

MMMMMM YYYY, Volume VV, Issue II.

http://www.jstatsoft.org/

LogConcDEAD: An R Package for Maximum Likelihood Estimation of a Multivariate Log-concave Density

Madeleine Cule, Robert Gramacy and Richard Samworth Statistical Laboratory, University of Cambridge

Abstract

In this article we introduce the R package **LogConcDEAD** (Log-concave density estimation in arbitrary dimensions). Its main function is to compute the nonparametric maximum likelihood estimator of a log-concave density. Functions for plotting, sampling from the density estimate and evaluating the density estimate are provided. All of the functions available in the package are illustrated using simple, reproducible examples with simulated data.

Keywords: log-concave density, multivariate density estimation, visualization, nonparametric statistics.

1. Introduction

1.1. About this document

This document is an introduction to the R package LogConcDEAD (log-concave density estimation in arbitrary dimensions). It aims to provide a detailed user guide based on simple, reproducible worked examples. The package can be downloaded from www.cran.r-project. org, or one of its mirrors, or installed automatically within R by using the command

> install.packages("LogConcDEAD")

at the R prompt. Once installed, the package must be loaded using the command

> library(LogConcDEAD)

LogConcDEAD depends on akima (Akima, Gebhardt, Petzoldt, and Maechler 2006) for plotting, MASS (Venables and Ripley 2002) for some vector operations, and geometry (Grasman and Gramacy 2008) for convex hull computation. The package rgl (Adler and Murdoch 2007) is recommended for producing graphics. If not already available, these packages may be installed in a similar way; they do not need to be loaded explicitly.

```
> install.packages("akima")
> install.packages("rgl")
> install.packages("MASS")
> install.packages("geometry")
```

Detailed help can be obtained by typing

```
> '?'(LogConcDEAD)
```

at the R prompt, and help on individual functions can be obtained similarly.

This document was created using **Sweave** (Leisch 2002) and LATEX using R (R Development Core Team 2008). This means that all of the code has been checked by R, and can be reproduced exactly by setting an appropriate seed (as given at the beginning of each example), or tested on different examples by using a different seed. Code to generate plots is displayed below the corresponding figures.

1.2. Log-concave density estimation

We address the fundamental statistical problem of estimating a probability density function f_0 from independent and identically distributed observations X_1, \ldots, X_n taking values in \mathbb{R}^d .

If a suitable parametric model is available, a common method is to use maximum likelihood to estimate the parameters of the model. Otherwise, a standard nonparametric approach is based on kernel density estimation (Wand and Jones 1995), which has been implemented in the R function density. In common with many nonparametric methods, kernel density estimation requires the careful specification of a smoothing parameter. For multivariate data, the smoothing parameter is a bandwidth matrix with up to $\frac{1}{2}d(d+1)$ entries to choose, meaning that this method can be especially difficult to apply in practice.

An alternative to kernel density estimation or other estimation techniques based on smoothing (all of which require the selection of a smoothing parameter, which is nontrivial especially in the multivariate case) is to impose some qualitative shape restrictions on the density. If the shape restrictions are suitable, there is enough structure to guarantee the existence of a unique and fully automatic maximum likelihood estimate, even though the class of densities may be infinite-dimensional. This therefore avoids both the restrictions of a parametric model and the difficulty of bandwidth selection in kernel density estimation. The price is some restriction on the shape of the density. However, these restrictions are less severe than those imposed by a parametric model.

Shape-constrained maximum likelihood dates back to Grenander (1956), who treated monotone densities in the context of mortality data. Recently there has been considerable interest in alternative shape constraints, including convexity, k-monotonicity and log-concavity (Groeneboom, Jongbloed, and Wellner 2001; Dümbgen and Rufibach 2008; Balabdaoui and Wellner 2007). However, these works have all focused on the case of univariate data. Log-concave densities

A function $g \colon \mathbb{R}^d \to [-\infty, \infty)$ is concave if

$$g(\lambda x + (1 - \lambda)y) \ge \lambda g(x) + (1 - \lambda)g(y)$$

for all $x, y \in \mathbb{R}^d$ and $\lambda \in (0, 1)$. This corresponds to what Rockafellar (1997) calls a proper concave function. We say a probability density function f is log-concave if log f is a concave function. Several common parametric families of univariate densities are log-concave, such as Gaussian, logistic and Gumbel densities, as well as Weibull, Gamma and Beta densities for certain parameter values (An 1998). In fact, Cule, Samworth, and Stewart (2008) showed that even though the class of multivariate log-concave densities is large (infinite-dimensional), it still retains some of the simple and attractive properties of the class of Gaussian densities.

