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Abstract

In this article we introduce the R package LogConcDEAD (Log-concave density es-
timation in arbitrary dimensions). Its main function is to compute the nonparametric
maximum likelihood estimator of a log-concave density. Functions for plotting, sampling
from the density estimate and evaluating the density estimate are provided. All of the
functions available in the package are illustrated using simple, reproducible examples with
simulated data.
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1. Introduction

1.1. About this document

This document is an introduction to the R package LogConcDEAD (log-concave density es-
timation in arbitrary dimensions). It aims to provide a detailed user guide based on simple,
reproducible worked examples. The package can be downloaded from www.cran.r-project.
org, or one of its mirrors, or installed automatically within R by using the command

> install.packages("LogConcDEAD")

at the R prompt. Once installed, the package must be loaded using the command

> library(LogConcDEAD)

http://www.jstatsoft.org/
www.cran.r-project.org
www.cran.r-project.org
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LogConcDEAD depends on akima (Akima, Gebhardt, Petzoldt, and Maechler 2006) for plot-
ting, MASS (Venables and Ripley 2002) for some vector operations, and geometry (Grasman
and Gramacy 2008) for convex hull computation. The package rgl (Adler and Murdoch 2007)
is recommended for producing graphics. If not already available, these packages may be
installed in a similar way; they do not need to be loaded explicitly.

> install.packages("akima")

> install.packages("rgl")

> install.packages("MASS")

> install.packages("geometry")

Detailed help can be obtained by typing

> ‘?‘(LogConcDEAD)

at the R prompt, and help on individual functions can be obtained similarly.

This document was created using Sweave (Leisch 2002) and LATEX using R (R Development
Core Team 2008). This means that all of the code has been checked by R, and can be
reproduced exactly by setting an appropriate seed (as given at the beginning of each example),
or tested on different examples by using a different seed. Code to generates plots is displayed
below the corresponding figures.

1.2. Log-concave density estimation

We address the fundamental statistical problem of estimating a probability density function
f0 from independent and identically distributed observations X1, . . . , Xn taking values in Rd.

If a suitable parametric model is available, a common method is to use maximum likelihood
to estimate the parameters of the model. Otherwise, a standard nonparametric approach
is based on kernel density estimation (Wand and Jones 1995), which has been implemented
in the R function density. In common with many nonparametric methods, kernel density
estimation requires the careful specification of a smoothing parameter. For multivariate data,
the smoothing parameter is a bandwidth matrix with up to 1

2d(d + 1) entries to choose,
meaning that this method can be especially difficult to apply in practice.

An alternative to kernel density estimation or other estimation techniques based on smoothing
(all of which require the selection of a smoothing parameter, which is nontrivial especially in
the multivariate case) is to impose some qualitative shape restrictions on the density. If the
shape restrictions are suitable, there is enough structure to guarantee the existence of a unique
and fully automatic maximum likelihood estimate, even though the class of densities may be
infinite-dimensional. This therefore avoids both the restrictions of a parametric model and
the difficulty of bandwidth selection in kernel density estimation. The price is some restriction
on the shape of the density. However, these restrictions are less severe than those imposed
by a parametric model.

Shape-constrained maximum likelihood dates back to Grenander (1956), who treated mono-
tone densities in the context of mortality data. Recently there has been considerable interest in
alternative shape constraints, including convexity, k-monotonicity and log-concavity (Groene-
boom, Jongbloed, and Wellner 2001; Dümbgen and Rufibach 2008; Balabdaoui and Wellner
2007). However, these works have all focused on the case of univariate data.
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Log-concave densities

A function g : Rd → [−∞,∞) is concave if

g(λx + (1− λ)y) ≥ λg(x) + (1− λ)g(y)

for all x, y ∈ Rd and λ ∈ (0, 1). This corresponds to what Rockafellar (1997) calls a proper
concave function. We say a probability density function f is log-concave if log f is a concave
function. Several common parametric families of univariate densities are log-concave, such
as Gaussian, logistic and Gumbel densities, as well as Weibull, Gamma and Beta densities
for certain parameter values (An 1998). In fact, Cule, Samworth, and Stewart (2008) showed
that even though the class of multivariate log-concave densities is large (infinite-dimensional),
it still retains some of the simple and attractive properties of the class of Gaussian densities.

