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SUPPLEMENTARY MATERIAL TO ‘GLOBAL RATES OF
CONVERGENCE IN LOG-CONCAVE DENSITY

ESTIMATION’

By Arlene K. H. Kim† and Richard J. Samworth∗,†

University of Cambridge†

This is the supplementary material for Kim and Samworth (2016), here-
after referred to as the main text.

1. Proof and auxiliary result for Theorem 1 in the main text.
We recall that the Kullback–Leibler divergence between two densities f and
g on Rd is given by

d2
KL(f, g) :=

∫

Rd
f log

f

g
.

Given ε > 0 and ρ ∈ {dKL, h}, we write V (ε,Fd, ρ) for the ε-covering number
of Fd with respect to ρ; thus V (ε,Fd, ρ) is the minimal N ∈ N with the
property that there exist densities f1, . . . , fN such that for any f ∈ Fd,
we can find j∗ ∈ {1, . . . , N} with ρ(f, fj∗) ≤ ε. We also write N(ε,Fd, h)
for the ε-packing number of Fd with respect to h; thus N(ε,Fd, h) is the
maximal N ∈ N with the property that there exist densities f1, . . . , fN ∈
Fd with h(fj , fk) > ε for j 6= k. Finally, given 0 < c ≤ C̄ < ∞ and a
compact interval I ⊆ R, we write Fconc

c,C̄,I
for the set of univariate upper semi-

continuous densities f that are concave on I, and satisfy c ≤ f(x) ≤ C̄ for
x ∈ I, and f(x) = 0 for x /∈ I. Note that Fconc

c,C̄,I
⊆ F1.

Proof of Theorem 1. The case d = 1: There exist 0 < c ≤ C̄ < ∞,
c∗1 ∈ (0,∞), a compact interval I ⊆ R and ε0 > 0 such that, given ε ∈ (0, ε0],
we can find a subfamily F̄1 := {f1, . . . , fNε} ⊆ Fconc

c,C̄,I
with the following

properties:

(i) logNε ≥ c∗1ε−1/2;
(ii) h(fj , fk) > ε for all j 6= k.

Such a construction can be obtained, for instance, by adapting the convex
densities of Devroye and Lugosi (2001, Lemma 15.1); alternatively, details
can be found in the arxiv version of this paper (Kim and Samworth, 2015,
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Theorem 1). We therefore have that logN(ε,Fconc
c,C̄,I

, h) ≥ c∗1ε−1/2. Moreover,

we can recall that

d2
KL(f, g) ≤ 4C̄

c
h2(f, g)

for f, g ∈ Fconc
c,C̄,I

. We deduce that, for some K†1 ≥ 1,

V (ε,Fconc
c,C̄,I , dKL) ≤ N

(
c1/2ε

2C̄1/2
,Fconc

c,C̄,I , h

)
≤ V

(
c1/2ε

4C̄1/2
,Fconc

c,C̄,I , h

)

≤ exp(K†1ε
−1/2),

where the final claim follows because square roots of densities that are con-
cave on I are concave on I, so we can apply the L2-covering number bounds
of Guntuboyina and Sen (2013, Theorem 3.1), or Proposition 4 below. It
follows from Yang and Barron (1999, Theorem 1), restated as Lemma 1

below for convenience, that we can take εn = (K†1)2/5n−2/5 and εn,h =
(c∗1)2

36(K†1)8/5
n−2/5 there to conclude that for n large enough that εn,h ≤ ε0,

inf
f̃n∈F̃n

sup
f0∈F1

Ef0
{
h2(f̃n, f0)

}
≥ (c∗1)4

8× 362(K†1)16/5
n−4/5.

The case d ≥ 2: As mentioned in Section 2 in the main text, Fd contains the
class of uniform densities on closed, convex sets. The result therefore follows
by slight modifications of the arguments in, for example, the proof of Brunel
(2013, Theorem 5); see also Brunel (2016); Korostelev and Tsybakov (1993);
Mammen and Tsybakov (1995).

The following lemma is a special case of Yang and Barron (1999, Theo-
rem 1).

Lemma 1 (Yang and Barron (1999), Theorem 1). Suppose that εn >
0 is such that ε2n ≥ n−1 log V (εn,Fd, dKL) and that εn,h > 0 is such that
logN(εn,h,Fd, h) ≥ 4nε2n + 2 log 2. Then

inf
f̃n∈F̃n

sup
f0∈Fd

Ef0
{
h2(f̃n, f0)

}
≥ 1

8
ε2n,h.

