B. Estima-
tion of B� is reasonable in the present context of varying sample sizes and covariates, and is, in
fact, all that can be expected of a non-parametric technique. Without parametric interpolation,
there may be time points about which the data can say nothing.

This estimator is again due to Aalen (1989) in the setting of event history analysis, and to
Fosen et al. (2006b) for more general continuous time processes. It is straightforward to show
that β̂.t/ is unbiased for 1�.t/ β.t/:

E{β̂.t/−1�.t/ β.t/}=E{X−.t/ ΔY.t/−1�.t/ β.t/}
=E[X−.t/ E{ΔY.t/|�t−}−1�.t/ β.t/]

=E{X−.t/[X.t/ β.t/−E{".t −1/|�t−}]−1�.t/ β.t/}
=E{1�.t/ β.t/}−E{".t −1/}−E{1�.t/ β.t/}=0:

Therefore, B̂ is unbiased for B�. What we have done is to mimic Aalen’s unbiased estimator,
and to show that measurement error does not affect this unbiasedness.

The estimator B̂ is essentially a moment-based estimator of B. It sums the least squares esti-
mates of β based on the observed increments. Crucially, nowhere do we require Y and R to be
independent. We rely on an assumption that hypothetical random effects are martingales, and
if this assumption breaks down then so does unbiasedness. Each surviving subject is thought to
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have a mean 0 step in their random effects; non-zero expected increments in the random effects
cannot be distinguished from a change in population mean.

4.2.2. Inference
Inference is discussed in Farewell (2006). Estimators of the finite sample and asymptotic vari-
ances of B̂ are not so readily derived as in the corresponding theory of event history analysis.
Counting processes behave locally like Poisson processes (Andersen et al., 1992), having equal
mean and variance, but this result does not hold in generality. Moreover, error "a in the mea-
surement of the hypothetical variable leads to negatively correlated increments in B̂ and results
in a complex pattern of variability. However, computing time occupied by parameter estimation
is negligible, so we recommend the use of the bootstrap for inference about B. Farewell (2006)
provides a result that B̂ is

√
n consistent for B with a Gaussian limiting distribution. He also

gives an approximation that, in the absence of measurement error, justifies a simple calcula-
tion using OLS regression, as outlined in Appendix A. In the application to follow, we use the
bootstrap distribution for B̂.

4.3. Diagnostics
Most diagnostic tools are based in some way on the estimated residuals from a fitted model. In
the current setting the residuals are Z =M + " and may be estimated by

Ẑ = .I −H/ ·Y�,

where H = XX− is the hat matrix of OLS and Y� = 1� · Y . Standard residual plots, e.g. of Ẑ

against fitted values or covariates, should reveal systematic misspecifications of the model for the
mean response but need not show the usual random scatter since we do not assume homogeneity
of variances, either between or within subjects.

One simple diagnostic that is tailored to the martingale assumption is a scatterplot of incre-
ments in the residuals, Ẑ.t/− Ẑ.t −1/, against Ẑ.t −1/. In the absence of measurement error, a
plot of this kind should show no relationship. Substantial measurement error would induce a
negative association, in which case the fit would be improved by including Ẑ.t −1/ as a covariate
at time t.

We also propose two new diagnostic tools, as follows. The first is a graphical check of the
martingale structure of the random effects and exploits the fact that, for t>1,

cov{Ma.1/+ "a.1/, Ma.t/+ "a.t/}=V{Ma.1/}: .13/

This result is easily proved, since martingales have uncorrelated increments and the errors " are
mutually independent. The point about equation (13) is that the empirical version of the left-
hand side can be evaluated at each measurement time, whereas the expression on the right-hand
side shows that the corresponding theoretical quantity is constant over time. Hence, a plot of
cov{Ẑ.1/, Ẑ.t/} against t has diagnostic value, with departures from a straight line with zero
slope indicating unsuitability of model (11).

Clearly, similar plots can be derived based on the observation that

cov{Ma.s/+ "a.s/, Ma.t/+ "a.t/}=V{Ma.s/}

for all 1� s < t, where the above diagnostic corresponds to choosing s=1. What is less clear is
how much additional information is provided by such plots, since the plots are closely related.