One-dimensional log-concave density estimation via maximum likelihood is discussed in Düm-
bgen and Rufibach (2008); computational aspects are treated in Rufibach (2007). It is in the
multivariate case, however, where kernel density estimation is more difficult and parametric
models less obvious, where a log-concave model may be most useful.

Theoretical and computational aspects of multivariate log-concave density estimation are
treated in Cule et al. (2008). In particular, it is proved that if Y1, . . . , Ym are (distinct)
independent and identically distributed observations from a distribution with log-concave
density f0 on Rd, then (with probability 1) there is a unique log-concave density f̂m satisfying

f̂m = arg max
f∈F

1
m

m∑
i=1

log f(Yi), (1)

where F is the class of all log-concave densities on Rd. Further, it is shown that this infinite
dimensional maximization problem can be reduced to that of maximizing over functions of
the form h̄y for some y = (y1, . . . , ym) ∈ Rm, where

h̄y(x) = inf{h(x) : h is concave, h(Yi) ≥ yi, i = 1, . . . ,m}. (2)

As discussed in Cule et al. (2008), we may think of h̄y as the function obtained by placing a
pole of height yi at Xi and stretching a rubber sheet over the top of the poles.

Therefore, to completely specify the maximum likelihood estimator, we need only specify a
suitable vector ŷ ∈ Rm, as this defines the entire function h̄by. A main feature of the Log-
ConcDEAD package is that it provides an iterative algorithm for finding such an appropriate
vector ŷ.

From our knowledge of the structure of functions of the form (2), we may deduce some
additional properties of f̂m. It is zero outside the convex hull of the data, and strictly positive
inside the convex hull. Moreover, we can find a triangulation of the convex hull into simplices
(triangles when d = 2, tetrahedra when d = 3, and so on) such that log f̂m is affine on each
simplex (Rockafellar 1997).

In practice our observations will be made only to a finite precision, so the observations will
not necessarily be distinct. However, the same method of proof shows that, more generally,
if X1, . . . , Xn are distinct points in Rd and w1, . . . , wn are strictly positive weights satisfying∑n

i=1 wi = 1, then there is a unique log-concave density f̂n, which is of the form f̂n = exp(h̄y)
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for some y ∈ Rn, and which satisfies

f̂n = arg max
f∈F

n∑
i=1

wi log f(Xi). (3)

The default case wi = 1
n corresponds to the situation described above, and is appropriate for

most situations. However, the generalization (3) obtained by allowing wi 6= 1
n allows us to

extend to binned observations. In more detail, if Y1, . . . , Ym are independent and identically
distributed according to a density f0, and distinct binned values X1, . . . , Xn are observed, we
may construct a maximum likelihood problem of the form given in (3), setting

wi =
# of times value Xi is observed

m

and

f̂n = arg max
f∈F

n∑
i=1

wi log f(Xi).

This generalization may also be used for a multivariate version of a log-concave EM algorithm
(Chang and Walther (2008), also discussed in Cule et al. (2008)).

1.3. Outline of the remainder of this document

In Section 2, we outline the algorithm used to compute the maximum likelihood estimator,
including various parameters used in the computation. This is essentially an adaptation of
Shor’s r-algorithm (Shor 1985) (implemented as SolvOpt by Kappel and Kuntsevich (2000)),
and depends on the Quickhull algorithm for computing convex hulls (Barber, Dobkin, and
Huhdanpaa 1996). This section may be skipped on first reading.

In Section 3, we demonstrate the main features of the package through four simple examples
(one with d = 1, two with d = 2 and one with d = 3). This section includes a description
of all of the parameters used, as well as the output structures. We also introduce the plot-
ting functions available, as well as functions for sampling from the density estimate and for
evaluating the density at a particular point.