2. Auxiliary results for the proof of Theorem 4 in the main text.
We first provide the following entropy bound for convex sets, which is a minor
extension of Dudley (1999, Corollary 8.4.2). For a d-dimensional, closed,
convex set D ⊆ Rd, we write Ad(D) for the class of closed, convex subsets of
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D. Further, and in a slight abuse of notation, we let N[](ε,Ad(D), L1) denote
the ε-bracketing number of {1A : A ∈ Ad(D)} in the L1 = L1(µd)-metric.
Recall also that we write log++(x) = max(1, log x).

Proposition 2. For each d ∈ N, there exists Kd ∈ (0,∞), depending
only on d, such that

logN[]

(
ε,Ad(D), L1

)
≤ Kd max

{
log++

(µd(D)

ε

)
,
(µd(D)

ε

)(d−1)/2
}

for all ε > 0.

Proof. By Fritz John’s theorem (Ball, 1997; John, 1948, p. 13), there
exist A ∈ Rd×d and b ∈ Rd such that D′ := AD + b has the property
that d−1B̄d(0, 1) ⊆ D′ ⊆ B̄d(0, 1). Let ad := µd

(
B̄d(0, 1)

)
= πd/2/Γ(1 +

d/2). Now, by Dudley (1999, Corollary 8.4.2) and the remark immediately

preceding it, there exists ε20,d ∈
(
0,min(e−1, ad)

)
and ˇ̌Kd ∈ (0,∞) such that

logN[]

(
ε,Ad(D′), L1

)
≤ logN[]

(
ε,Ad(B̄d(0, 1)), L1

)

≤ ˇ̌Kd max{log(1/ε), ε−(d−1)/2}
for all ε ∈ (0, ε20,d]. Now set

Ǩd := ˇ̌Kd

max{log(1/ε20,d), ε
−(d−1)/2
20,d }

max{log++(1/ad), a
−(d−1)/2
d }

.

Then, for ε ∈ (ε20,d, ad),

logN[]

(
ε,Ad(D′), L1

)
≤ logN[]

(
ε20,d,Ad(D′), L1

)

≤ ˇ̌Kd max{log(1/ε20,d), ε
−(d−1)/2
20,d } = Ǩd max{log++(1/ad), a

−(d−1)/2
d }

≤ Ǩd max{log++(1/ε), ε−(d−1)/2}.
For ε ≥ ad, we can use the single bracketing pair {ψL, ψU} with ψL(x) := 0
and ψU (x) := 1 for x ∈ D′, noting that L1(ψU , ψL) = µd(D

′) ≤ ad. Thus,
for ε ≥ ad,

logN[]

(
ε,Ad(D′), L1

)
= 0 ≤ Ǩd max{log++(1/ε), ε−(d−1)/2}.

We can therefore construct an ε-bracketing set in L1 for {1A : A ∈ Ad(D)}
as follows: first find an εad

ddµd(D)
-bracketing set {[ψLj , ψUj ] : j = 1, . . . , N} for

{1A : A ∈ Ad(D′)}, where

logN ≤ Ǩd max

{
log++

(ddµd(D)

εad

)
,
(ddµd(D)

εad

)(d−1)/2
}
.
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Now define φLj , φ
U
j : D → R by φLj (x) := ψLj (Ax+ b) and φUj (x) := ψUj (Ax+

b). Then

L1(φUj , φ
L
j ) =

∫

D
|ψUj (Ax+ b)− ψLj (Ax+ b)| dµd(x)

≤ εad
| detA|ddµd(D)

=
εad

ddµd(D′)
≤ εad

ddµd
(
d−1B̄d(0, 1)

) = ε.

Since log++(a/ε) ≤
{

2 +
2 log++(a)

log++(e/a)

}
log++(1/ε) for all a, ε > 0, the result

therefore holds with

Kd := Ǩd max

{(
2 +

2 log++(dd/ad)

log++(ead/dd)

)
,
dd(d−1)/2

a
(d−1)/2
d

}
.

