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Shape-constrained density estimation in general, and log-concave density es-
timation in particular, have received a great deal of attention in the statistical
literature recently – see, for example, Walther (2002), Cule, Samworth and Stew-
art (2007), Dümbgen, Hüsler and Rufibach (2007), Pal, Woodroofe and Meyer
(2007), Dümbgen and Rufibach (2009), Balabdaoui, Rufibach and Wellner (2009).
The following theorem helps to explain this interest:

Theorem 1 (Cule, Samworth and Stewart (2007)). Let X1, . . . , Xn be independent

with density f0 in R
d, and suppose that n ≥ d + 1. Then, with probability one,

there exists a unique log-concave maximum likelihood estimator f̂n of f0.

Thus, even though the class of log-concave densities is infinite-dimensional (and
contains many well-known and commonly-used families of densities), there exists
a fully automatic density estimator within this class, with no smoothing param-
eters to choose. To understand the theoretical properties of this estimator, we
begin by noting that when it is known that a sequence of densities is log-concave,
convergence in weak sesnses in fact implies convergence in much stronger senses:

Proposition 2 (Cule and Samworth (2009)). Let (fn) be a sequence of log-concave

densities on R
d with fn

d
→ f for some density f . Then:

(a) f is log-concave

(b) fn → f , almost everywhere

(c) Let a0 > 0 and b0 ∈ R be such that f(x) ≤ e−a0‖x‖+b0 . Then for every

a < a0, we have
∫

Rd ea‖x‖|fn(x) − f(x)| dx → 0 and, if f is continuous,

supx∈Rd ea‖x‖|fn(x) − f(x)| → 0.

In order to state our main result, we first require appropriate bounds on the
behaviour of the log-concave maximum likelihood estimator, as illustrated in the
following result. Write E for the support of f0.

Lemma 3 (Cule and Samworth (2009)). Suppose that
∫

Rd ‖x‖f0(x) dx < ∞.

(a) There exists a constant C > 0 such that, with probability one,

lim sup
n→∞

sup
x∈Rd

f̂n(x) ≤ C.

(b) Let S be a compact subset of int(E). There exists a constant c > 0 such

that, with probability one,

lim inf
n→∞

inf
x∈conv S

f̂n(x) ≥ c.

Our main result establishes establishes desirable performance properties of f̂n.
Recall that the Kullback–Leibler divergence of a density f from f0 is given by
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dKL(f0, f) =
∫

Rd f0 log(f0/f). Jensen’s inequality shows that the Kullback–Leibler
divergence is non-negative, and equal to zero if and only if f = f0 (almost every-
where). Thus when f0 is log-concave, Theorem 4 below shows that the log-concave

maximum likelihood estimator f̂n is strongly consistent in certain exponentially
weighted total variation metrics. Convergence in exponentially weighted supre-
mum norms also follows if f0 is continuous.

In the case where the model is misspecified, i.e. f0 is not log-concave, we prove
that the existence and uniqueness of a log-concave density f∗ that minimises the
Kullback–Leibler divergence from f0. Moreover, we show that the log-concave

maximum likelihood estimator f̂n converges in the same senses as in the previous
paragraph to f∗. We write log+ x = max(log x, 0).

Theorem 4 (Cule and Samworth (2009)). Let f0 be any density on R
d with∫

Rd ‖x‖f0(x) dx < ∞,
∫

Rd f0 log+ f0 < ∞ and int(E) 6= ∅. There exists a log-

concave density f∗, unique almost everywhere, that minimises the Kullback–Leibler

divergence of f from f0 over all log-concave densities f . Taking a0 > 0 and b0 ∈ R

such that f∗(x) ≤ e−a0‖x‖+b0 , we have for any a < a0 that∫
Rd

ea‖x‖|f̂n(x) − f∗(x)| dx
a.s.
→ 0,

and, if f∗ is continuous, supx∈Rd ea‖x‖|f̂n(x) − f∗(x)|
a.s.
→ 0.
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