2. Algorithm

2.1. Introduction

Recall that the maximum likelihood estimator f̂n of f0 may be completely specified by its
values at the observations X1, . . . , Xn. Writing Cn for the convex hull of the data, Cule
et al. (2008) showed that the problem of computing the estimator may be rephrased as one
of finding

arg min
y∈Rn

σ(y) = −
n∑

i=1

wiyi +
∫

Cn

exp{h̄y(x)} dx

for suitable chosen weights wi, where

h̄y(x) = inf{h(x) : h is concave, h(Xi) ≥ yi, i = 1, . . . , n}.
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The function σ is convex, but not differentiable, so standard gradient-based convex optimiza-
tion techniques such as Newton’s method are not suitable. Nevertheless, the notion of a
subgradient is still valid: a subgradient at y of σ is any direction which defines a supporting
hyperplane to σ at y. Shor (1985) developed a theory of subgradient methods for handling
convex, non-differentiable optimization problems. The r-algorithm, described in Shor (1985,
Chapter 3) and implemented as SolvOpt in C by Kappel and Kuntsevich (2000), was found
to work particularly well in practice. A main feature of the LogConcDEAD package is an
implementation of an adaptation of this r-algorithm for the particular problem encountered
in log-concave density estimation.

2.2. Shor’s r-algorithm

Our adaptation of Shor’s r-algorithm produces a sequence (yt) with the property that

σ(yt) → min
y∈Rn

σ(y)

as t →∞. At each iteration, the algorithm requires the evaluation σ(yt), and the subgradient
at yt, denoted ∂σ(yt), which determines the direction of the move to the next term yt+1 in
the sequence.

Exact expressions for σ(yt) and ∂σ(yt) are provided in Cule et al. (2008). In practice, their
computation requires the evaluation of convex hulls and triangulations of certain finite sets
of points. This can be done in a fast and robust way via the Quickhull algorithm (Barber
et al. 1996), available in R through the geometry package (Grasman and Gramacy 2008).
Due to the presence of some removable singularities in the expressions for σ(yt) and ∂σ(yt),
it is computationally more stable to use a Taylor approximation to the true values for certain
values of yt (Cule and Dümbgen 2008). The values for which a Taylor expansion (rather than
direct evaluation) is used may be controlled by the argument Jtol to the LogConcDEAD
function mlelcd. By default this is 10−3; altering this parameter is not recommended.

Several parameters may be used to control the r-algorithm as detailed by Kappel and Kunt-
sevich (2000). In the function mlelcd, they may be controlled by the user via the arguments
stepscale1, stepscale2, stepscale3, stepscale4 and desiredsize. For a detailed de-
scription of these parameters, as well as of this implementation of the r-algorithm, see Kappel
and Kuntsevich (2000).

Stopping criteria

The implementation of the r-algorithm used in the main function mlelcd terminates after
the (t + 1)th iteration if each of the following conditions holds:

1.
|yt+1

i − yt
i | ≤ δ|yt

i | for i = 1, . . . , n

2.
|σ(yt+1)− σ(yt)| ≤ ε|σ(yt)|

3. ∣∣∣∣∫
Cn

exp{h̄yt(x)} dx− 1
∣∣∣∣ ≤ η
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for some small tolerances δ, ε and η.
The first two of these are the criteria suggested by Kappel and Kuntsevich (2000); the final
one is based on the observation that the maximum likelihood estimator is density (Cule
et al. 2008). By default, these values are δ = 10−4, ε = 10−8 and η = 10−4, but they may
be modified by the user as required, using the parameters ytol, sigmatol and integraltol
respectively. The default parameters have been found to work well and it is not recommended
to alter them.

3. Usage

In this section we illustrate the functions available in LogConcDEAD through several simple
simulated data examples. These functions include mlelcd, which computes the maximum
likelihood estimator, as well as graphics facilities and the function rlcd for sampling from the
fitted density.

3.1. Example 1: 1-d data

For one-dimensional data, the alternative active set algorithm from logcondens (Rufibach
and Dümbgen 2006; Dümbgen, Hüsler, and Rufibach 2007) may be used to compute the log-
concave maximum likelihood estimator. In this section we will compare the output of the two
procedures.
First we must install and load the logcondens package (Rufibach and Dümbgen 2006) .

> install.packages("logcondens")

> library(logcondens)

For this example, we will use 200 points from a Gamma(2, 1) distribution. The seed has been
set (to 1) using the set.seed command, so this example can be reproduced exactly; you may
also like to try with a different seed.

> n <- 200

> x <- sort(rgamma(n, shape = 2))

> out1 <- activeSetLogCon(x)

> out2 <- mlelcd(x)

We can see from Figure 1 that, as expected, logcondens and LogConcDEAD produce the
same output. Figure 2 also illustrates the structure of the log-concave maximum likelihood
estimator: its logarithm is piecewise linear with changes of slope only at observation points.