One-dimensional log-concave density estimation via maximum likelihood is discussed in Dümbgen and Rufibach (2008); computational aspects are treated in Rufibach (2007). It is in the multivariate case, however, where kernel density estimation is more difficult and parametric models less obvious, where a log-concave model may be most useful.

Theoretical and computational aspects of multivariate log-concave density estimation are treated in Cule *et al.* (2008). In particular, it is proved that if Y_1, \ldots, Y_m are (distinct) independent and identically distributed observations from a distribution with log-concave density f_0 on \mathbb{R}^d , then (with probability 1) there is a unique log-concave density \hat{f}_m satisfying

$$\widehat{f}_m = \operatorname*{arg\,max}_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m \log f(Y_i),\tag{1}$$

where \mathcal{F} is the class of all log-concave densities on \mathbb{R}^d . Further, it is shown that this infinite dimensional maximization problem can be reduced to that of maximizing over functions of the form \bar{h}_y for some $y = (y_1, \ldots, y_m) \in \mathbb{R}^m$, where

$$h_y(x) = \inf\{h(x): h \text{ is concave, } h(Y_i) \ge y_i, i = 1, \dots, m\}.$$
 (2)

As discussed in Cule *et al.* (2008), we may think of \bar{h}_y as the function obtained by placing a pole of height y_i at X_i and stretching a rubber sheet over the top of the poles.

Therefore, to completely specify the maximum likelihood estimator, we need only specify a suitable vector $\hat{y} \in \mathbb{R}^m$, as this defines the entire function $\bar{h}_{\hat{y}}$. A main feature of the **Log-ConcDEAD** package is that it provides an iterative algorithm for finding such an appropriate vector \hat{y} .

From our knowledge of the structure of functions of the form (2), we may deduce some additional properties of \hat{f}_m . It is zero outside the convex hull of the data, and strictly positive inside the convex hull. Moreover, we can find a triangulation of the convex hull into simplices (triangles when d = 2, tetrahedra when d = 3, and so on) such that $\log \hat{f}_m$ is affine on each simplex (Rockafellar 1997).

In practice our observations will be made only to a finite precision, so the observations will not necessarily be distinct. However, the same method of proof shows that, more generally, if X_1, \ldots, X_n are distinct points in \mathbb{R}^d and w_1, \ldots, w_n are strictly positive weights satisfying $\sum_{i=1}^n w_i = 1$, then there is a unique log-concave density \hat{f}_n , which is of the form $\hat{f}_n = \exp(\bar{h}_y)$ for some $y \in \mathbb{R}^n$, and which satisfies

$$\widehat{f}_n = \operatorname*{arg\,max}_{f \in \mathcal{F}} \sum_{i=1}^n w_i \log f(X_i).$$
(3)

The default case $w_i = \frac{1}{n}$ corresponds to the situation described above, and is appropriate for most situations. However, the generalization (3) obtained by allowing $w_i \neq \frac{1}{n}$ allows us to extend to binned observations. In more detail, if Y_1, \ldots, Y_m are independent and identically distributed according to a density f_0 , and distinct binned values X_1, \ldots, X_n are observed, we may construct a maximum likelihood problem of the form given in (3), setting

$$w_i = \frac{\# \text{ of times value } X_i \text{ is observed}}{m}$$

and

$$\widehat{f}_n = \arg\max_{f \in \mathcal{F}} \sum_{i=1}^n w_i \log f(X_i).$$

This generalization may also be used for a multivariate version of a log-concave EM algorithm (Chang and Walther (2008), also discussed in Cule *et al.* (2008)).

1.3. Outline of the remainder of this document

In Section 2, we outline the algorithm used to compute the maximum likelihood estimator, including various parameters used in the computation. This is essentially an adaptation of Shor's r-algorithm (Shor 1985) (implemented as **SolvOpt** by Kappel and Kuntsevich (2000)), and depends on the **Quickhull** algorithm for computing convex hulls (Barber, Dobkin, and Huhdanpaa 1996). This section may be skipped on first reading.

