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Abstract Simulated tempering (ST) is an established
Markov chain Monte Carlo (MCMC) method for sampling
from a multimodal density π(θ). Typically, ST involves in-
troducing an auxiliary variable k taking values in a finite
subset of [0,1] and indexing a set of tempered distributions,
say πk(θ) ∝ π(θ)k . In this case, small values of k encourage
better mixing, but samples from π are only obtained when
the joint chain for (θ, k) reaches k = 1. However, the en-
tire chain can be used to estimate expectations under π of
functions of interest, provided that importance sampling (IS)
weights are calculated. Unfortunately this method, which
we call importance tempering (IT), can disappoint. This is
partly because the most immediately obvious implementa-
tion is naïve and can lead to high variance estimators. We
derive a new optimal method for combining multiple IS es-
timators and prove that the resulting estimator has a highly
desirable property related to the notion of effective sample
size. We briefly report on the success of the optimal combi-
nation in two modelling scenarios requiring reversible-jump
MCMC, where the naïve approach fails.
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1 Introduction

Markov chain Monte Carlo (MCMC) algorithms, in partic-
ular Metropolis–Hastings (MH) and Gibbs Sampling (GS),
are by now the most widely used methods for simulation–
based inference in Bayesian statistics. The beauty of MCMC
is its simplicity. Very little user input or expertise is required
in order to establish a Markov chain whose stationary distri-
bution is proportional to π(θ), for θ ∈ � ⊆ R

d . As long as
the chain is irreducible, the theory of Markov chains guar-
antees that sample averages computed from this realisation
will converge in an appropriate sense to their expectations
under π . However, difficulties can arise when π has iso-
lated modes, between which the Markov chain moves only
rarely. In such cases convergence is slow, meaning that often
infeasibly large sample sizes are needed to obtain accurate
estimates.

New MCMC algorithms have been proposed to improve
mixing. Two related algorithms are Metropolis–coupled
MCMC (MC3) (Geyer 1991; Hukushima and Nemoto 1996)
and simulated tempering (ST) (Marinari and Parisi 1992;
Geyer and Thompson 1995). Both are closely related to the
optimisation technique of simulated annealing (SA) (Kirk-
patrick et al. 1983). SA works with a set of tempered distri-
butions πk(θ) indexed by an inverse-temperature parameter
k ∈ [0,∞). One popular form of tempering is called “pow-
ering up”, where πk(θ) ∝ π(θ)k . Small values of k have the
effect of flattening/widening the peaks and raising troughs
in πk relative to π .

In MC3 and ST we define a temperature ladder 1 = k1 >

k2 > · · · > km ≥ 0, and call the ki its rungs. Both MC3

and ST involve simulating from the set of m tempered den-
sities πk1 , . . . , πkm . MC3 runs m parallel MCMC chains,
one at each temperature, and regularly proposes swaps of
states at adjacent rungs ki and ki+1. Usually, samples are
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only saved from the “cold distribution” πk1 . In contrast, ST
works with a “pseudo-prior” p(ki) and uses a single chain to
sample from the joint distribution, which is proportional to
πk(θ)p(k). Again, it is only at iterations t for which k(t) = 1
that the corresponding realisation of θ(t) is retained. ST has
an advantage over MC3 in that only one copy of the process
{θ(t) : t = 1, . . . , T } is needed—rather than m—so the chain
uses less storage and also has better mixing (Geyer 1991).
The disadvantage is that it needs a good choice of pseudo-
prior. For further comparison and review, see Jasra et al.
(2007a) and Iba (2001).

Both MC3 and ST suffer from inefficiency because they
discard all samples from πk for k �= 1. The discarded sam-
ples could be used to estimate expectations under π if they
were given appropriate importance sampling (IS) weights.
For an inclusive review of IS and related methods see Liu
(2001, Chap. 2). Moreover, it may be the case that an IS
estimator constructed with samples from a tempered distri-
bution has smaller variance than one based on a sample of
the same size from π . As a simple motivating example, let
π(θ) = N(θ |μ,σ 2), and consider estimating μ = Eπ (θ) by
IS from a tempered distribution πk(θ) ∝ π(θ)k . A straight-
forward calculation shows that the value of k which min-
imises the variance of the IS estimator is

k∗ =
⎧
⎨

⎩

1/2 if μ = 0

3
2 + (

σ
μ

)2 − 1
2

{
1 + 8

(
σ
μ

)2 + 4
(

σ
μ

)4}1/2 otherwise.

