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The problem

Let X4,...,X,, be arandom sample from a density  f In
RY,

How should we estimate  f;?

Two main alternatives:

e Parametric models: use e.g. MLE. Assumptions often
too restrictive.

e Nonparametric models: use e.g. kernel density
estimate. Choice of bandwidth difficult, particularly
for d > 1.
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|s there a third way?

Nonparametric shape constraints are becoming

Increasingly popular  (croeneboom et al. 2001, Walther 2002, Pal et al. 2007, Diimb  gen
and Rufibach 2009, Schuhmacher et al. 2011, Seregin and Welln  er 2010, Koenker and Mizera 2010 ...).
E.g. log-concavity, r-concavity, k-monotonicity,

convexity.

A density f is log-concave if log f is concave.

e Univariate examples: normal, logistic, Gumbel
densities, as well as Weibull, Gamma, Beta densities
for certain parameter values.
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Characterising log-concave densities

Cule, S. and Stewart (2010)

Let X have density fin R?. For a subspace V of R¢, let
Py (z) denote the orthogonal projection of  z onto V.
Then in order that f be log-concave, it is:

1. necessary that for any subspace V, the marginal
density of Py (X) is log-concave (prekopa 1973, and the
conditional density  fx|p, (x)(:|t) of X given Py (X) =t
IS log-concave for each t

2. sufficient that, for every (d — 1)-dimensional
subspace V, the conditional density  fx|p, (x)(-|t) Of
X given Py (X) =t islog-concave for each t.
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Unbounded likelihood!

Consider maximizing the likelihood  L(f) =[[;—; f(Xi)
over all densities f.
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Existence and unigueness

Walther (2002), Cule, S. and Stewart (2010)

Let X1,...,X, beindependent with density £, in R%, and
suppose that n > d + 1. Then, with probability one, a
log-concave maximum likelihood estimator f,, exists and
IS unique.
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Sketch of proof

Consider maximizing over all log-concave  functions

Zlogf f(x) dz.

Rd
Any maximizer f must satisfy:
1. f(x) > 0iff x € C), = conv(Xy,...,Xy)

2. Fix y = (y1,...,y,) and let h, : RY — R be the smallest
concave function with  h,(X;) > y; for all i. Then
log f = h,~ for some y*

3. Jpa f(z)dz =1.
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Schematic diagram of MLE on log scale
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Computation

Cule, S. and Stewart (2010), Cule, Gramacy and S. (2009)

First attempt: minimise

) = =3 SR+ [ explly(a)}do.
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Computation

Cule, S. and Stewart (2010), Cule, Gramacy and S. (2009)

First attempt: minimise

) = =3 SR+ [ explly(a)}do.

Better: minimise

n

o) =~ > wi+ [ explhy (@) do.

Then o has a unique minimum at v*, say, log f,, = h,+ and
o IS convex ...
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Computation

Cule, S. and Stewart (2010), Cule, Gramacy and S. (2009)

First attempt: minimise

) = =3 SR+ [ explly(a)}do.

Better: minimise

n

o) =~ > wi+ [ explhy (@) do.

Then o has a unique minimum at v*, say, log f,, = h,+ and
o IS convex ... but non-differentiable !
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Log-concave projections

Cule and S. (2010), Dimbgen, S. and Schuhmacher (2011)

Let P be the set of all probability distributions P on R¢
with P(H) < 1 for all hyperplanes H. Let

Pr:{PeP: HZEHTP(CZZC)<OO}, r=1,2.

R
The condition F, € P; Is necessary and sufficient for the
existence of an a.e. unigue log-concave density f* that
maximises |, log f dP, over all log-concave densities.
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One-dimensional characterisation

Dimbgen, S. and Schuhmacher (2011)

Let Py € P; have distribution function  Fj. Let
S(f*) ={z e R:log f*(z) > % log f*(x—8)+3 log f*(x+0) V& > 0}.

Then the distribution function  F* of f* Is characterised

by

y

<0 forall zeR
| 0 - Ry
=0 forall z € S(f*)U{oco}.

\
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Example 1

Suppose fo(x) = 2(1 +2%)7%/2. Then f*(z) = e 12l.