In Section 3, we demonstrate the main features of the package through four simple examples (one with d = 1, two with d = 2 and one with d = 3). This section includes a description of all of the parameters used, as well as the output structures. We also introduce the plotting functions available, as well as functions for sampling from the density estimate and for evaluating the density at a particular point.

2. Algorithm

2.1. Introduction

Recall that the maximum likelihood estimator \hat{f}_n of f_0 may be completely specified by its values at the observations X_1, \ldots, X_n . Writing C_n for the convex hull of the data, Cule *et al.* (2008) showed that the problem of computing the estimator may be rephrased as one of finding

$$\underset{y \in \mathbb{R}^n}{\operatorname{arg\,min}} \sigma(y) = -\sum_{i=1}^n w_i y_i + \int_{C_n} \exp\{\bar{h}_y(x)\} \, dx$$

for suitable chosen weights w_i , where

$$h_{y}(x) = \inf\{h(x) : h \text{ is concave}, h(X_{i}) \ge y_{i}, i = 1, \dots, n\}.$$

The function σ is convex, but not differentiable, so standard gradient-based convex optimization techniques such as Newton's method are not suitable. Nevertheless, the notion of a subgradient is still valid: a subgradient at y of σ is any direction which defines a supporting hyperplane to σ at y. Shor (1985) developed a theory of subgradient methods for handling convex, non-differentiable optimization problems. The r-algorithm, described in Shor (1985, Chapter 3) and implemented as **SolvOpt** in C by Kappel and Kuntsevich (2000), was found to work particularly well in practice. A main feature of the **LogConcDEAD** package is an implementation of an adaptation of this r-algorithm for the particular problem encountered in log-concave density estimation.

2.2. Shor's *r*-algorithm

Our adaptation of Shor's r-algorithm produces a sequence (y^t) with the property that

$$\sigma(y^t) \to \min_{y \in \mathbb{R}^n} \sigma(y)$$

as $t \to \infty$. At each iteration, the algorithm requires the evaluation $\sigma(y^t)$, and the subgradient at y^t , denoted $\partial \sigma(y^t)$, which determines the direction of the move to the next term y^{t+1} in the sequence.

Exact expressions for $\sigma(y^t)$ and $\partial \sigma(y^t)$ are provided in Cule *et al.* (2008). In practice, their computation requires the evaluation of convex hulls and triangulations of certain finite sets of points. This can be done in a fast and robust way via the **Quickhull** algorithm (Barber *et al.* 1996), available in R through the **geometry** package (Grasman and Gramacy 2008). Due to the presence of some removable singularities in the expressions for $\sigma(y^t)$ and $\partial \sigma(y^t)$, it is computationally more stable to use a Taylor approximation to the true values for certain values of y^t (Cule and Dümbgen 2008). The values for which a Taylor expansion (rather than direct evaluation) is used may be controlled by the argument Jtol to the LogConcDEAD function mlelcd. By default this is 10^{-3} ; altering this parameter is not recommended.

Several parameters may be used to control the *r*-algorithm as detailed by Kappel and Kuntsevich (2000). In the function mlelcd, they may be controlled by the user via the arguments stepscale1, stepscale2, stepscale3, stepscale4 and desiredsize. For a detailed description of these parameters, as well as of this implementation of the *r*-algorithm, see Kappel and Kuntsevich (2000).

Stopping criteria

The implementation of the r-algorithm used in the main function mlelcd terminates after the (t + 1)th iteration if each of the following conditions holds:

$$|y_i^{t+1} - y_i^t| \le \delta |y_i^t|$$
 for $i = 1, ..., n$

2.

1.

$$|\sigma(y^{t+1}) - \sigma(y^t)| \le \epsilon |\sigma(y^t)|$$

3.

$$\left| \int_{C_n} \exp\{\bar{h}_{y^t}(x)\} \, dx - 1 \right| \le \eta$$

for some small tolerances δ , ϵ and η .

The first two of these are the criteria suggested by Kappel and Kuntsevich (2000); the final one is based on the observation that the maximum likelihood estimator is density (Cule *et al.* 2008). By default, these values are $\delta = 10^{-4}$, $\epsilon = 10^{-8}$ and $\eta = 10^{-4}$, but they may be modified by the user as required, using the parameters ytol, sigmatol and integraltol respectively. The default parameters have been found to work well and it is not recommended to alter them.

3. Usage

In this section we illustrate the functions available in **LogConcDEAD** through several simple simulated data examples. These functions include mlelcd, which computes the maximum likelihood estimator, as well as graphics facilities and the function rlcd for sampling from the fitted density.