Note that k∗ ∈ (1/2,1) for all μ and σ 2. Moreover, one can
compute (numerically) k− = k−(σ/μ) < k∗ such that for all
k ∈ (k−,1), the variance of the IS estimator μ̂k based on
samples from πk is smaller than that of one based on a sam-
ple of the same size from π . However, Var(μ̂k) → ∞ as
k → 0 for all μ and σ 2. Table 1 gives k∗ and k− for various
values of σ/μ.

Therefore, there is a trade-off in the choice of tempered
IS proposals. On the one hand, low inverse-temperatures k

in ST can guard against missing modes of π with large sup-
port by encouraging better mixing between modes, but can
yield very inefficient (IS) estimators overall. On the other
hand, “lukewarm” temperatures k, especially k ∈ (1/2,1),
can yield more efficient estimators within modes than those
obtained from samples at k = 1.

Jennison (1993) was the first to suggest using a sin-
gle tempered distribution as a proposal in IS, and Neal

Table 1 Values of k∗ and k− for various values of σ/μ

σ/μ 1/16 1/4 1 4 16

k∗ 1.00 0.95 0.70 0.52 0.50

k− 0.99 0.89 0.42 0.18 0.16

(1996, 2001, 2005) has since written several papers combin-
ing IS and tempering. Indeed, in the discussion of the 1996
paper on tempered transitions, Neal writes “simulated tem-
pering allows data associated with pi other than p0 [the cold
distribution] to be used to calculate expectations with re-
spect to . . . p0 (using an importance sampling estimator)”.1

It is this natural extension that we call importance temper-
ing (IT), with IMC3 defined similarly. Given the work of
the above-mentioned authors, and the fact that calculating
importance weights is relatively trivial, it may be surprising
that successful IT and IMC3 applications have yet to be pub-
lished. Liu (2001) comes close in proposing to augment ST
with dynamic weighting (Wong and Liang 1997) and in ap-
plying the Wang–Landau algorithm (Atchadé and Liu 2007)
to ST.

This paper addresses why the straightforward methodol-
ogy described above has tended not to work well in practice,
primarily due to a lack of a principled way of combining
the importance weights collected at each temperature to ob-
tain an overall estimator. If we are interested in estimating
Eπ {h(θ)}, one way to do this is with

ĥ = W−1
T∑

t=1

w(θ(t), k(t))h(θ(t)),

where W =
T∑

t=1

w(θ(t), k(t)), (1)

and w(θ, k) = π(θ)/π(θ)k = π(θ)1−k . Observe that this
estimator is of the form ĥ = ∑m

i=1 λiĥi , where 0 ≤ λi ≤
∑m

i=1 λi = 1, with λi = W−1 ∑T
t=1 w(θ(t), k(t))I{k(t)=ki },

and where each ĥi is an IS estimator of Eπ {h(θ)} con-
structed using only the observations at the inverse-temper-
ature ki . We show how to improve this estimator by choos-
ing λ1, . . . , λm to maximise the effective sample size (see
next paragraph), which approximately corresponds to min-
imising the variance of ĥ (Liu 2001, Sect. 2.5.3). For the
applications that we have in mind, it is important that our
estimator can be constructed without knowledge of the nor-
malising constants of πk1 , . . . , πkm . It is for this reason that
methods motivated by the balance heuristic (Veach and
Guibas 1995; Owen and Zhou 2000; Madras and Picconi
1999) cannot be applied.

The notion of effective sample size plays an important
role in the study of IS estimators. Suppose we are inter-
ested in estimating Eπ {h(θ)} using a vector of observations
θ = (θ(1), . . . , θ (T )) from a density π ′. Define the vector
of importance weights w ≡ w(θ) = (w(θ(1)), . . . ,w(θ(T ))),
where w(θ) = π(θ)/π ′(θ). Following Liu (2001, Sect. 2.5.3)

1A similar note is made in the 2001 paper with regard to annealed
importance sampling.
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we define the effective sample size by

ESS
(
w(θ)

) ≡ ESS(w) = T

1 + cv2(w)
, (2)

where cv2(w) is the coefficient of variation of the weights,
given by

cv2(w) =
∑T

t=1(w(θ(t)) − w̄)2

(T − 1)w̄2
,

where w̄ = T −1
T∑

t=1

w(θ(t)).

This should not be confused with the concept of effective
sample size due to autocorrelation (Kass et al. 1998) (due
to serially correlated samples from a Markov chain). This
latter notion is discussed briefly in Sect. 4.