18 P. Diggle, D. Farewell and R. Henderson

We supplement this covariance diagnostic plot with an informal test statistic. Writing Ẑ.τ /

for the final value that is assumed by the process Ẑ, we have in particular that

E{Ẑ
′
.1/Ẑ.2/}=E{Ẑ

′
.1/Ẑ.τ /}:

Therefore E[Ẑ
′
.1/{Ẑ.τ /− Ẑ.2/}]=0, and for large n the approximation

Ẑ
′
.1/{Ẑ.τ /− Ẑ.2/}

√
V[Ẑ

′
.1/{Ẑ.τ /− Ẑ.2/}]

∼N.0, 1/ .14/

holds. Large absolute values of this statistic constitute evidence against the martingale hypoth-
esis. In practice, we use the bootstrap variance in place of its theoretical equivalent in the
denominator.

4.4. Summarizing remarks
In summary, our model is

Ya.t/= .Xa ·B/.t/+Ma.t/+ "a.t/

for t =1, . . . , τ . The observed data are R, X=RXa and Y =R ·Ya. We assume that

E{Ma.t/|Xa.t/, R.t/; Xa.s/, R.s/, Ya.s/, "a.s/ : s=1, . . . , t −1}=Ma.t −1/

and our estimator for B is

B̂.t/=
t∑

s=1
X−.s/{Y.s/−Y.s−1/}:

Appendix A illustrates how this can be implemented by using standard statistical software.

5. Simple example revisited

For further discussion we return to the simple two-time-point example that was used in Sections
2 and 3. Mixing the notation of the previous sections, our hypothetical longitudinal model can
formally be expressed as

E.Y1/=μ1,

E.Y2a −Y1|Y1, "1/=μ2a −μ1 − "1,

and the independent censoring assumption asserts that

E.Y2a −Y1|Y1, "1, R/=E.Y2a −Y1|Y1, "1/:

Written using more traditional modelling notation, these assumptions are satisfied if

Y1 =μ1 +M1 + "1, .15/

Y2a =μ2a +M2a + "2a, .16/

{.M1, M2a/, "1, "2a} mutually independent with zero means .17/

and

E.M2a −M1|M1, R=1/=0: .18/

Under assumptions (15)–(18), our least squares estimator (12) is given by
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μ̂2a = Ȳ1 + ȲC
2a − ȲC

1

= ȲC
2a − .ȲC

1 − Ȳ1/ .19/

and is unbiased for μ2a.
Consider now the assumptions that lead to the unbiasedness of μ̂2a. Equation (15) is unre-

markable; equation (16) is for the possibly counterfactual drop-out-free response Y2a, as we have
argued for objective 3. The zero-mean assumptions in condition (17) are needed to give μ1 and
μ2a interpretations as drop-out-free population means, which are the parameters of interest.
Note, though, that we do not require M1 and M2a to be independent. Equation (18) provides our
key assumption, that the subject-specific random effects have mean 0 increments, conditional on
that subject’s observed history. It is this assumption that we test with our diagnostic in Section
4.3. An untestable consequence of equation (18), taken together with condition (17), is that the
subject-specific random effects also have mean 0 increments conditional on dropping out.

Equations (15)–(18) completely specify the model and it is perhaps worth restating what has
not been assumed. There are no distributional statements about either the random effects or
the measurement errors, and there is no assumption of identical distributions across subjects.
There are no statements whatsoever about Y2b, what happens after drop-out. Importantly, we
have not made any further assumptions on the drop-out probability π.·/. This does not mean
that π.·/ is entirely unrestricted: condition (18) holds if, and only if,

E[Δ{1−π.M1, Δ/}|M1]=0, .20/

where Δ = M2a − M1. Examples that satisfy the above condition include a random-intercept
model in which Δ = 0, with any π.·/, an independent censoring drop-out model in which
π.M1, Δ/=π.M1/, with any Δ for which E.Δ|M1/=0, and any π.M1, Δ/ that is an even function
of Δ, taken together with any zero-mean, symmetric distribution [Δ|M1].