3.1. Example 1: 1-d data

For one-dimensional data, the alternative active set algorithm from **logcondens** (Rufibach and Dümbgen 2006; Dümbgen, Hüsler, and Rufibach 2007) may be used to compute the log-concave maximum likelihood estimator. In this section we will compare the output of the two procedures.

First we must install and load the logcondens package (Rufibach and Dümbgen 2006).

```
> install.packages("logcondens")
> library(logcondens)
```

For this example, we will use 200 points from a Gamma(2, 1) distribution. The seed has been set (to 1) using the **set.seed** command, so this example can be reproduced exactly; you may also like to try with a different seed.

```
> n <- 200
> x <- sort(rgamma(n, shape = 2))
> out1 <- activeSetLogCon(x)
> out2 <- mlelcd(x)</pre>
```

We can see from Figure 1 that, as expected, **logcondens** and **LogConcDEAD** produce the same output. Figure 2 also illustrates the structure of the log-concave maximum likelihood estimator: its logarithm is piecewise linear with changes of slope only at observation points.

3.2. Example 2: 2-d normal data

For this section, we will generate 500 points from a bivariate normal distribution with independent components. Again, we have set the seed (to 22) for reproducibility.

```
> n <- 500
> d <- 2
> x <- matrix(rnorm(n * d), ncol = d)
```



```
> lgdtxt <- c("LogConcDEAD", "logcondens", "true")
> lgdlty <- c(1, 2, 3)
> plot(out2, ylim = ylim, lty = 1)
> lines(x, exp(out1$phi), lty = 2)
> lines(x, x * exp(-x), lty = 3)
> legend(x = 3, y = 0.4, lgdtxt, lty = lgdlty)
```

Figure 1: Density estimates (and true density) based on 200 i.i.d observations from a Gamma(2,1) distribution.

Basic usage

The basic command in this package is mlelcd, which computes the log-concave maximum likelihood estimate \hat{f}_n . The verbose option controls the diagnostic output, which will be described in more detail below.

> out <- mlelcd(x, verbose = 200)</pre>

- > plot(out2, uselog = TRUE, lty = 1)
 > lines(x, out1\$phi, lty = 2)
 > lines(x, log(x) x, lty = 3)
- > legend(x = 3, y = -1, lgdtxt, lty = lgdlty)

Figure 2: Log of density estimate (and true log-density) based on 200 i.i.d observations from a Gamma(2,1) distribution.

Iter #	 Function Val	 Step Value	 Integral	 Grad Norm
200	3.84062	0.0202458	0.989243	0.038331
Iter #	 Function Val	 Step Value	 Integral	 Grad Norm
400	3.83207	0.0183776	1.00047	0.038719
Iter #	 Function Val	 Step Value	 Integral	 Grad Norm
600	3.80796	0.0118178	1.00164	0.027426

8

```
Iter # ... Function Val ... Step Value ... Integral ... Grad Norm
   800
                3.80766
                           0.000418273
                                             1.00121
                                                          0.028242
Iter # ... Function Val ... Step Value ... Integral ... Grad Norm
  1000
                3.80747
                           0.000842166
                                             1.00036
                                                          0.029181
Iter # ... Function Val ... Step Value ... Integral ... Grad Norm
                           0.000513905
                                              1.0002
                                                          0.030713
  1200
                3.80745
SolvOpt: Normal termination.
```

The default **print** statement shows the value of the logarithm of the maximum likelihood estimator at the data points, the number of iterations of the subgradient algorithm required, and the total number of function evaluations required to reach convergence.

In the next two subsections, we will describe the input and output in more detail.

Input

The only input required is an $n \times d$ matrix of data points. One dimensional (vector) input will be converted to a matrix. Optionally a vector of weights \mathbf{w} , corresponding to (w_1, \ldots, w_n) in (3), may be specified. By default this is

$$\left(\frac{1}{n},\ldots,\frac{1}{n}\right),$$

which is appropriate for independent and identically distributed observations.

A starting value y may be specified for the vector (y_1, \ldots, y_n) ; by default a kernel density estimate (using a normal kernel and a diagonal bandwidth selected using a normal scale rule) is used. This is performed using the (internal) function **initialy**.