Observe that the swap operations in MC3 require that
the state space � be common for all m tempered distrib-
utions. This is not a requirement for ST, as the state stays
fixed when changes in temperature are proposed. Thus ap-
plying MC3 is less straightforward in (Bayesian) model se-
lection/averaging problems which typically involve trans-
dimensional Markov chains as in reversible-jump MCMC
(RJMCMC) (Green 1995), though it is possible (Jasra et al.
2007b). Since RJMCMC algorithms are particularly prone
to slow mixing, and hence are an excellent source of appli-
cations of our idea (as illustrated in Sect. 3), the rest of the
paper will focus on IT. Most of our results apply equally to
IMC3 by ignoring the pseudo-prior.

The outline of the paper is as follows. In Sect. 2 we derive
the optimal convex combination of multiple IS estimators,
and show how this estimator has a particularly attractive
property with regard to its effective sample size. In Sect. 3
we briefly report on the effectiveness of optimal IT, and the
poor performance of the naïve approach, on several real and
synthetic examples. Section 4 concludes with a discussion.

2 Importance tempering

The simulated tempering (ST) (Geyer and Thompson 1995)
algorithm is an application of MH on the product space of
parameters and inverse-temperatures. That is, samples are
obtained from the joint chain π(θ, k) ∝ π(θ)kp(k). This is
only possible if π(θ)k is integrable, but Hölder’s inequal-
ity may be used to show that this is indeed the case provided

that Eπ (‖θ‖ 1−k
k

+δ) < ∞ for some δ > 0, where ‖ · ‖ denotes
the Euclidean norm. The success of ST depends crucially on
the ability of the Markov chain frequently to: (a) visit high
temperatures (low k) where the probability of escaping lo-
cal modes is high; (b) visit k = 1 to obtain samples from π .
The algorithm can be tuned by: (i) adjusting the number and

location of the rungs of the temperature ladder; or (ii) ad-
justing the pseudo-prior p(k). Geyer and Thompson (1995)
give some automated ways of adjusting the spacing of the
rungs of the ladder. Iba (2001) reviews similar techniques
from the physics literature. A recent alternative—and very
promising—approach involves the Wang–Landau algorithm
(Atchadé and Liu 2007). However, many authors prefer to
rely on defaults, e.g.,

ki =
{

(1 + �k)
1−i geometric spacing

{1 + �k(i − 1)}−1 harmonic spacing,
(3)

for i = 1, . . . ,m. The rate parameter �k > 0 can be problem
specific. Motivation for such default spacings is outlined by
Liu (2001, Chap. 10, pp. 213, 233). Geometric spacing, or
uniform spacing of log(ki), is also advocated by Neal (1996,
2001).

Once a suitable ladder has been chosen, the goal is typ-
ically to choose the pseudo-prior so that the posterior over
temperatures is uniform. The best way to accomplish this is
to set p(ki) = 1/Zi , where Zi = ∫

�
π(θ)ki dθ is the normal-

ising constant in πki
= πki /Zi , which is generally unknown.

So while normalising constants are not a prerequisite for
ST, it can certainly be useful to know them. We follow the
suggestions of Geyer and Thompson (1995) in setting the
pseudo-prior by a method that roughly approximates the Zi

in two-stages: first by stochastic approximation (Kushner
and Lin 1997), and then by observation counts accumulated
through pilot runs. To some extent, a non-uniform posterior
on the temperatures is less troublesome in the context of IT
than ST. So long as the chain still visits the heated tempera-
tures often enough to get good mixing in �, and if the ESS
of the IS estimators at some temperature(s) is not too low,
useful samples can be obtained without ever visiting the cold
distribution.

2.1 A new optimal way to combine IS estimators

ST provides us with {(θ(t), k(t)) : t = 1, . . . , T }, where θ(t) is
an sample from πk(t) . Write Ti = {t : k(t) = ki} for the index
set of observations at the i th temperature, and let Ti = |Ti |.
Let the vector of observations at the i th temperature collect
in θ i = (θi1, . . . , θiTi

), so that {θij }Ti

j=1 ∼ πki
. Similarly, the

vector of IS weights at the i th temperature is wi = wi (θ i ) =
(wi(θi1), . . . ,wi(θiTi

)), where wi(θ) = π(θ)/πki
(θ).

Each vector θ i can be used to construct an IS estimator
of Eπ {h(θ)} by setting

ĥi =
∑Ti

j=1 wi(θij )h(θij )
∑Ti

j=1 wi(θij )
≡

∑Ti

j=1 wijh(θij )

Wi

.