None of these examples are drop-out MAR models, since in every case π.Y1, Y2a/ �=π.Y1/.
Notwithstanding this comment, in the first two examples we have drop-out probability depend-
ing only on the most recent random effect M1. In this sense our assumptions are similar to
sequential drop-out MAR (Hogan et al., 2004), with the additional assumption of martingale
random effects. Nevertheless, and as the third example illustrates, it is possible to construct a
variety of models for which π.M1, Δ/ �=π.M1/ yet condition (20) remains true.

6. Simulations

We demonstrate the use of the covariance diagnostics in two simulation studies. Pitting a mar-
tingale random-effects process against a popular non-martingale alternative, we report the
estimated power and type I error rates of the informal test (14) and illustrate the suggested
covariance plots.

6.1. Scenario 1
The first simulation scenario mimics the schizophrenia example that is to be considered in Sec-
tion 7, though with just one treatment group and so no covariates. Measurements are scheduled
at weeks .w1, . . . , w6/= .0, 1, 2, 4, 6, 8/.

Let U0, U1, U2, . . . be independent mean 0 Gaussian n-vectors, which we use to construct two
random-effects processes. Put Sa.0/=Ma.0/=0, and for non-negative t define

Sa.t/=U0 +U1wt ,

Ma.t/=U0 +U1 +U2 + . . . +Ut−1:
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Then Sa is a random-intercept and slope process, of the kind that was described by Laird and
Ware (1982), whereas Ma is a martingale. We take V.U0/ =σ2

0I and V.U1/ =σ2
1I and choose

the variances of the further values to ensure that V{Sa.t/}= V{Ma.t/}. This set-up allows us
to compare these two types of random-effects process with, as far as is possible, all else being
equal.

The responses are now defined as

YS
a .t/=μt +Sa.t/+ "a.t/,

YM
a .t/=μt +Ma.t/+ "a.t/,

with "a.t/ ∼ N.0, σ2
" I/, and independence between time points. The probabilities of drop-out

between times t and t + 1 are logistic with exponents αt +γt Sa.t/ and αt +γt Ma.t/ for YS and
YM respectively.

For each of n = 125, 250, 500, 1000 we took 1000 simulations from this model. We used
μ1 = . . . =μ6 = 0 and chose the other parameter values to correspond roughly to the schizo-
phrenia data: σ2

0 =200, σ2
1 =15, σ2

" =100 and

.α1, . . . , α5/= .−8, −6, −6, −6, −4/,

.γ1, . . . , γ5/= .0:2, 0:3, 0:3, 0:5, 0:6/:

This led to about 50% drop-out in each model, spread over time points 2–5, with only about 1%
of subjects dropping out after just one observation. Each data set was analysed by using our
linear increments (LI) approach, an IPW estimating equation approach and by fitting a multivar-
iate normal distribution with unstructured within-subject covariance matrix (method UMN).
Under both the IPW and UMN methods we made a misspecified drop-out MAR assumption.
For IPW we used response at time t − 1 as covariate in a logistic model for drop-out at time t.
No drop-out model is needed for UMN under drop-out MAR.

Table 1 summarizes results at n=500. There was severe downward bias in the observed mean
values (OLS) for each of YM

a and YS
a and this is only partly corrected by the misspecified IPW or

UMN methods. The LI fit to YM shows no bias, as expected, and confidence interval coverage
is good. The observed mean bias was improved but not removed when our method is used on
YS , unsurprisingly given that the model is then also misspecified. Usually such misspecification
would be detected by the diagnostics. For example, box plots of the residual covariances (Fig. 1)
suggest good diagnostic power for distinguishing the models and this is confirmed by the per-
formance of the test statistic (14), for the variance of which we used 100 bootstrap samples for
each data set (Table 2).