The parameter verbose controls the degree of diagnostic information provided by **SolvOpt**. The default value, -1, prints nothing. The value 0 prints warning messages only. If the value is m > 0, diagnostic information is printed every *m*th iteration. The printed information summarises the progress of the algorithm, displaying the iteration number, current value of the objective function, (Euclidean) length of the last step taken, current value of $\int \exp\{\bar{h}_y(x)\} dx$ and (Euclidean) length of the subgradient. The last column is motivated by the fact that 0 is a subgradient only at the minimum of σ (Rockafellar 1997, Chapter 27), and so for smooth functions, we may be close to the minimum even if this value is relatively large, so only the middle three columns form the basis of our stopping criteria, as described in Section 2.2.1.

The remaining optional arguments are generic parameters of the r-algorithm, and have already been discussed in Section 2.

Output

The output is an object of class "LogConcDEAD", which has the following elements:

> names(out)

[1]	"x"	"w"	"logMLE"
[4]	"NumberOfEvaluations"	"MinSigma"	"Ъ"

```
LogConcDEAD
```

[7]	"beta"	"triang"	"verts"
[10]	"vertsoffset"	"chull"	"outnorm"
[13]	"outoffset"		

The first two components \mathbf{x} and \mathbf{w} give the input data. The component logMLE specifies the logarithm of the maximum likelihood estimator, via its values at the observation points. In this example the first 5 elements are shown, corresponding to the first 5 rows of the data matrix \mathbf{x} .

> out\$logMLE[1:5]

[1] -2.415720 -5.785971 -2.382600 -2.081224 -2.484241

As was mentioned in Sections 1 and 2, there is a triangulation of $C_n = \operatorname{conv}(X_1, \ldots, X_n)$, the convex hull of the data, such that $\log \hat{f}_n$ is affine on each simplex in the triangulation. Each simplex in the triangulation is the convex hull of a subset of $\{X_1, \ldots, X_n\}$ of size d+1. Thus the simplices in the triangulation may be indexed by a finite set J of (d+1)-tuples, which are available via

> out\$triang[1:5,]

[,1]	[,2]	[,3]
287	115	239
15	483	236
402	2	259
369	115	171
369	287	115
	[,1] 287 15 402 369 369	[,1] [,2] 287 115 15 483 402 2 369 115 369 287

For each $j \in J$, there is a corresponding vector $b_j \in \mathbb{R}^d$ and $\beta_j \in \mathbb{R}$, which define the affine function which coincides with $\log \hat{f}_n$ on the *j*th simplex in the triangulation. These values b_j and β_j are available in

> out\$b[1:5,]

	[,1]	[,2]
[1,]	3.056216	-1.6678212
[2,]	1.468910	6.3722337
[3,]	-2.006637	0.3510304
[4,]	2.505594	-1.2384688
[5,]	2.750257	-1.2064074

> out\$beta[1:5]

[1] -3.9108641 -10.4207323 0.1799922 -2.1181471 -2.6958089

10

(In all of the above cases, only the first 5 elements are shown.) As discussed in Cule *et al.* (2008), for each $j \in J$ we may find a matrix A_j and a vector α_j such that the map $w \mapsto A_j w + \alpha_j$ maps the unit simplex in \mathbb{R}^d to the *j*th simplex in the triangulation. The inverse of this map, $x \mapsto A_j^{-1}x - A_j^{-1}\alpha_j$, is required for easy evaluation of the density at a point, and for plotting. The matrix A_j^{-1} is available in **out\$verts** and $A_j^{-1}\alpha_j$ is available in **out\$vertsoffset**. The "LogConcDEAD" object also provides some diagnostic information on the execution of the **SolvOpt** routine: the number of iterations required, the number of function evaluations needed, the number of subgradient evaluations required (in a vector NumberOfEvaluations), and the minimum value of the objective function σ attained (MinSigma).

```
> out$NumberOfEvaluations
```

[1] 1373 4322 1374

> out\$MinSigma

[1] 3.807418

The indices of simplices in the convex hull C_n are available:

> out\$chull[1:5,]

[,1] [,2] [1,] 239 287 [2,] 239 84 [3,] 46 259 203 [4,] 287 2 259 [5,]

In addition, an outward-pointing normal vector for each face of the convex hull C_n and an offset point (lying on the face of the convex hull) may be obtained.

```
> out$outnorm[1:5, ]
```

	[,1]	[,2]
[1,]	-0.8485752	0.52907483
[2,]	-0.0767366	0.99705140
[3,]	0.9996818	0.02522528
[4,]	-0.8588526	-0.51222283
[5,]	0.9264791	-0.37634623
> ou [1,] [2,] [3,]	t\$outoffset [,1] -1.930875 -1.930875 3.253349	[1:5,] [,2] 2.986373 2.986373 2.471396
[4,]	-2.407876	-1.909542
[5,]	2.485184	-1.763713

LogConcDEAD

This information may be used to test whether or not a point lies in C_n , as $x \in C_n$ if and only if $p^T(x-q) \leq 0$ for every face of the convex hull, where p denotes an outward normal and q an offset point.