We now provide a bracketing entropy bound for classes of uniformly
bounded concave functions on arbitrary d-dimensional, convex, compact do-
mains in Rd when d = 1, 2, 3. These results build on the work of Guntuboyina
and Sen (2013), who study covering (as opposed to bracketing) numbers and
rectangular domains, and a recent result of Gao and Wellner (2015), who
study various special classes of domains, including d-dimensional simplices.
For convenience, we state the result to which we will appeal below.

Recall that we say S ⊆ Rd is a d-dimensional simplex if there exist affinely
independent vectors u0, u1, . . . , ud ∈ Rd such that

S =

{
u0 +

d∑

j=1

λjuj : λ1, . . . , λd ≥ 0,
d∑

j=1

λj ≤ 1

}
.

A set D ⊆ Rd can be triangulated into simplices if there exist d-dimensional
simplices S1, . . . , SN ⊆ D such that ∪Nj=1Sj = D and if j 6= k then there
is a common (possibly empty) face F of the boundaries of Sj and Sk with
Sj ∩ Sk = F . For a d-dimensional, closed, convex subset D of Rd, and for
B > 0, we define Φ̄B(D) to be the set of upper semi-continuous, concave
functions φ with dom(φ) = D that are bounded in absolute value by B.

Theorem 3 (Gao and Wellner (2015), Theorem 1.1(ii)). For each d ∈ N,
there exists K∗∗d ∈ (0,∞), depending only on d, such that if D is a d-
dimensional closed, convex subset of Rd that can be triangulated into m
simplices, then

logN[]

(
2ε, Φ̄B(D), L2

)
≤ K∗∗d m

(
Bµ

1/2
d (D)

ε

)d/2
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for all ε > 0.

For any d-dimensional, compact, convex set D ⊆ Rd and any η ≥ 0, let

Dη := {x ∈ D : w ∈ D for all ‖w − x‖ ≤ η}, and Dη] := D + ηB̄d(0, 1).

We refer to Schenider (2014, Section 3.1) for basic properties of Dη and Dη],
which we will use in Proposition 4 below.

We are now in a position to state our bracketing entropy bound.

Proposition 4. There exists K◦d ∈ (0,∞), depending only on d, such
that for all d-dimensional, convex, compact sets D ⊆ Rd and all B, ε > 0,
we have

logN[]

(
2ε, Φ̄B(D), L2

)
≤





K◦1µ
1/4
1 (D)(B/ε)1/2 if d = 1

K◦2µ
1/2
2 (D)(B/ε) log

3/2
++(Bµ

1/2
2 (D)/ε) if d = 2

K◦3µ3(D)(B/ε)2 if d = 3.

Proof. As a preliminary, recall that the Hausdorff distance between two
non-empty, compact subsets A,B ⊆ Rd is given by

Haus(A,B) := max

{
sup
x∈A

inf
y∈B
‖x− y‖ , sup

y∈B
inf
x∈A
‖x− y‖

}
.

By the main result of Bronshteyn and Ivanov (1975), there exist δBI,d > 0
and Cd > 0, both depending only on d, such that for every δ ∈ (0, δBI,d]
and every d-dimensional convex, compact set D ⊆ B̄d(0, 1), we can find a
(convex) polytope P ⊇ D such that P has at most Cdδ

−(d−1)/2 vertices and
Haus(P,D) ≤ δ. (Throughout, we follow, e.g., Rockafellar (1997), and define
a polytope to be a set formed as the convex hull of finitely many points.)
Moreover, by Lemma 8.4.3 of Dudley (1999), there exists c0 ∈ (0, 16δBI,d],
depending only on d (though this dependence is suppressed for notational
simplicity), such that for any d-dimensional, closed convex set D ⊆ B̄d(0, 1)
and any δ > 0, we have µd(D \ Dc0δ

) ≤ δ/16.
We now begin the main proof in the case B = 1, and handle the general

case at the end of the whole argument. Fix a d-dimensional, convex, com-
pact set D ⊆ Rd, and, as in the proof of Proposition 2, apply Fritz John’s
theorem to construct an affine transformation D′ := AD+ b of D such that
d−1B̄d(0, 1) ⊆ D′ ⊆ B̄d(0, 1). We initially find bracketing sets for Φ̄1(D′),
and consider different dimensions separately.