6.2. Scenario 2
For the next simulation we introduce covariates and change the drop-out model. As well as
an intercept term we include a time constant Bernoulli(0.5) covariate and also a time-varying
covariate, independently distributed as N.0, σ2

W / at each time point. In the notation of Section
4, the corresponding cumulative regression functions are taken to be

B.t/= .0, 1.t> 0/ exp{−.t −1/}, t/′:

We add to the mix some error in measurement ", arising according to a t-distribution on ν
degrees of freedom and scaled by a factor σ", i.e. σ−1

" "i.t/∼ t.ν/. The final measurement times
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Table 1. Estimated mean responses and standard errors SE for scenario 1 using observed
data without correction for drop-out (OLS), with IPW or a multivariate normal model with
unstructured covariance matrix (UMN), both of which falsely assume that drop-out is MAR,
and under the LI method†

Method Results for the following value of w:

0 1 2 4 6 8

YM OLS Mean 0.00 −0.30 −2.75 −4.34 −10.61 −19.41
SE 0.77 0.78 0.77 0.91 1.32 1.89

IPW Mean −0.03 −0.03 −1.12 −2.25 −6.10 −13.17
SE 0.78 0.81 0.84 1.12 2.04 2.83

UMN Mean −0.02 −0.02 −0.53 −1.80 −6.00 −12.90
SE 0.77 0.77 0.85 0.91 1.44 1.83

LI Mean 0.00 −0.02 −0.02 0.01 0.05 0.02
SE 0.77 0.78 0.89 0.97 1.55 2.05
Cov (%) 96.4 94.1 95.2 94.3 94.8 94.6

YS OLS Mean −0.01 0.26 −2.90 −5.08 −12.95 −22.38
SE 0.79 0.82 0.83 1.06 1.11 1.34

IPW Mean 0.01 −0.17 −1.25 −2.84 −8.06 −15.67
SE 0.79 0.82 0.97 1.16 1.68 1.83

UMN Mean 0.01 −0.15 −0.75 −2.38 −7.12 −13.45
SE 0.79 0.82 0.89 1.12 1.16 1.39

LI Mean −0.01 0.02 −0.16 −0.98 −3.61 −7.81
SE 0.79 0.82 0.93 1.20 1.18 1.44
Cov (%) 94.8 95.7 94.1 85.9 19.8 0.1

†The coverage Cov of nominal 95% confidence intervals under LI is also included. The sample
size was n=500, and results were averaged over 1000 simulations.

T1, . . . , Tn are determined by the relationship

logit{P.T = t|T � t, U0, . . . , Ut−1/}=
{−∞ t =0,

α+Sa.t/+Ma.t/ t =1, . . . , 6,
∞ t =7,

so that 1�Ti �7 for each i.
We defined

YS
a =Xa ·B+Sa + "a,

YM
a =Xa ·B+Ma + "a:

The parameters were taken to be σ0 =σ1 =σW = 1, π = 1
2 , σ" = 1

3 , ν = 3 and α=−7: This gave
approximately 25% drop-out, roughly evenly spread over times 2–6. Again 100 bootstrap sam-
ples were drawn to compute variances for the test statistic (14).

Mean estimates of B for sample size n=500 using both YM and YS are shown in Fig. 2, together
with the true values and ±2 empirical standard errors around the YM-estimates. Bootstrap
standard errors matched the empirical values closely. Standard errors derived from asymptotic
results, which avoid the need to bootstrap but at the expense of assuming negligible measure-
ment error, were slightly conservative, overestimating typically by about 5%. As expected there
was no evidence of bias for our increment-based estimates of B based on YM . Estimates from
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(a) (b)

Fig. 1. Box plots of cov{Ẑ.1/, Ẑ.t/} based on 1000 simulations under scenario 1 at sample size n D 500:
(a) true martingale structure Y M ; (b) Laird–Ware random-intercept and slope structure Y S

Table 2. Estimated size and power of the diagnostic test,
based on simulation results

Scenario Results for the following values of n:

125 250 500 1000

1 Power 0.307 0.530 0.766 0.980
Type I error 0.056 0.056 0.053 0.059

2 Power 0.147 0.241 0.390 0.686
Type I error 0.056 0.059 0.045 0.052
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Fig. 2. Summary of estimates B̂ for scenario 2, at sample size nD500: mean dynamic estimates from Y M

( ) and Y S together with true values (. . . . . . .)

the misspecified model for YS were also good for B2 and B3; in fact so close that the lines in the
plots are hardly distinguishable. There was, however, bias for the intercept B1. Identification of
the random-effect structure through residual covariances was more difficult than for scenario
1, causing some loss of power for the test statistic (Table 2).

