A theorem on minimal sufficient statistics

Recall that X has pmf/pdf $f_X(x;\theta)$ for $x \in \mathcal{X}$ and $\theta \in \Theta \subseteq \mathbb{R}^d$.

Theorem. Suppose T = t(X) is a statistic such that $f_X(x;\theta)/f_X(y;\theta)$ is constant as a function of θ if and only if t(x) = t(y). Then T is minimal sufficient for θ .

Proof (Non-examinable). We first show sufficiency. Define an equivalence relation \sim on \mathcal{X} by setting $x \sim y$ when t(x) = t(y). (It is an easy exercise to check this is indeed an equivalence relation.) Let $\mathcal{U} := \{t(x) : x \in \mathcal{X}\}$ and for each $u \in \mathcal{U}$, choose a representative x_u from the equivalence class $\{x : t(x) = u\}$. Since $t(x) = t(x_{t(x)})$, we have by hypothesis that $f_X(x;\theta)/f_X(x_{t(x)};\theta)$ does not depend on θ , so we call this ratio h(x). Setting $g(u,\theta) := f_X(x_u;\theta)$, we have

$$f_X(x;\theta) = f_X(x_{t(x)};\theta) \frac{f_X(x;\theta)}{f_X(x_{t(x)};\theta)} = g(t(x),\theta)h(x),$$

so by the Factorisation Criterion, T = t(X) is sufficient.

To show minimal sufficiency, suppose T' = t'(X) is another sufficient statistic with t'(x) = t'(y). By the Factorisation Criterion, we can find functions g', h' such that $f_X(x;\theta) = g'(t'(x), \theta)h'(x)$. Thus

$$\frac{f_X(x;\theta)}{f_X(y;\theta)} = \frac{g'(t'(x),\theta)h'(x)}{g'(t'(y),\theta)h'(y)} = \frac{h'(x)}{h'(y)},$$

because t'(x) = t'(y). Since this ratio therefore does not depend on θ , we conclude that t(x) = t(y). Hence T is a function of T', so T = t(X) is minimal sufficient.