3.2. Example 2: 2-d normal data

For this section, we will generate 500 points from a bivariate normal distribution with inde-
pendent components. Again, we have set the seed (to 22) for reproducibility.

> n <- 500

> d <- 2

> x <- matrix(rnorm(n * d), ncol = d)
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> ylim <- c(0, 0.4)

> lgdtxt <- c("LogConcDEAD", "logcondens", "true")

> lgdlty <- c(1, 2, 3)

> plot(out2, ylim = ylim, lty = 1)

> lines(x, exp(out1$phi), lty = 2)

> lines(x, x * exp(-x), lty = 3)

> legend(x = 3, y = 0.4, lgdtxt, lty = lgdlty)

Figure 1: Density estimates (and true density) based on 200 i.i.d observations from a
Gamma(2,1) distribution.

Basic usage

The basic command in this package is mlelcd, which computes the log-concave maximum
likelihood estimate f̂n. The verbose option controls the diagnostic output, which will be
described in more detail below.

> out <- mlelcd(x, verbose = 200)
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> ylim <- c(-4, -1)

> lgdtxt <- c("LogConcDEAD", "logcondens", "true")

> lgdlty <- c(1, 2, 3)

> plot(out2, uselog = TRUE, lty = 1)

> lines(x, out1$phi, lty = 2)

> lines(x, log(x) - x, lty = 3)

> legend(x = 3, y = -1, lgdtxt, lty = lgdlty)

Figure 2: Log of density estimate (and true log-density) based on 200 i.i.d observations from
a Gamma(2,1) distribution.

Iter # ... Function Val ... Step Value ... Integral ... Grad Norm
200 3.84062 0.0202458 0.989243 0.038331

Iter # ... Function Val ... Step Value ... Integral ... Grad Norm
400 3.83207 0.0183776 1.00047 0.038719

Iter # ... Function Val ... Step Value ... Integral ... Grad Norm
600 3.80796 0.0118178 1.00164 0.027426
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Iter # ... Function Val ... Step Value ... Integral ... Grad Norm
800 3.80766 0.000418273 1.00121 0.028242

Iter # ... Function Val ... Step Value ... Integral ... Grad Norm
1000 3.80747 0.000842166 1.00036 0.029181

Iter # ... Function Val ... Step Value ... Integral ... Grad Norm
1200 3.80745 0.000513905 1.0002 0.030713

SolvOpt: Normal termination.

The default print statement shows the value of the logarithm of the maximum likelihood
estimator at the data points, the number of iterations of the subgradient algorithm required,
and the total number of function evaluations required to reach convergence.

In the next two subsections, we will describe the input and output in more detail.

Input

The only input required is an n × d matrix of data points. One dimensional (vector) input
will be converted to a matrix. Optionally a vector of weights w, corresponding to (w1, . . . , wn)
in (3), may be specified. By default this is(

1
n

, . . . ,
1
n

)
,

which is appropriate for independent and identically distributed observations.

A starting value y may be specified for the vector (y1, . . . , yn); by default a kernel density
estimate (using a normal kernel and a diagonal bandwidth selected using a normal scale rule)
is used. This is performed using the (internal) function initialy.

The parameter verbose controls the degree of diagnostic information provided by SolvOpt.
The default value, −1, prints nothing. The value 0 prints warning messages only. If the value
is m > 0, diagnostic information is printed every mth iteration. The printed information
summarises the progress of the algorithm, displaying the iteration number, current value of the
objective function, (Euclidean) length of the last step taken, current value of

∫
exp{h̄y(x)} dx

and (Euclidean) length of the subgradient. The last column is motivated by the fact that 0
is a subgradient only at the minimum of σ (Rockafellar 1997, Chapter 27), and so for smooth
functions a small value of the subgradient may be used as a stopping criterion. For nonsmooth
functions, we may be close to the minimum even if this value is relatively large, so only the
middle three columns form the basis of our stopping criteria, as described in Section 2.2.1.

The remaining optional arguments are generic parameters of the r-algorithm, and have already
been discussed in Section 2.

Output

The output is an object of class "LogConcDEAD", which has the following elements:

> names(out)

[1] "x" "w" "logMLE"
[4] "NumberOfEvaluations" "MinSigma" "b"
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[7] "beta" "triang" "verts"
[10] "vertsoffset" "chull" "outnorm"
[13] "outoffset"

The first two components x and w give the input data. The component logMLE specifies the
logarithm of the maximum likelihood estimator, via its values at the observation points. In
this example the first 5 elements are shown, corresponding to the first 5 rows of the data
matrix x.