When d = 1, the convex hull consists simply of the minimum and maximum of the data points, and outSoutnorm and outSoutoffset are NULL, although outSchull still takes on the appropriate values.

3.3. Graphics

Various aspects of the log-concave maximum likelihood estimator can be plotted using the plot command, applied to an object of class "LogConcDEAD".

The plots are based on interpolation over a grid, which can be somewhat time-consuming. As several will be done here, we can save the results of the interpolation separately, using the function interplcd, and use it to make several plots. The number of grid points may be specified using the parameter gridlen. By default, gridlen=100, which is suitable for most plots.

If d > 1, we can plot one-dimensional marginals by setting the marg parameter. Note that the marginal densities of a log-concave density are log-concave (discussed in Cule *et al.* (2008), as a consequence of the theory of Prékopa (1973)).

```
> g <- interplcd(out, gridlen = 200)
> g1 <- interpmarglcd(out, marg = 1)
> g2 <- interpmarglcd(out, marg = 2)</pre>
```

The plots in Figure 3 show a contour plot of the estimator and a contour plot of its logarithm for 500 points in 2 dimensions. Note that the contours of log-concave densities enclose convex regions. Figure 4 shows two estimates of the marginal densities for the same sample.

The plot type is controlled by the argument type, which may take the values "p" (a perspective plot), "i", "c" or "ic" (colour maps, contours or both), or "r" (a 3d plot using the rgl package (Adler and Murdoch 2007)). The default plot type is "ic".

The **rgl** package allows user interaction with the plot (e.g. the plot can be rotated using the mouse and viewed from different angles). Although we are unable to demonstrate this feature on paper, Figure 5 shows the type of output produced by **rgl**.

Figure 6 shows the output produced by setting **uselog** = **TRUE** to plot on the log scale. Here we can clearly see the structure of the log-concave density estimate.

3.4. Other functions

In this section we will describe the use of the additional functions rlcd and dlcd.

Sampling from the MLE

Suppose we wish to estimate a functional of the form $\theta(f) = \int g(x)f(x) dx$, for example the mean or other moments, the differential entropy $-\int f(x) \log f(x) dx$, etc. Once we have obtained a density estimate \hat{f}_n , such as the log-concave maximum likelihood estimator, we may use it as the basis for a plug-in estimate $\hat{\theta}_n = \int g(x) \hat{f}_n(x) dx$, which may be approximated

> plot(out, g = g, addp = FALSE, asp = 1)
> plot(out, g = g, uselog = TRUE, addp = FALSE, asp = 1)

Figure 3: Plots based on 500 points from a standard bivariate normal distribution

using a simple Monte Carlo procedure even if an analytic expression is not readily available. In more detail, we generate a sample Z_1, \ldots, Z_N drawn from \hat{f}_n , and approximate $\hat{\theta}_n$ by

$$\widetilde{\theta}_n = \frac{1}{N} \sum_{j=1}^N g(Z_j).$$

This requires the ability to sample from \hat{f}_n , which may be achieved given an object of class "LogConcDEAD" as follows:

```
> nsamp <- 1000
> mysamp <- rlcd(nsamp, out)
```

Details of the function rlcd, which uses a straightforward rejection sampling scheme, are given in Cule *et al.* (2008).

Once we have a random sample, plug-in estimation of various functionals is straightforward.

```
> apply(mysamp, 2, mean)
[1] -0.06844201 -0.03545679
```

> cov(mysamp)

Figure 4: Plots of estimated marginal densities based on 500 points from a standard bivariate normal distribution

> plot(out, g = g, type = "r")

Figure 5: **rgl** output for Example 2

х

> plot(out, g = g, type = "r", uselog = TRUE)

Figure 6: rgl output for Example 2, with uselog=TRUE

[,1] [,2] [1,] 0.8763752 -0.0768966 [2,] -0.0768966 1.0843730

Evaluation of fitted density

We may evaluate the fitted density at a point or matrix of points such as

> m <- 10
> mypoints <- 1.5 * matrix(rnorm(m * d), ncol = d)</pre>

using the command

> dlcd(mypoints, out)

[1] 0.028837467 0.005741745 0.125443472 0.00000000 0.006570692
[6] 0.092890539 0.011792008 0.117897754 0.003452016 0.140344445

Note that, as expected, the density estimate is zero for points outside the convex hull of the original data.