05F

0.451

04r

0.35F

0.3

0.25F

0.2

015

01p

0.051

September 13, 2012- 14



R. J. Samworth

Example 2

0.25

0.2

0.15

0.1

0.05

Log-concave densities

September 13, 2012- 15



R. J. Samworth Log-concave densities

Log-concave projections preserve
IndependenCe Chen and S. (2011)

Suppose P € P; can be writtenas P = P, ® P, where P,
and P, are probability measures on  R? and R?, with

do = d — dy. If f*Is the log-concave projection of P and
[, 1s the projection of P, (¢ = 1,2), then

fr (@) = fi(z) f2 (22)
for z = (z1,21)T € RY.

This makes log-concave projections very attractive for
Independent component analysiS  (s. and vuan, 2012).
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Convergence of log-concave densities

Cule and S. (2010)

Let (f,) be a sequence of log-concave densities on R
with f, a f for some density f. Then:

(a) f islog-concave
(b) f, — f almost everywhere

(c) Let ap > 0and by € R be suchthat f(z) < e llzll+bo_f
a < ag then [el®l|f, (z) — f(x)|dz — 0 and, if fis
continuous, sup,, el £, (z) — f(z)| — 0.
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Theoretical properties

Cule and S. (2010), Dimbgen, S. and Schuhmacher (2011)

Now let X4,...,X, iy Py € P, and let f* denote the

log-concave projection of F,. Taking ag > 0 and by € R
such that f*(z) < e~ ®llzll+bo e have for any a < ag that

a.s.

/ ol () — 1 (2)| da %5 0,
Rd

a.s.

and, if f*is continuous, sup, e®l*l|f,(z) — f*(x)| “3 0.
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Fitting finite mixtures of log-concave
densities

Chang and Walther (2007), Cule, S. and Stewart (2010)

Now suppose
p
fl) =) mfjx),
j=1
where the weights ; are positive and sum to one, and

each f; is log-concave on R¢.

We can combine the algorithm for finding the

log-concave MLE with the EM algorithm to fit such a
mixture.
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Smoothed log-concave density estimator

Dumbgen and Rufibach (2009), Cule, S. and Stewart (2010), Ch en and S. (2011)

Let
Jn = fn*x b4,
where ¢ ; Is a d-dimensional normal density with mean

zero and covariance matrix A =3 —3.. Here, 3 is the

sample covariance matrix and X is the covariance matrix
corresponding to  f,,.

Then f,, is a smooth, fully automatic log-concave
estimator supported on the whole of  R¢ which satisfies
the same theoretical properties as ~ f,,.

It offers potential improvements for small sample sizes.
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Smoothed estimator in classification
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Smoothed log-concave MLE theory

Chen and S. (2011)

Let Xq,..., X, ug Py € Pa, let yp= [ xdPy(z), and

Y= [(z—p)(x—p)" dPo(z).

Let /™" = f* x o+, Where A* =3 — X* with

¥* = [(z — p)(x — p)! f*(z) dz. Taking ap > 0and by € R
such that f**(z) < e~ ®lzl+b0 we have for all a < ag that

/ N fo (@) = £ ()] 3 0.
Rd
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Testing for log-concavity  chenands. eow

Suppose P, € P;. Then tr(A*) =0ifand only if P, has a
log-concave density.

We can therefore use A as a test statistic, and generate a
critical value from bootstrap samples drawn from f.

This test Is consistent: if P, is not log-concave, then the
power convergestolas n — oc.
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Classification problems

Let (X,Y),(X1,Y1),...,(X,,Y,) beiid. pairsin
R? x {1,...,K},with P(Y =7) =7, and (X|Y =r) ~ P,,
forr=1,..., K.

A classifier isafunction C:RY — {1,...,K}.

We aim to minimise the misclassification error rate  or
risk :
Risk(C) =P(C(X) #Y).
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Smoothed log-concave and Bayes
classifiers

Suppose each class distribution P, has a (Lebesgue)
density f,.. The smoothed log-concave classifier is

CoMC(z) = argmax N, f,,(z),
re{l,....K}

where N, =37 11—,y and f,, is the smoothed
log-concave estimate based on {X;:Y; =r}.

The Bayes classifier is

CBWS (1) = argmax m, f(x).
re{l,...,K}

Its risk is optimal
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Smoothed log-concave and Bayes
classifiers

Suppose each class distribution P, has a (Lebesgue)
density f,.. The smoothed log-concave classifier is

CoMC(z) = argmax N, f,,(z),
re{l,....K}

where N, =37 11—,y and f,, is the smoothed
log-concave estimate based on {X;:Y; =r}.