7. Analysing data from a longitudinal trial

We now describe an application of the methods of Section 4 to data from the schizophrenia clin-
ical trial that was introduced earlier. The trial compared three treatments: a placebo, a standard
therapy and an experimental therapy. The response of interest, PANSS, is an integer ranging
from 30 to 210, where high values indicate more severe symptoms. A patient with schizophrenia
entering a clinical trial may typically expect to score around 90.

Of the 518 participants, 249 did not complete the trial, among whom 66 dropped out for rea-
sons that were unrelated to their underlying condition. The remaining 183 represent potentially
informative drop-out, though we emphasize that our new approach does not need to distinguish
these from the non-informative drop-outs. We mention them only because we shall refer to other
procedures that draw such a distinction.

The goal of the study was to compare the three treatments with respect to their ability to
improve (reduce) the mean PANSS-score. The patients were observed at base-line (t = 1) and
thereafter at weeks 1, 2, 4, 6 and 8 (t =2, 3, 4, 5, 6) of the study. The only covariates used here are
treatment groups. The dotted curves in Fig. 3 show for reference the observed mean response
at each time in each treatment group, calculated in each case from subjects who have not yet
dropped out. Hence, the plotted means estimate conditional expectations of the PANSS-score
(objective 2), which are not necessarily the appropriate targets for inference.

Fig. 3 displays the pronounced differences between the OLS estimates and their dynamic
linear counterparts. The OLS estimates invite the counter-intuitive conclusion that, irrespective
of treatment type, patients’ PANSS-scores decrease (improve) over time. By contrast, our incre-
ment-based estimator suggests that this is a feature of informative drop-out, and that patients
on the placebo do not improve over time; in fact, there is even a suggestion that their PANSS-
scores increase slightly. The levelling out of treatment effects over time that is seen under our
new approach is also unsurprising.
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Fig. 3. Estimated PANSS mean values under OLS (. . . . . . .) and our dynamic linear approach ( ): the
topmost curves correspond to the placebo group, the middle curves to the standard treatment group and the
lowest curves to the experimental treatment group

In Fig. 4 and Table 3 we compare the dynamic linear fits with those which were obtained under
four other approaches. Fig. 4 shows the estimated means for each treatment group whereas
Table 3 gives for standard treatment the estimated mean change in response between the begin-
ning and end of the study, together with the effect of placebo or experimental treatment on this
quantity. The other approaches are as follows:

(a) maximum likelihood estimation under a multivariate normal model with unstructured
covariance matrix (method UMN) (this approach assumes that drop-out is MAR);

(b) a quadratic random-effects joint longitudinal and event time informative drop-out model
that was fitted by Dobson and Henderson (2003) using EM estimation, as suggested by
Wulfsohn and Tsiatis (1997) (Dobson and Henderson compared four random-effects
structures and concluded that, between these, the model that is used here with random-
intercept, slope and quadratic terms ‘is strongly preferred by likelihood criteria, even after
penalizing for complexity’;

(c) an IPW estimating approach as described by Robins et al. (1995), with a logistic drop-out
MAR model.

(d) a second martingale fit (DYN) in which residuals at time t are included as covariates for
the increments between t and t +1, along the lines of the dynamic covariate approaches
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(a) (b)

(c) (d)

Fig. 4. Estimated PANSS mean values for (from top to bottom pairs of curves, in every case) the placebo,
standard and experimental groups (- - - - -, estimates generated under methods (a)–(d) in the text; ,
estimates under the dynamic linear approach): (a) method UMN; (b) Dobson and Henderson’s (2003) method;
(c) IPW method; (d) method DYN

for event history analyses that were described by Aalen et al. (2004) and Fosen et al.
(2006a).