4 Stat Comput (2010) 20: 1–7

It is natural to consider an overall estimator of Eπ {h(θ)}
defined by a convex combination:

ĥλ =
m∑

i=1

λiĥi , where 0 ≤ λi ≤
m∑

i=1

λi = 1. (4)

Unfortunately, if λ1, . . . , λm are not chosen carefully,
Var(ĥλ), can be nearly as large as the largest Var(ĥi ) (Owen
and Zhou 2000). Notice that ST is recovered as a special
case when λ1 = 1 and λ2 = · · · = λm = 0. It may be tempt-
ing to choose λi = Wi/W , where W = ∑m

i=1 Wi , recovering
the estimator in (1). This can lead to a very poor estimator,
even compared to ST, which is demonstrated empirically in
Sect. 3.

Observe that we can write

ĥλ =
m∑

i=1

Ti∑

j=1

wλ
ijh(θij ), where wλ

ij = λiwij

Wi

. (5)

Let wλ = (wλ
11, . . . ,w

λ
1T1

,wλ
21, . . . ,w

λ
2T2

, . . . ,wλ
m1, . . . ,

wλ
mTm

). Attempting to choose λ1, . . . , λm to minimise

Var(ĥλ) directly can be difficult. In the balance heuristic,
Veach and Guibas (1995) explore combinations of IS es-
timators of the form (5), where wi(θ) = π(θ)/gi(θ) for a
family of proposal densities gi , with

λij = cigi(θij )
∑m

r=1 crgr(θij )
, (6)

and where 0 ≤ ci ≤ ∑m
i=1 ci = 1 is the proportion of sam-

ples taken from gi . It turns out that this is equivalent to IS
with the mixture proposal π̃(θ) = ∑m

r=1 crgr(θ):

ĥbal ≡ 1

T

T∑

t=1

w(θt )h(θt ),

where w(θ) = π(θ)
∑m

r=1 crgr(θ)
. (7)

The balance heuristic has since been generalised by Owen
and Zhou (2000); it was reinvented by Madras and Picconi
(1999, Sect. 4) in the context of applied probability.

Note that due to the denominator in the definition of w(θ)

in (7), the gi must be normalised densities. This precludes
us from using the balance heuristic with gi ∝ πki

. When
MCMC is necessary to sample from π , the normalisation
constant of π , and therefore πki

, is generally unknown. The
method also requires evaluations of πki

(θ(t)), i = 1, . . . ,m,
at all T rounds, an O(mT ) operation that trivialises any
computational advantage ST has over MC3. Instead, we con-
sider maximising the ESS of ĥλ in (4).

Proposition 2.1 Among estimators of the form (4), ESS(wλ)

is maximised by λ = λ∗, where, for i = 1, . . . ,m,

λ∗
i = 	i

∑m
i=1 	i

, and 	i = W 2
i

∑Ti

j=1 w2
ij

.

Proof Since
∑m

i=1
∑Ti

j=1 wλ
ij = 1, the problem of maximis-

ing the effective sample size is the same as

min
λ1,...,λm

m∑

i=1

Ti∑

j=1

(

λi

wij

Wi

− 1

T

)2

,

subject to 0 ≤ λi ≤
m∑

i=1

λi = 1.

The result then follows by a straightforward Lagrange mul-
tiplier argument. �

In the following discussion and in Remark 2.2 below, we
assume that for i = 1, . . . ,m, Ti ≥ 2. The efficiency of each
IS estimator ĥi can be measured through ESS(wi ). Intu-
itively, we hope that with a good choice of λ, the ESS of
ĥλ, given by

ESS(wλ) = T (T − 1)

T 2
∑m

i=1 λ2
i /	i − 1

,

would be close to the sum over i of the effective sample sizes
of ĥi , namely

ESS(wi ) = Ti(Ti − 1)	i

T 2
i − 	i

. (8)

The remark below shows that this is indeed the case for ĥλ∗ .

Remark 2.2 We have

ESS(wλ∗
) ≥

m∑

i=1

ESS(wi ) − 1

4
− 1

T
.