The dlcd function may be used in conjunction with rlcd to estimate more complicated functionals such as a $100(1 - \alpha)\%$ highest density region, defined by Hyndman (1996) as $R_{\alpha} = \{x \in \mathbb{R}^d : f(x) \ge f_{\alpha}\}$, where f_{α} is the largest constant such that $\int_{R_{\alpha}} f(x) dx \ge 1 - \alpha$. Using the algorithm outlined in Hyndman (1996, Section 3.2), it is straightforward to approximate f_{α} as follows:

```
> myval <- sort(dlcd(mysamp, out))
> alpha <- c(0.25, 0.5, 0.75)
> myval[(1 - alpha) * nsamp]
```

[1] 0.12042887 0.08174028 0.03838084

3.5. Example 3: 2-d binned data

In this section, we demonstrate the use of "LogConcDEAD" with binned data. The seed here has been set to 333 for reproducibility; you may wish to try these examples with other seeds.

We generate some data from a normal distribution with correlation using the package **mvt-norm** (Genz, Bretz, Hothorn, Miwa, Mi, Leisch, and Scheipl 2008). As before, this may be installed and loaded using

```
> install.packages("mvtnorm")
> library(mvtnorm)
> sigma <- matrix(c(1, 0.2, 0.2, 1), nrow = 2)
> n <- 500
> d <- 2
> y <- rmvnorm(n, sigma = sigma)
> xall <- round(y, digits = 1)</pre>
```

The matrix xall therefore contains 500 observations, rounded to 1 decimal place; there are in total 411 distinct observations. In order to compute an appropriate log-likelihood, we will use the function getweights to extract a matrix of distinct observations and a vector of weights for use in mlelcd. The result of this has two parts: a matrix x consisting of the distinct observations, and a vector w of weights. We may also use interplcd as before to evaluate the estimator on a grid for plotting purposes.

```
> tmpw <- getweights(xall)
> outw <- mlelcd(tmpw$x, w = tmpw$w)
> gw <- interplcd(outw, gridlen = 200)</pre>
```

16

Figure 7: Density and log density estimate based on 500 points from a bivariate normal distribution in two dimensions (truncated to 1 decimal place) (Example 3)

In Figure 7 we plot density and log-density estimates using a contour plot as before. In contrast to the examples in Figure 3, we have addp=TRUE (the default), which superposes the observation points on the plots, and drawlabels=FALSE, which suppresses the contour labels.

3.6. Example 4: Higher-dimensional data

In our final example we illustrate the use of the log-concave density estimate for higherdimensional data. For this example the seed has been set to 4444. The log-concave maximum likelihood estimator is defined and may be computed and evaluated in exactly the same way as the 2-dimensional examples in Sections 3.2 and 3.5. This estimate will be based on 500 points.

```
> n <- 500
> d <- 3
> x <- matrix(rgamma(n * d, shape = 2), ncol = d)
> out3 <- mlelcd(x)</pre>
```

The function dmarglcd may be used to evaluate the marginal estimate, setting the parameter marg appropriately. Note that, as before, the estimate is 0 outside the convex hull of the observed data.

```
> mypoints <- c(0, 2, 4)
> dmarglcd(mypoints, out3, marg = 1)
```

[1] 0.0000000 0.28978492 0.07633001

One-dimensional marginal distributions may be plotted easily, by setting the marg parameter to the appropriate margin as shown in Figure 8.