The case d = 1: This is an extension from metric to bracketing entropy
of Theorem 3.1 of Guntuboyina and Sen (2013), and can be found in Doss
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and Wellner (2016, Proposition 4.1). In particular, these authors show that
there exist ε◦1 ∈ (0, 1) and K◦1,1 > 0 such that, when d = 1,

logN[]

(
2ε, Φ̄1(D′), L2

)
≤ K◦1,1ε−1/2

for all ε ∈ (0, ε◦1].
The case d = 2: Set ε◦2 := 1/8, and fix ε ∈ (0, ε◦2], noting that µ2(D′ \
D′c0ε2 ) ≤ ε2/16. Applying the result of Bronshteyn and Ivanov (1975), we

can find a polytope P1 ⊇ D′c0ε2 such that P1 has at most C2c
−1/2
0 ε−1 ver-

tices and Haus(P1, D′c0ε2 ) ≤ c0ε
2. We deduce that P1 ⊆ ( D′c0ε2 )c0ε

2] ⊆
D′. Applying the result of Bronshteyn and Ivanov (1975) recursively, with
M :=

⌊
log
(

1
4ε

)
/ log 2

⌋
(the condition that ε ≤ 1/8 ensures that M ∈ N), for

each i = 2, 3, . . . ,M , there exists a polytope Pi ⊇ (Pi−1)c04iε2 with at most

C2c
−1/2
0 2−iε−1 vertices such that Haus

(
Pi, (Pi−1)c04iε2

)
≤ c04iε2. Observe

that the Bronshteyn–Ivanov result can be applied in each case, because for
i = 2, 3, . . . ,M ,

c04iε2 ≤ c04M ε2 ≤ c0

16
≤ δBI,2.

Note moreover that the Bronshteyn–Ivanov construction yields Pi ⊆ Pi−1.
We claim that PM is a two-dimensional polytope, by our choice of M . In
fact,

µ2(PM ) = µ2(D′)− µ2(D′ \ P1)−
M∑

i=2

µ2(Pi−1 \ Pi)

≥ π

4
− µ2(D′ \ P1)−

M∑

i=2

µ2(Pi−1 \ (Pi−1)c04iε2 )

≥ π

4
− ε2

16

M∑

i=1

4i ≥ π

4
− 4M−1ε2 ≥ π

8
.

For i = 2, 3, . . . ,M , we now describe how to construct a finite set of sim-
plices (triangles) Si,1, . . . , Si,Ni that cover Pi−1\ (Pi−1)c04iε2 , so in particular,
they cover Pi−1\Pi. Since (Pi−1)c04iε2 is a two-dimensional polyhedral convex
set, we can pick two distinct vertices in this set. The line L passing through
these two points forms the boundary of two closed halfspaces H1 and H2;
we show how to triangulate H1∩

(
Pi−1 \ (Pi−1)c04iε2

)
, with the triangulation

of H2 ∩
(
Pi−1 \ (Pi−1)c04iε2

)
being entirely analogous. We claim that, in the

terminology of Devadoss and O’Rourke (2011), H1 ∩
(
Pi−1 \ (Pi−1)c04iε2

)
is

a polygon, i.e. a closed subset of R2 bounded by a finite collection of line
segments forming a simple closed curve.
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Proof. Throughout the proofs for di↵erent dimensions, we initially fix B = 1, and handle

the general case at the end of the whole argument.

The case d = 2: Let ✏�2 :=??? and K�
2 :=???. We define the Hausdor↵ distance between

two non-empty, compact subsets A, B ✓ Rd by

Haus(A, B) := max

⇢
sup
x2A

inf
y2B

kx � yk , sup
y2B

inf
x2A

kx � yk
�

.

Given any ✏ 2 (0, ✏�2µ
1/2
2 (D)], by Lemma 8.4.3 of Dudley (1999), there exists c0 > 0 such

that µ2(D \ Dc0✏2
)  ✏2/4. Now, by the main result of Bronshteyn and Ivanov (1975), there

exists a polytope P1 ◆ Dc0✏2
and a universal constant C2 > 0 such that P1 has at most C2✏

�1

vertices and Haus(P1, Dc0✏2
)  c0✏

2 (✏ su�ciently small). From this and the first part of

Lemma 16(ii), we deduce that P1 ✓ ( Dc0✏2
)c0✏2] ✓ D. Applying the result of Bronshteyn and

Ivanov (1975) recursively, with M :=??? log(1/✏) and for each i = 2, 3, . . . , M , there exists a

polytope Pi ◆ (Pi�1)c04i✏2 with at most C22
�i✏�1 vertices such that Haus

�
Pi, (Pi�1)c04i✏2

�


c04
i✏2. In particular, Pi ✓ Pi�1. Argue that (Pi�1)c04i✏2 is two-dimensional.