Proof Since ESS(wi ) ≤ Ti , it follows from (8) that 	i ≤ Ti .
Thus

ESS(wλ∗
)

= (1 − T −1)
∑m

i=1 	i

1 − ∑m
i=1

	i

T 2
i

≥
(

1 − 1

T

)(

1 + 1

T 2

m∑

i=1

	i

)
m∑

i=1

	i

=
m∑

i=1

	i −
∑m

i=1 	i

T

(

1 −
∑m

i=1 	i

T

)

− (
∑m

i=1 	i)
2

T 3

≥
m∑

i=1

	i − 1

4
− 1

T
,



Stat Comput (2010) 20: 1–7 5

since x(1 − x) attains its maximum of 1/4 at x = 1/2 and
∑

	i ≤ ∑
Ti = T . �

In practice we have found that this bound is slightly
conservative and that often it is the case that ESS(wλ∗

) ≥
∑m

i=1 ESS(wi ). Thus our optimally-combined IS estimator
has a highly desirable and intuitive property in terms of its
effective sample size.

3 Empirical results

Here we briefly report on the success of optimal IT, relative
to the naïve approach and ST, on one simple example and
two involving RJMCMC.

3.1 A simple mixture of normals

Consider the following toy density π , a mixture of two nor-
mals:

π(θ) = 0.6N
(
θ |μ1 = −8, σ 2

1 = 0.52)

+ 0.4N
(
θ |μ2 = 8, σ 2

2 = 0.92). (9)

Table 2 summarises Kolmogorov–Smirnov distances ob-
tained under three IT estimators: ST (λ1 = 1), naïve IT (λi =
Wi/W ) and the optimally-combined IT estimator (ĥλ∗ ). Ob-
serve that the optimally-combined IT estimator has both the
largest ESS and the smallest variance of the three estimators,
and that ESS(wλ∗

) >
∑

i ESS(wi ). Naïve IT improves upon
ST in this example, but has higher variance than ĥλ∗ .

3.2 Bayesian treed Gaussian process models

Bayesian treed models extend classification and regression
tree (CART) models (Breiman et al. 1984), by putting a
prior on the tree structure. We focus on the implementa-
tion of Gramacy and Lee (2008) who fit Gaussian Process
(GP) models at the leaves of the tree, specify the tree prior
through a process that limits its depth, and then define the

Table 2 Summary of K–S distances to the true mixture of normals
(9) for ST (λ1 = 1), naïve IT (λi = Wi/W ), the optimally-combined
IT estimator (ĥλ∗ ). We used 100 repeated samples of size 105, with
tempered RWM proposals

Method K–S distance

ESS(wλ) Mean Var

ST 2535 0.0938 8.5 × 10−4

Naïve IT 17779 0.0849 1.4 × 10−4

ĥλ∗ 22913 0.0836 5.2 × 10−5

∑
i ESS(wi ) 22910

tree operations grow, prune, change, and swap, to allow in-
ference to proceed by RJMCMC. The RJMCMC chain usu-
ally identifies the correct maximum a posteriori (MAP) tree,
but consistently and significantly over estimates the poste-
rior probability of deep trees.

To guard against the transdimensional chain getting stuck
in local modes of the posterior, Gramacy and Lee (2008)
resorted regularly restarting the chain from the null tree. ST
provides an alternative by increasing the rate of accepted
tree operations in higher temperatures. In particular, we find
that ST can increase the rate of accepted prune operations
by an order of magnitude, thus enabling the chain to escape
the local modes of deep trees. To demonstrate IT we fit a
treed GP model with ST using a geometric ladder with m =
40 and km = 0.1 to two datasets first explored by Gramacy
and Lee (2008): the 1-d motorcycle accident data and 2-d
exponential data. We refer to that paper for details about the
data and models.

For the motorcycle accident data the ST chain was run
for T = 1.5 × 105 iterations, where a total of T1 = 3732
(≈ T/m = 3750) samples were obtained from the cold dis-
tribution. That ESS(wλ∗

) = 9338 ≈ 2.5T1 shows the con-
siderable improvement of IT over ST. Moreover, we have
ESS(wλ∗

) >
∑

i ESS(wi ) = 9334. The naïve combination
λi = Wi

W
in (1) yields ESS(wλ) = 285 < 1

10T1, undermining
the very motivation of IT. For the exponential data the ST
chain was run for a total of T = 5×105 iterations. A total of
T1 = 12436 (≈T/m = 12500) samples were obtained from
the cold distribution. We found that ESS(wλ∗

) = 21778 ≈
1.75T1, illustrating how IT improves on ST. Moreover, we
have ESS(wλ∗

) >
∑

i ESS(wi ) = 21776. The naïve com-
bination λi = Wi

W
in (1) yields ESS(wλ∗

) = 654 ≈ 1
18T1—

worse than ST.