> out$logMLE[1:5]

[1] -2.415720 -5.785971 -2.382600 -2.081224 -2.484241

As was mentioned in Sections 1 and 2, there is a triangulation of Cn = conv(X1, . . . , Xn), the
convex hull of the data, such that log f̂n is affine on each simplex in the triangulation. Each
simplex in the triangulation is the convex hull of a subset of {X1, . . . , Xn} of size d+1. Thus
the simplices in the triangulation may be indexed by a finite set J of (d + 1)-tuples, which
are available via

> out$triang[1:5, ]

[,1] [,2] [,3]
[1,] 287 115 239
[2,] 15 483 236
[3,] 402 2 259
[4,] 369 115 171
[5,] 369 287 115

For each j ∈ J , there is a corresponding vector bj ∈ Rd and βj ∈ R, which define the affine
function which coincides with log f̂n on the jth simplex in the triangulation. These values bj

and βj are available in

> out$b[1:5, ]

[,1] [,2]
[1,] 3.056216 -1.6678212
[2,] 1.468910 6.3722337
[3,] -2.006637 0.3510304
[4,] 2.505594 -1.2384688
[5,] 2.750257 -1.2064074

> out$beta[1:5]

[1] -3.9108641 -10.4207323 0.1799922 -2.1181471 -2.6958089
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(In all of the above cases, only the first 5 elements are shown.) As discussed in Cule et al.
(2008), for each j ∈ J we may find a matrix Aj and a vector αj such that the map w 7→ Ajw+
αj maps the unit simplex in Rd to the jth simplex in the triangulation. The inverse of this map,
x 7→ A−1

j x−A−1
j αj , is required for easy evaluation of the density at a point, and for plotting.

The matrix A−1
j is available in out$verts and A−1

j αj is available in out$vertsoffset.
The "LogConcDEAD" object also provides some diagnostic information on the execution of
the SolvOpt routine: the number of iterations required, the number of function evaluations
needed, the number of subgradient evaluations required (in a vector NumberOfEvaluations),
and the minimum value of the objective function σ attained (MinSigma).

> out$NumberOfEvaluations

[1] 1373 4322 1374

> out$MinSigma

[1] 3.807418

The indices of simplices in the convex hull Cn are available:

> out$chull[1:5, ]

[,1] [,2]
[1,] 239 287
[2,] 239 84
[3,] 46 259
[4,] 203 287
[5,] 2 259

In addition, an outward-pointing normal vector for each face of the convex hull Cn and an
offset point (lying on the face of the convex hull) may be obtained.

> out$outnorm[1:5, ]

[,1] [,2]
[1,] -0.8485752 0.52907483
[2,] -0.0767366 0.99705140
[3,] 0.9996818 0.02522528
[4,] -0.8588526 -0.51222283
[5,] 0.9264791 -0.37634623

> out$outoffset[1:5, ]

[,1] [,2]
[1,] -1.930875 2.986373
[2,] -1.930875 2.986373
[3,] 3.253349 2.471396
[4,] -2.407876 -1.909542
[5,] 2.485184 -1.763713
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This information may be used to test whether or not a point lies in Cn, as x ∈ Cn if and only
if pT (x− q) ≤ 0 for every face of the convex hull, where p denotes an outward normal and q
an offset point.

When d = 1, the convex hull consists simply of the minimum and maximum of the data
points, and out$outnorm and out$outoffset are NULL, although out$chull still takes on
the appropriate values.

3.3. Graphics

Various aspects of the log-concave maximum likelihood estimator can be plotted using the
plot command, applied to an object of class "LogConcDEAD".

The plots are based on interpolation over a grid, which can be somewhat time-consuming.
As several will be done here, we can save the results of the interpolation separately, using
the function interplcd, and use it to make several plots. The number of grid points may be
specified using the parameter gridlen. By default, gridlen=100, which is suitable for most
plots.

If d > 1, we can plot one-dimensional marginals by setting the marg parameter. Note that the
marginal densities of a log-concave density are log-concave (discussed in Cule et al. (2008),
as a consequence of the theory of Prékopa (1973)).