For i = 2, 3, . . . , M , we now describe how to construct a finite set of simplices Si,1, . . . , Si,Ni

that cover Pi�1 \ (Pi�1)c04i✏2 , so in particular, they cover Pi�1 \ Pi. Since (Pi�1)c04i✏2 is

a two-dimensional polyhedral convex set, we can pick two non-neighbouring vertices of

the boundary of this set. The line L joining these two points forms the boundary of

two closed halfspaces H1 and H2; we show how to triangulate H1 \
�
Pi�1 \ (Pi�1)c04i✏2

�
,

with the triangulation of H2 \
�
Pi�1 \ (Pi�1)c04i✏2

�
being entirely analogous. The line L

intersects bd(Pi�1) at precisely two points; let x0 2 L \ bd(Pi�1) denote the point that

is smaller in the lexicographic ordering. Let m1 2 N denote the number of vertices of

H1 \ bd(Pi�1). Now, for j = 1, . . . , m1 � 1, let xj 2 H1 \ bd(Pi�1) denote the vertex of the

polyhedral convex set H1 \ bd(Pi�1) that is the unique neighbour of xj�1 not belonging to

{x0, . . . , xj�1}. Note here that xm1�1 is the other point in L \ bd(Pi�1). Let xm1 denote

the closest point of bd
�

(Pi�1)c04i✏2

�
to xm1 (so the line segment joining xm1 and xm1+1 is a

subset of L). Letting m2 2 N denote the number of vertices of H1 \ bd
�

(Pi�1)c04i✏2

�
. For

j = 1, . . . , m2 � 1, let xm1+j 2 H1 \ bd
�

(Pi�1)c04i✏2

�
denote the vertex of the polyhedral

convex set H1 \ bd
�

(Pi�1)c04i✏2

�
that is the unique neighbour of xm1+j�1 not belonging to

{xm1 , . . . , xm1+j�1}. Finally, let xm1+m2 = x0. Let 0 = t0 < t1 < . . . < tm1+m2 = 1. The

boundary of the polyhedral convex set H1\
�
Pi�1 \ (Pi�1)c04i✏2

�
is parametrised by the closed

43
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Fig 1. Illustration of triangulation construction when d = 2.

To see this, observe that the line L intersects bd(Pi−1) at precisely two
points; let x0 ∈ L ∩ bd(Pi−1) denote the point that is larger in the lexico-
graphic ordering (with respect to the standard Euclidean basis); see Fig-
ure 1. Let m1 ∈ N denote the number of vertices of H1 ∩ Pi−1. Now,
for j = 1, . . . ,m1 − 1, let xj ∈ H1 ∩ bd(Pi−1) denote the vertex of the
polyhedral convex set H1 ∩ Pi−1 that is the unique neighbour of xj−1 not
belonging to {x0, . . . , xj−1}. Note here that xm1−1 is the other point in
L ∩ bd(Pi−1). Let xm1 denote the closest point of L ∩ (Pi−1)c04iε2 to xm1−1

(so the line segment joining xm1−1 and xm1 is a subset of L). Let m2 ∈ N
denote the number of vertices of H1∩ (Pi−1)c04iε2 . For j = 1, . . . ,m2− 1, let

xm1+j ∈ H1 ∩ bd
(

(Pi−1)c04iε2
)

denote the vertex of the polyhedral convex
set H1 ∩ (Pi−1)c04iε2 that is the unique neighbour of xm1+j−1 not belong-
ing to {xm1 , . . . , xm1+j−1}. Finally, let xm1+m2 = x0. Let 0 = t0 < t1 <
. . . < tm1+m2 = 1. The boundary of the set H1 ∩

(
Pi−1 \ (Pi−1)c04iε2

)
is

parametrised by the closed curve γ : [0, 1]→ R2 given by

γ(t) :=
( tj+1 − t
tj+1 − tj

)
xj +

( t− tj
tj+1 − tj

)
xj+1

for t ∈ [tj , tj+1]. In fact, we claim that γ is a simple closed curve. To see
this, note that Pi−1 and (Pi−1)c04iε2 are polyhedral convex sets in R2, so
their (disjoint) boundaries are simple closed curves; γ(t) ∈ bd(Pi−1) for t ∈
[0, tm1−1] and γ(t) ∈ bd