3.3 Mark-recapture-recovery data

We now consider a Bayesian model selection problem with
data relating to the mark-recapture and recovery of shags
on the Isle of May (King and Brooks 2002). The three de-
mographic parameters of interest are: survival rates, recap-
ture rates and recovery rates. The models considered for
each of the demographic parameters allowed a possible age-
and/or time-dependence, where the time dependence was
conditional on the age structure of the parameters. Typi-
cally, movement between the different possible models—by
adding/removing time dependence for a given age group,
or updating the age structure of the parameters—is slow,
with small acceptance probabilities. For further details of
the data, model structure, and RJMCMC algorithm see King
and Brooks (2002).

Using the same ST setup as above, we ran T = 107 it-
erations and discarded the first 10% as burn-in. As with
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the treed examples, higher temperatures yielded higher ac-
ceptance rates and an order of magnitude better explo-
ration of model space compared to (untempered) RJM-
CMC. A total of T1 = 248158 (≈ T/m = 225000) realisa-
tions were obtained from the cold distribution. By compar-
ison, for optimal IT we have ESS(wλ∗

) = 612026 ≈ 2.5T1

and ESS(wλ∗
) >

∑
i ESS(wi ) = 612020. The correspond-

ing naïve IT approach (using λi = Wi

W
) performed exception-

ally poorly, with ESS(wλ) of only 5.43, due to a few large
weights obtained at hot temperatures.

4 Discussion

This paper has addressed the inefficiencies and wasteful-
ness of simulated tempering (ST), and related algorithms
that are designed to improve mixing in the Markov chain us-
ing tempered distributions. We argued that importance sam-
pling (IS) from tempered distributions can produce estima-
tors that are more efficient than ones based on independent
sampling, provided that the temperature is chosen carefully.
This motivated augmenting the ST algorithm by calculating
importance weights to salvage discarded samples—a tech-
nique which we have called importance tempering (IT). This
idea has been suggested before, but to our knowledge little
exploration has been carried out for real, complex, applica-
tions. We have derived optimal combination weights for the
resulting collection of IS estimators, which can be calcu-
lated even when the normalisation constants of the tempered
distributions are unknown. The weights are essentially pro-
portional to the effective sample size (ESS) of the individual
estimators, and we found that the resulting combined ESS
in this case would be approximately equal to their sum.

We note that the overall success of the optimal IT esti-
mator depends crucially on a successful implementation of
ST, i.e., having a good temperature ladder and pseudo-prior.
However, it is also important to recognise that the optimal
combination, as a resource-efficient post-processing step, is
equally applicable in other contexts, i.e., within MC3, or
even outside of the domain of tempered MCMC to com-
bine any collection IS estimators. Sequential Monte Carlo
samplers (Del Moral et al. 2006) may facilitate a natural ex-
tension. We have illustrated IT on several examples which
benefit from the improved mixing ST provides. For exam-
ple, the optimal IT methodology can increase the resulting
ESS compared to retaining samples only from the cold dis-
tribution by roughly a factor of two.

Since IT involves sampling from a Markov chain, ideally
one would take into account the serial correlation in the ob-
jective criteria for combining the individual estimators. The
effective sample size due to autocorrelation is defined (Kass

et al. 1998) by

ESSρ(θ) = T

1 + 2
∑T −1

	=1 ρ̂(	, θ)
, (10)

where ρ̂(	, θ) is the sample autocorrelation in θ at lag 	;
thus for scalar θ we have that ρ̂(	, θ ) = γ̂ (	, θ)/γ̂ (0, θ ),
where γ̂ (	, θ ) = (T − 	)−1 ∑T −	

t=1 (θ(t) − θ̄ )(θ(t+	) − θ̄ ),
and θ̄ = T −1 ∑T

t=1 θ(t). The results from the previous sec-
tion suggest that, when the temperature ladder is fixed, a
sensible heuristic might be to consider combining the in-
dividual estimators with weights λ∗

i proportional to prod-
uct of T −1

i ESSρ(θ i ) and ESS(wi ), say. However, when
considering modifications to the number (m) and spacing
of inverse temperatures k = {k1, . . . , km}, there is clearly
a conflict of interest between the two measures of effec-
tive sample size. Adding more inverse temperatures near
one may increase ESS(wλ∗

), but may also increase auto-
correlation in the marginal chain for k. Therefore it may
be sensible to factor ESSρ(k) into the objective as well.
Searching for temperature ladders that maximise a hybrid of
ESS and ESSρ would represent a natural extension of this
work.
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