> g <- interplcd(out, gridlen = 200)

> g1 <- interpmarglcd(out, marg = 1)

> g2 <- interpmarglcd(out, marg = 2)

The plots in Figure 3 show a contour plot of the estimator and a contour plot of its logarithm
for 500 points in 2 dimensions. Note that the contours of log-concave densities enclose convex
regions. Figure 4 shows two estimates of the marginal densities for the same sample.

The plot type is controlled by the argument type, which may take the values "p" (a perspec-
tive plot), "i", "c" or "ic" (colour maps, contours or both), or "r" (a 3d plot using the rgl
package (Adler and Murdoch 2007)). The default plot type is "ic".

The rgl package allows user interaction with the plot (e.g. the plot can be rotated using the
mouse and viewed from different angles). Although we are unable to demonstrate this feature
on paper, Figure 5 shows the type of output produced by rgl.

Figure 6 shows the output produced by setting uselog = TRUE to plot on the log scale. Here
we can clearly see the structure of the log-concave density estimate.

3.4. Other functions

In this section we will describe the use of the additional functions rlcd and dlcd.

Sampling from the MLE

Suppose we wish to estimate a functional of the form θ(f) =
∫

g(x)f(x) dx, for example
the mean or other moments, the differential entropy −

∫
f(x) log f(x) dx, etc. Once we have

obtained a density estimate f̂n, such as the log-concave maximum likelihood estimator, we
may use it as the basis for a plug-in estimate θ̂n =

∫
g(x)f̂n(x) dx, which may be approximated
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> par(mfrow = c(1, 2), pty = "s", cex = 0.7)

> plot(out, g = g, addp = FALSE, asp = 1)

> plot(out, g = g, uselog = TRUE, addp = FALSE, asp = 1)

Figure 3: Plots based on 500 points from a standard bivariate normal distribution

using a simple Monte Carlo procedure even if an analytic expression is not readily available.
In more detail, we generate a sample Z1, . . . , ZN drawn from f̂n, and approximate θ̂n by

θ̃n =
1
N

N∑
j=1

g(Zj).

This requires the ability to sample from f̂n, which may be achieved given an object of class
"LogConcDEAD" as follows:

> nsamp <- 1000

> mysamp <- rlcd(nsamp, out)

Details of the function rlcd, which uses a straightforward rejection sampling scheme, are
given in Cule et al. (2008).

Once we have a random sample, plug-in estimation of various functionals is straightforward.

> apply(mysamp, 2, mean)

[1] -0.06844201 -0.03545679

> cov(mysamp)
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> par(mfrow = c(1, 2), pty = "s", cex = 0.7)

> plot(out, marg = 1, g.marg = g1)

> plot(out, marg = 2, g.marg = g2)

Figure 4: Plots of estimated marginal densities based on 500 points from a standard bivariate
normal distribution

> plot(out, g = g, type = "r")

Figure 5: rgl output for Example 2
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> plot(out, g = g, type = "r", uselog = TRUE)

Figure 6: rgl output for Example 2, with uselog=TRUE

[,1] [,2]
[1,] 0.8763752 -0.0768966
[2,] -0.0768966 1.0843730

Evaluation of fitted density

We may evaluate the fitted density at a point or matrix of points such as

> m <- 10

> mypoints <- 1.5 * matrix(rnorm(m * d), ncol = d)

using the command

> dlcd(mypoints, out)
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[1] 0.028837467 0.005741745 0.125443472 0.000000000 0.006570692
[6] 0.092890539 0.011792008 0.117897754 0.003452016 0.140344445

Note that, as expected, the density estimate is zero for points outside the convex hull of the
original data.

The dlcd function may be used in conjunction with rlcd to estimate more complicated
functionals such as a 100(1 − α)% highest density region, defined by Hyndman (1996) as
Rα = {x ∈ Rd : f(x) ≥ fα}, where fα is the largest constant such that

∫
Rα

f(x) dx ≥
1− α. Using the algorithm outlined in Hyndman (1996, Section 3.2), it is straightforward to
approximate fα as follows:

> myval <- sort(dlcd(mysamp, out))

> alpha <- c(0.25, 0.5, 0.75)

> myval[(1 - alpha) * nsamp]

[1] 0.12042887 0.08174028 0.03838084

3.5. Example 3: 2-d binned data

In this section, we demonstrate the use of "LogConcDEAD" with binned data. The seed here
has been set to 333 for reproducibility; you may wish to try these examples with other seeds.