Figure 8: Marginal density estimates for 3 dimensional data (based on 500 points)

References

- Adler D, Murdoch D (2007). rgl: 3D Visualization Device System (OpenGL). R package version 0.75, URL http://rgl.neoscientists.org.
- Akima H, Gebhardt A, Petzoldt T, Maechler M (2006). akima: Interpolation of Irregularly Spaced Data. R package version 0.5-1.
- An MY (1998). "Logconcavity Versus Logconvexity: A Complete Characterization." Journal of Economic Theory, 80, 350–369.
- Balabdaoui F, Wellner JA (2007). "Estimation of a k-monotone Density: Limiting Distribution Theory and the Spline Connection." Annals of Statistics, **35**, 2536–2564.
- Barber CB, Dobkin DP, Huhdanpaa H (1996). "The Quickhull Algorithm for Convex Hulls." ACM Transactions on Mathematical Software, 22, 469–483. URL http://www.qhull.org.
- Chang G, Walther G (2008). "Clustering with Mixtures of Log-concave Distributions." Computational Statistics and Data Analysis. To appear.
- Cule ML, Dümbgen L (2008). "Some Technical Aspects of Log-concave Densities." *Technical report*, Universität Bern. Unpublished manuscript.
- Cule ML, Samworth RJ, Stewart MI (2008). "Maximum Likelihood Estimation of a Multidimensional Log-concave Density." Submitted, URL http://arxiv.org/abs/0804.3989.
- Dümbgen L, Hüsler A, Rufibach K (2007). "Active Set and EM Algorithms for Log-concave Densities Based on Complete and Censored Data." *Technical report*, Universität Bern. Preprint, URL arXiv:0709.0334v2.
- Dümbgen L, Rufibach K (2008). "Maximum Likelihood Estimation of a Log-concave Density: Basic Properties and Uniform Consistency." *Bernoulli, to appear.* Available at http: //isi.cbs.nl/bernoulli/future.htm.
- Genz A, Bretz F, Hothorn T, Miwa T, Mi X, Leisch F, Scheipl F (2008). mvtnorm: Multivariate Normal and t Distributions. R package version 0.9-0.
- Grasman R, Gramacy RB (2008). geometry: Mesh Generation and Surface Tesselation. R package version 0.1, URL http://users.fmg.uva.nl/rgrasman/Rqhull.html.
- Grenander U (1956). "On the Theory of Mortality Measurement II." Skandinavisk Aktuarietidskrift, 39, 125–153.
- Groeneboom P, Jongbloed G, Wellner JA (2001). "Estimation of a Convex Function: Characterizations and Asymptotic Theory." Annals of Statistics, 29, 1653–1698.
- Hyndman RJ (1996). "Computing and Graphing Highest Density Regions." The American Statistician, 50, 120–126.
- Kappel F, Kuntsevich A (2000). "An Implementation of Shor's r-algorithm." Computational Optimization and Applications, 15, 193–205.

- Leisch F (2002). "Sweave: Dynamic Generation of Statistical Reports using Literate Data Analysis." In W Härdle, B Rönz (eds.), "Compstat 2002 Proceedings in Computational Statistics," pp. 575–580. Physika Verlag, Heidelberg, Germany.
- Prékopa A (1973). "On logarithmically concave measures and functions." Acta Scientarium Mathematicarum, **34**, 335–343.
- R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http: //www.R-project.org.
- Rockafellar RT (1997). Convex Analysis. Princeton University Press, Princeton, New Jersey.
- Rufibach K (2007). "Computing Maximum Likelihood Estimators of a Log-concave Density Function." J. Statist. Computation and Simulation, 77, 561–574.
- Rufibach K, Dümbgen L (2006). logcondens: Estimate a Log-Concave Probability Density from iid Observations. R package version 1.2, URL http://www.stanford.edu/~kasparr, http://www.stat.unibe.ch/~duembgen.
- Shor NZ (1985). Minimization Methods for Non-Differentiable Functions. Springer-Verlag, Berlin.
- Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Springer.

Wand MP, Jones MC (1995). Kernel Smoothing. Chapman and Hall, CRC Press, Florida.

Affiliation:

Madeleine Cule, Robert Gramacy, Richard Samworth Statistical Laboratory Centre for Mathematical Sciences Wilberforce Road Cambridge CB3 0WG E-mail: mlc40, rjs57@cam.ac.uk bobby@statslab.cam.ac.uk URL: http://www.statslab.cam.ac.uk/~mlc40, http://www.statslab.cam.ac.uk/~bobby, http://www.statslab.cam.ac.uk/rjs57

Journal of Statistical Software	http://www.jstatsoft.org/
published by the American Statistical Association	http://www.amstat.org/
Volume VV, Issue II	Submitted: yyyy-mm-dd
MMMMMM YYYY	Accepted: yyyy-mm-dd