(
(Pi−1)c04iε2

)
for t ∈ [tm1 , tm1+m2−1]. Moreover, γ(t)
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belongs to the interior of the line segment joining xm1−1 and xm1 (and hence
to the interior of Pi−1\ (Pi−1)c04iε2 ) for t ∈ (tm1−1, tm1) and to the interior of
the line segment joining xm1+m2−1 and xm1+m2 for t ∈ (tm1+m2−1, tm1+m2);
these two line segments are themselves disjoint. This establishes that γ is a
simple closed curve, and hence that H1 ∩

(
Pi−1 \ (Pi−1)c04iε2

)
is a polygon.

Note, incidentally, that our reason for introducing the line L was precisely to
ensure this fact. We can therefore apply Theorems 1.4 and 1.8 of Devadoss
and O’Rourke (2011) to conclude that there exist simplices Si,1, . . . , Si,Ni
that triangulate Pi−1 \ (Pi−1)c04iε2 , where Ni ≤ 4C2c

−1/2
0 2−iε−1.

For i = 2, 3, . . . ,M and j = 1, . . . , Ni, let

αi,j :=
21/2

M1/2

(
µ2(Si,j)

µ2(Pi−1 \ (Pi−1)c04iε2 )

)1/2

.

By Theorem 3, there exists a bracketing set {[φLi,j,`, φUi,j,`] : ` = 1, . . . , ni,j} for

Φ̄1(Si,j), where log ni,j ≤ K∗∗2
(µ1/22 (Si,j)

αi,jε

)
, such that L2(φUi,j,`, φ

L
i,j,`) ≤ αi,jε.

Moreover, by another application of Theorem 3, there exists a bracketing
set {[φLM+1,r, φ

U
M+1,r] : r = 1, . . . , nM+1} for Φ̄1(PM ), where log nM+1 ≤

8K∗∗2 C2c
−1/2
0

(µ1/22 (PM )
ε

)
, such that L2(φUM+1,r, φ

L
M+1,r) ≤ ε. This last state-

ment follows, because 2−M ε−1 ≤ 8.
We can therefore define a bracketing set for Φ̄1(D′) as follows: first, for

i = 2, . . . ,M and j = 1, . . . , Ni, let

S̃i,j := Si,j \
{( i−1⋃

k=2

Nk⋃

m=1

Sk,m

)⋃( j−1⋃

m=1

Si,m

)}
,

P̃M := PM \
M⋃

k=2

Nk⋃

m=1

Sk,m.

Now, for the array ` = (`i,j) where i ∈ {2, . . . ,M}, j ∈ {1, . . . , Ni} and
`i,j ∈ {1, . . . , ni,j}, and for r = 1, . . . , nM+1, let

ψU`,r(x) := 1{x∈D′\P1} +

M∑

i=2

Ni∑

j=1

φUi,j,`i,j (x)1{x∈S̃i,j} + φUM+1,r(x)1{x∈P̃M},

(1)

ψL`,r(x) := −1{x∈D′\P1} +

M∑

i=2

Ni∑

j=1

φLi,j,`i,j (x)1{x∈S̃i,j} + φLM+1,r(x)1{x∈P̃M},

(2)
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for x ∈ D′. Observe that

L2
2(ψU`,r, ψ

L
`,r) ≤ 4µ2(D′ \ P1) +

M∑

i=2

Ni∑

j=1

L2
2(φUi,j,`i,j , φ

L
i,j,`i,j

)

+ L2
2(φUM+1,r, φ

L
M+1,r)

≤ 4µ2(D′ \ D′c0ε2 ) + ε2
M∑

i=2

Ni∑

j=1

α2
i,j + ε2 ≤ 4ε2.

Moreover, the logarithm of the cardinality of the bracketing set is

M∑

i=2

Ni∑

j=1

log ni,j + log nM+1 ≤ K∗∗2
M∑

i=2

Ni∑

j=1

µ
1/2
2 (Si,j)

αi,jε
+

8K∗∗2 C2µ
1/2
2 (PM )

εc
1/2
0

≤ K∗∗2 2−1/2M1/2

ε

M∑

i=2

Niµ
1/2
2 (Pi−1 \ Pi−1c04iε2 ) +

16K∗∗2 C2c
−1/2
0

ε

≤ K∗∗2 C2c
−1/2
0 M3/2

ε
+

16K∗∗2 C2c
−1/2
0

ε
≤ 32K∗∗2 C2c

−1/2
0 M3/2

ε

≤ 32K∗∗2 C2c
−1/2
0

log3/2 2
ε−1 log3/2

( 1

4ε

)
.