There are broad similarities between our increment-based estimates and any of approaches
(a)–(d) but some differences are worth noting. Method (a) gives a smaller adjustment to the
observed means than the others, whereas method (c) adjusts almost as much as our linear incre-
ment fits. Both of these are drop-out MAR models. Method (b) assumes a Gaussian response
but method (c) has no modelling assumptions for the responses, a gain that is obtained at the
expense of an increase in standard errors. Method (d) leads to estimates that are comparable
with the fit that is obtained by using only exogenous covariates, albeit slightly closer to the
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Table 3. Effect of treatment on change in mean response (week 8 minus week 0)
under the LI approach (12), OLS with an independence assumption and methods
(a)–(d) described in the text†

Treatment Results for the following methods:

LI OLS (a) (b) (c) (d)
(UMN) (Dobson (IPW) (DYN)

and
Henderson,

2003)

S −5.10 −19.12 −9.90 −5.34 −6.22 −8.29
(3.49) (3.43) (3.06) (2.94) (7.72) (3.21)

P – S 13.04 6.01 11.01 13.66 12.37 12.42
(5.32) (5.01) (4.49) (5.29) (8.82) (4.82)

E – S −7.07 −1.43 −4.89 −5.97 −8.18 −5.40
(3.80) (3.86) (3.38) (3.37) (7.83) (3.73)

†‘S’ represents the standard treatment, ‘P’ placebo and ‘E’ the experimental treatment.
Standard errors are in parentheses.

observed means. Method (b), the quadratic random-effects model, gives estimates that are close
to those obtained by using our new approach. Method (b) took several days of computing time
to fit, whereas estimates for other models can be obtained quickly, our linear increment models
in particular. The availability of a closed form estimator (12) meant that the 1000 bootstrap
simulations that were needed to compute the standard errors were completed in under 10 on an
unremarkable laptop computer. In Appendix A, we demonstrate briefly one way in which our
dynamic linear models may be implemented by using standard software.

It is interesting to recall that, in approach (b), Dobson and Henderson (2003) modelled
the drop-out process explicitly and distinguished censoring due to inadequate response from
other censoring events; neither is necessary under our proposed approach. Given the similari-
ties between our dynamic linear results and those of method (b), the Dobson and Henderson
assumption that these other events are uninformative about PANSS seems to be justified.

The diagnostics proposed may be illustrated by using these data. Having computed B̂, it is
straightforward to extract Ẑ. Fig. 5 shows Ẑ.t/− Ẑ.t −1/ against Ẑ.t −1/ at each time point and
provides some evidence that our original model is misspecified. Fig. 5(a) for week 1 clearly indi-
cates a weak negative association, which is consistent with measurement error in the response.
The effect is less marked in later weeks. As discussed in Section 4.3, this suggests considering
inclusion of Ẑ.t − 1/ as an additional covariate in the model for increments at time t, which is
approach (d) above. Fig. 4 (d) shows that the fitted mean response profiles are not materially
affected by the misspecification that is indicated by Fig. 5.

Box plots illustrating the bootstrap distribution of the diagnostic n−1Ẑ′.1/Ẑ.t/ are shown in
Fig. 6. The plot includes results for t =1 to exhibit the magnitude of the independent noise terms.
Since the covariance is expected to be constant only for t > 1, for diagnostic purposes the first
box plot may be safely ignored. On the basis of remaining box plots, derived from 1000 boot-
strap samples, there is evidence of a downward trend in the diagnostic. However, this is mild,
and the informal test statistic (again based on 1000 bootstrap samples) is −1.61, corresponding
to a p-value of about 0.1. Together, the diagnostics suggest that departures from the model are
sufficiently small to be of little concern.
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Fig. 6. PANSS data: box plots of cov{Ẑ.1/, Ẑ.t/} from 1000 bootstrap samples: for a correctly specified
model the mean values for t >1 should be equal

8. Discussion

Many approaches to the analysis of longitudinal data with drop-out begin with the idea of vec-
tors of complete data Y , observed data Yobs and missingness indicators R. We have argued that
this set-up can be too simple, as it does not recognize that drop-out can be an event that occurs
in the lives of the subjects under study and that can affect future responses. Distributions after
drop-out may be different from those that would have occurred in the absence of that event,
an extreme example being when drop-out is due to death. Another might be when drop-out is
equivalent to discontinuing a treatment. Thus there is no well-defined complete-data vector Y

and we are led into the world of counterfactuals, as described for the two-time-point example
of Section 2, and the need for careful thought about objectives and targets for inference. An
exception is when inference is conditional on drop-out time (objective 2) and hence based only
on observed data. Otherwise, untestable assumptions of one form or another are required for
inference. In this paper we consider interest to lie in the drop-out-free response Ya and make
the two key assumptions of independent censoring and martingale random effects.