The Bayes classifier is

CBWS (1) = argmax m, f(x).
re{l,...,K}

Its risk is optimal ...but it can’t be used in practice !
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Theory for smoothed log-concave
classifiers

Chen and S. (2011)

The smoothed log-concave Bayes classifier IS

CPLEBayes (1) — argmax m, fF*(2).
re{l,...K}

Let X** = {x € R?: |argmax, 7, f*(x)| = 1}. Then
CAvSLC (ZL“) CLSY CSLCBayeS (ZL“)
for almost all = € A**, and

Risk(CPMC) — Risk(CPLCBaves),
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Breast cancer data

]
o —
o1 —
[aN]
2
o
L
—
1
.,T ]
£
I | I [ |
-15 =10 -5 0 &
PG

September 13, 2012- 28



R. J. Samworth Log-concave densities

Classification boundaries
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Regression problems

Dimbgen, S. and Schuhmacher (2011)

Consider the regression model
Y;:N(xz)+€7n izla"'ana

where ¢, ...,¢, are i.i.d., log-concave and E(¢;) = 0. In
both of the cases 1) u islinear andii) p Is isotonic, we
can jointly estimate . and the distribution of ;.

Significant improvements are obtainable over usual
methods when errors are non-normal.
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Summary

e The log-concave MLE is a fully automatic,
nonparametric density estimator

e It has several extensions which can be used in a wide
variety of applications, e.g. classification, clustering,
functional estimation and regression problems.

e Many challenges remain: faster algorithms, dependent
data, further theoretical results, other applications
and constraints,...

X
- 3

September 13, 2012- 31



R. J. Samworth Log-concave densities

References

e Chen, Y. and Samworth, R. J. (2011), Smoothed log-concave ma  ximum likelihood estimation with
applications. http://arxiv.org/abs/1102. 1191.

e Cule, M., Gramacy, R. and Samworth, R. (2009) LogConcDEAD: a n R package for maximum
likelihood estimation of a multivariate log-concave densi ty, J. Statist. Software , 29, Issue 2.

e Cule, M. and Samworth, R. (2010), Theoretical properties of  the log-concave maximum likelihood
estimator of a multidimensional density. Electron. J. Statist. , 4, 254-270.

e Cule, M., Samworth, R. and Stewart, M. (2010), Maximum likel ihood estimation of a multi-dimensional
log-concave density. J. Roy. Statist. Soc., Ser. B. (with discussion) , 72, 545-607.

e Dumbgen, L. and Rufibach, K. (2009) Maximum likelihood esti ~ mation of a log-concave density and its
distribution function: Basic properties and uniform consi stency. Bernoulli , 15, 40-68.

e Dumbgen, L., Samworth, R. and Schuhmacher, D. (2011), Appr  oximation by log-concave
distributions with applications to regression. Ann. Statist. , 39, 702-730.

e Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2001) Esti  mation of a convex function:
Characterizations and asymptotic theory. Ann. Statist. , 29, 1653-1698.

e Koenker, R. and Mizera, |. (2010) Quasi-concave density est imation. Ann. Statist. , 38, 2998-3027.

September 13, 2012- 32



R. J. Samworth Log-concave densities

e Pal, J., Woodroofe, M. and Meyer, M. (2007) Estimating a Poly  a frequency function. In  Complex
datasets and Inverse problems, Networks and Beyond Tomogra phy, vol. 54 of Lecture Notes -
Monograph Series , 239-249. IMS.

e Prékopa, A. (1973) On logarithmically concave measures and fu  nctions. Acta Scientarium
Mathematicarum , 34, 335-343.

e Samworth, R. J. and Yuan, M. (2012) Independent component an  alysis via nonparametric maximum
likelihood estimation. http://arxiv. org/abs/1206. 0457.

e Schuhmacher, D., Husler, A. and Dimbgen, L. (2011) Multiv  ariate log-concave distributions as a
nearly parametric model.  Statistics & Risk Modeling , 28, 277-295.

e Seregin, A. and Wellner, J. A. (2010) Nonparametric estimat  ion of convex-transformed densities.
Ann. Statist. , 38, 3751-3781.

e Walther, G. (2002) Detecting the presence of mixing with mul  tiscale maximum likelihood. J. Amer.
Statist. Assoc. , 97, 508-513.

September 13, 2012- 33