Defining K◦1,2 :=
32K∗∗2 C2

log3/2 2
, we have therefore proved that when d = 2,

logN[]

(
2ε, Φ̄1(D′), L2

)
≤ K◦1,2ε−1 log3/2

( 1

4ε

)

for all ε ∈ (0, ε◦2].
The case d = 3: The proof is similar in spirit to the case d = 2, so we

emphasise the points of difference, and give fewer details where the argument
is essentially the same.

Set ε◦3 := 1/8, and fix ε ∈ (0, ε◦3]. The Bronshteyn–Ivanov result once again
yields a polytope P1 with D′c0ε2 ⊆ P1 ⊆ ( D′c0ε2 )c0ε

2] ⊆ D′ such that P1 has
at most C3c

−1
0 ε−2 vertices and Haus(P1, D′c0ε2 ) ≤ c0ε

2. Applying the result
of Bronshteyn and Ivanov (1975) recursively, with M :=

⌊
log
(

1
4ε

)
/ log 2

⌋
,

for each i = 2, 3, . . . ,M , there exists a polytope (Pi−1)c04iε2 ⊆ Pi ⊆ Pi−1

with at most C3c
−1
0 4−iε−2 vertices such that Haus

(
Pi, (Pi−1)c04iε2

)
≤ c04iε2.

Again we claim that PM is a three-dimensional polytope, since

µ3(PM ) = µ3(D′)− µ3(D′ \ P1)−
M∑

i=2

µ3(Pi−1 \ Pi) > 0.
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We can now appeal to the construction of Wang and Yang (2000) (cf. also
Chazelle and Shouraboura (1995)), which yields, for each i = 2, 3, . . . ,M ,
simplices Si,1, . . . , Si,Ni , where Ni ≤ 16C3c

−1
0 4−iε−2 that triangulate Pi−1 \

(Pi−1)c04iε2 . Set

αi,j :=

(
2−(i−2)/2

∑M
k=2 2−k/2

)1/2( µ3(Si,j)

µ3(Pi−1 \ (Pi−1)c04iε2 )

)1/2

.

Applying Theorem 3 again, there exists a bracketing set {[φLi,j,`, φUi,j,`] :

` = 1, . . . , ni,j} for Φ̄1(Si,j), where log ni,j ≤ K∗∗3
(µ1/23 (Si,j)

αi,jε

)3/2
, such that

L2(φUi,j,`, φ
L
i,j,`) ≤ αi,jε. Moreover, the same result also yields a bracketing

set {[φLM+1,r, φ
U
M+1,r] : r = 1, . . . , nM+1} for Φ̄1(PM ), where log nM+1 ≤

64C3c
−1
0 K∗∗3

(µ1/23 (PM )
ε

)3/2
, such that L2(φUM+1,r, φ

L
M+1,r) ≤ ε.

Defining brackets ψU`,r and ψL`,r as in (1) and (2), we find again that

L2
2(ψU`,r, ψ

L
`,r) ≤ 4ε2, where we have used the fact that

M∑

i=2

Ni∑

j=1

α2
i,j = 2.

Moreover, the logarithm of the cardinality of the bracketing set is

M∑

i=2

Ni∑

j=1

log ni,j + log nM+1

≤ K∗∗3
M∑

i=2

Ni∑

j=1

(µ1/2
3 (Si,j)

αi,jε

)3/2
+ 64K∗∗3 C3c

−1
0

(µ1/2
3 (PM )

ε

)3/2

≤ K∗∗3
ε3/2

M∑

i=2

(∑M
k=2 2−k/2

2−(i−2)/2

)3/4

Niµ
3/4
3 (Pi−1 \ Pi−1c04iε2 ) +

256K∗∗3 C3c
−1
0

ε3/2

≤ 4K∗∗3 C3c
−1
0

ε2

M∑

i=2

2−i/8 +
256K∗∗3 C3c

−1
0

ε3/2
≤ 512K∗∗3 C3c

−1
0

ε2

Defining K◦1,3 := 512K∗∗3 C3c
−1
0 , we have therefore proved that when d = 3,

logN[]

(
2ε, Φ̄1(D′), L2

)
≤ K◦1,3ε−2

for all ε ∈ (0, ε◦3].
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For the final steps, we deal with the cases d = 1, 2, 3 simultaneously. Let

h̃d(ε) :=





ε−1/2 when d = 1

ε−1 log
3/2
++( 1

4ε) when d = 2
ε−2 when d = 3.