In our view, the analysis of longitudinal data, particularly when subject to missingness, should
always take into account the time ordering of the underlying longitudinal processes. Often, the
drop-out decision is made between measurement times, and we acknowledge this by insisting
that the drop-out process be predictable, while allowing it to depend arbitrarily on the past.
Subsequent events could be affected by the drop-out decision, and in this sense drop-out could
be informative about future longitudinal responses. We reiterate that we do not require all future
values to be independent of the drop-out decision: the realized response is free to depend on this
decision. Nor is the required independence unconditional: our assumption is that, given every-
thing that has been observed, drop-out status gives no new information about the mean of the
next hypothetical response. This is a weaker and, to us, more logical assumption than the stan-
dard drop-out MAR form. Ultimately, however, both the drop-out MAR and the independent
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censoring assumption share the same purpose: to enable inference by making assumptions
about the drop-out process. Drop-out MAR enables inference using the observed data likeli-
hood, whereas independent censoring enables inference using the observed local characteristics.

What is therefore important is that all relevant information in �t should be included in the
model for the next expected increment. For example, Fig. 5 suggested inclusion of the previously
observed residual as a covariate for current increments. A similar approach might be used to
simplify variance estimation, or if there are subject-specific trends, as in a random-slope model.
Aalen et al. (2004) advocated an equivalent approach in dynamic linear modelling of recurrent
event data. We note also the argument in Fosen et al. (2006a) that use of residuals Ẑ rather than
Y helps to preserve the interpretation of exogenous covariate effects.

Modelling the local characteristics acknowledges the time ordering in longitudinal data anal-
ysis, naturally accounting for within-subject correlation and possibly history-dependent drop-
out. These features can all be accommodated through linear models on the observed increments
of the response process. At no great loss of understanding, the applied statistician could think
of our procedure as ‘doing least squares on the observed response increments, then accumulat-
ing’, to draw inference about the longitudinal features that a population would have exhibited,
assuming that no-one had dropped out.

Thus far, we have assumed a balanced study design, by which we mean a common set of
intended measurement times for all subjects. A natural extension is to unbalanced study designs.
It would also be of interest to consider more complicated random-effects models for the incre-
ments of a longitudinal process, potentially gaining efficiency but requiring additional para-
metric assumptions. We have not so far explored this option; nor the important but challenging
possibility of developing sensitivity procedures for our approach.
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Appendix A: Fitting dynamic linear models by using standard software

Least squares equations may be solved, and hence our proposed models fitted, in virtually all software
for statistical computing. We note, reflecting our own computing preferences, that this is particularly
straightforward by using the lmList command from the nlme package (Pinheiro and Bates, 2000) in
R or S-PLUS. For example, to fit the dynamic linear models of Section 4 to the schizophrenia data, we
constructed a data frame schizophrenia, having columns i (a unique identifier), time (running from
1 to Ti for each i), treat (a factor indicating the treatment regime) and PANSS. This last column stores the
change in PANSS that is associated with the given subject and time point, i.e. it contains ΔYi.1/, . . . , ΔYi.Ti/
for every i. Then

>fit<− lmList.PANSS ˜ treat|time, data=schizophrenia, pool=F/

returns an object containing a list of estimates β̂.t/ of β.t/ for each t ∈�, which may be extracted by way
of the coef method. The cumulative sum of these estimates

> apply.coef.fit/, 2, cumsum/
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yields B̂. Additionally, estimated standard errors

> SEs<− summary.fit/$coef[, "Std: Error", ]

may be extracted from the fitted model if measurement error is thought to be negligible. These estimates
(squared) may be summed

> apply.SEs∧2, 2, cumsum/

to yield an estimate of V.B̂/ without the need for bootstrapping.
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