We generate some data from a normal distribution with correlation using the package mvt-
norm (Genz, Bretz, Hothorn, Miwa, Mi, Leisch, and Scheipl 2008). As before, this may be
installed and loaded using

> install.packages("mvtnorm")

> library(mvtnorm)

> sigma <- matrix(c(1, 0.2, 0.2, 1), nrow = 2)

> n <- 500

> d <- 2

> y <- rmvnorm(n, sigma = sigma)

> xall <- round(y, digits = 1)

The matrix xall therefore contains 500 observations, rounded to 1 decimal place; there are in
total 411 distinct observations. In order to compute an appropriate log-likelihood, we will use
the function getweights to extract a matrix of distinct observations and a vector of weights
for use in mlelcd. The result of this has two parts: a matrix x consisting of the distinct
observations, and a vector w of weights. We may also use interplcd as before to evaluate
the estimator on a grid for plotting purposes.

> tmpw <- getweights(xall)

> outw <- mlelcd(tmpw$x, w = tmpw$w)

> gw <- interplcd(outw, gridlen = 200)
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> par(mfrow = c(1, 2), pty = "s", cex = 0.7)

> plot(outw, g = gw, asp = 1, drawlabels = FALSE)

> plot(outw, g = gw, uselog = TRUE, asp = 1, drawlabels = FALSE)

Figure 7: Density and log density estimate based on 500 points from a bivariate normal
distribution in two dimensions (truncated to 1 decimal place) (Example 3)

In Figure 7 we plot density and log-density estimates using a contour plot as before. In
contrast to the examples in Figure 3, we have addp=TRUE (the default), which superposes the
observation points on the plots, and drawlabels=FALSE, which suppresses the contour labels.

3.6. Example 4: Higher-dimensional data

In our final example we illustrate the use of the log-concave density estimate for higher-
dimensional data. For this example the seed has been set to 4444. The log-concave maximum
likelihood estimator is defined and may be computed and evaluated in exactly the same way
as the 2-dimensional examples in Sections 3.2 and 3.5. This estimate will be based on 500
points.

> n <- 500

> d <- 3

> x <- matrix(rgamma(n * d, shape = 2), ncol = d)

> out3 <- mlelcd(x)

The function dmarglcd may be used to evaluate the marginal estimate, setting the parameter
marg appropriately. Note that, as before, the estimate is 0 outside the convex hull of the
observed data.

> mypoints <- c(0, 2, 4)

> dmarglcd(mypoints, out3, marg = 1)
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[1] 0.00000000 0.28978492 0.07633001

One-dimensional marginal distributions may be plotted easily, by setting the marg parameter
to the appropriate margin as shown in Figure 8.
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> par(mfrow = c(2, 2))

> plot(out3, marg = 1)

> plot(out3, marg = 2)

> plot(out3, marg = 3)

> tmp <- seq(min(out3$x), max(out3$x), len = 100)

> plot(tmp, dgamma(tmp, shape = 2), type = "l", xlab = "X",

+ ylab = "true marginal density")

> title(main = "True density")

Figure 8: Marginal density estimates for 3 dimensional data (based on 500 points)



Journal of Statistical Software 19

References

Adler D, Murdoch D (2007). rgl: 3D Visualization Device System (OpenGL). R package
version 0.75, URL http://rgl.neoscientists.org.

Akima H, Gebhardt A, Petzoldt T, Maechler M (2006). akima: Interpolation of Irregularly
Spaced Data. R package version 0.5-1.

An MY (1998). “Logconcavity Versus Logconvexity: A Complete Characterization.” Journal
of Economic Theory, 80, 350–369.

Balabdaoui F, Wellner JA (2007). “Estimation of a k-monotone Density: Limiting Distribu-
tion Theory and the Spline Connection.” Annals of Statistics, 35, 2536–2564.

Barber CB, Dobkin DP, Huhdanpaa H (1996). “The Quickhull Algorithm for Convex Hulls.”
ACM Transactions on Mathematical Software, 22, 469–483. URL http://www.qhull.org.

Chang G, Walther G (2008). “Clustering with Mixtures of Log-concave Distributions.” Com-
putational Statistics and Data Analysis. To appear.
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