(Thus h̃d is defined in almost the same way as hd from the proof of Theorem 4
in the main text, except for the 4 inside the logarithm when d = 2.) Set

K◦2,d := K◦1,dh̃d(ε
◦
d)/h̃d

(
µ

1/2
d (D′)

)
. Then, for ε ∈ (ε◦d, µ

1/2
d (D′)], we have

logN[]

(
2ε, Φ̄1(D′), L2

)
≤ logN[]

(
2ε◦d, Φ̄1(D′), L2

)
≤ K◦1,dh̃d(ε◦d)

= K◦2,dh̃d
(
µ

1/2
d (D′)

)
≤ K◦2,dh̃d(ε).

On the other hand, for ε > µ
1/2
d (D′), it suffices to consider a single bracketing

pair consisting of the constant functions ψU (x) := 1 and ψL(x) := −1 for
x ∈ D′. Note that L2

2(ψU , ψL) = 4µd(D
′), so that logN[]

(
2ε,ΦB(D′), L2

)
= 0

for ε > µ
1/2
d (D′). We conclude that whenD′ is a d-dimensional closed, convex

subset of Rd with d−1B̄d(0, 1) ⊆ D′ ⊆ B̄d(0, 1),

logN[]

(
2ε, Φ̄1(D′), L2

)
≤ K◦2,dh̃d(ε)

for all ε > 0.
Finally, we show how to transform the brackets to the original domain

D and rescale their ranges to [−B,B]. Recall that D′ = AD + b. Sim-
plifying our notation from before, given ε > 0, we have shown that we
can define a bracketing set {[ψLj , ψUj ] : j = 1, . . . , N} for Φ̄1(D′) with

L2
2(ψUj , ψ

L
j ) ≤ 4ε2| detA|/B2 and logN ≤ K◦2,dh̃d(ε| detA|1/2/B). We now

define transformed brackets for Φ̄B(D) by

ψ̃Uj (z) := BψUj (Az + b) and ψ̃Lj (z) := BψLj (Az + b).

Then

L2
2(ψ̃Uj , ψ̃

L
j ) = B2

∫

D
{ψUj (Az + b)− ψLj (Az + b)}2 dµd(z)

=
B2

| detA|L
2
2(ψUj , ψ

L
j ) ≤ 4ε2.

Now

| detA| = µd(AD + b)

µd(D)
≥ µd(d

−1B̄d(0, 1))

µd(D)
=

d−dπd/2

Γ(1 + d/2)µd(D)
.
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It is convenient for the case d = 2 to note that

h̃2

(
ε|detA|1/2

B

)
≤ h̃2

(
επ1/2

2Bµ
1/2
2 (D)

)
≤ 2

π1/2
h2

(
ε

Bµ
1/2
2 (D)

)
.

The final result therefore follows, taking K◦1 := K◦2,1, K◦2 := 2
π1/2K

◦
2,2 and

K◦3 := 81
4πK

◦
2,3.

3. Auxiliary result for the proof of Theorem 5 in the main text.

Theorem 5 (van de Geer (2000), Theorem 7.4). Let F denote a class
of (Lebesgue) densities on Rd, let X1, X2, . . . be independent and identically
distributed with density f0 ∈ F , and let f̂n denote a maximum likelihood
estimator of f0 based on X1, . . . , Xn. Write F̄ :=

{(f+f0
2

)
: f ∈ F

}
, and let

J[](δ, F̄ , h) := max

{∫ δ

δ2/213

√
logN[](u, F̄ , h) du , δ

}
.

If Ψ(δ) ≥ J[](δ, F̄ , h) is such that Ψ(δ)/δ2 a non-increasing function of δ

and (δn) is such that 2−16n1/2δ2
n ≥ J[](δn, F̄ , h), then for all t ≥ δn,

Pf0{h(f̂n, f0) ≥ 21/2t} ≤ 213/2
∞∑

s=0

exp

(
−22snt2

227

)
.
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