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Abstract

Simulated tempering (ST) is an established Markov Chain Monte Carlo (MCMC)

methodology for sampling from a multimodal density π(θ). The technique involves

introducing an auxiliary variable k taking values in a finite subset of [0, 1] and index-

ing a set of tempered distributions, say πk(θ) ∝ π(θ)k. Small values of k encourage

better mixing, but samples from π are only obtained when the joint chain for (θ, k)

reaches k = 1. However, the entire chain can be used to estimate expectations under π

of functions of interest, provided that importance sampling (IS) weights are calculated.

Unfortunately this method, which we call importance tempering (IT), has tended not

work well in practice. This is partly because the most immediately obvious implemen-

tation is näıve and can lead to high variance estimators. We derive a new optimal

method for combining multiple IS estimators and prove that this optimal combination

has a highly desirable property related to the notion of effective sample size. The

methodology is applied in two modelling scenarios requiring reversible-jump MCMC,

where the näıve approach to IT fails: model averaging in treed models, and model

selection for mark–recapture data.
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(MCMC), Metropolis–coupled MCMC, reversible–jump MCMC, treed model, Gaussian

process, mark–recapture data, model selection, model averaging

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms, in particular Metropolis–Hastings (MH)

(Metropolis et al., 1953; Hastings, 1970) and Gibbs Sampling (GS) (Geman and Geman,

1984), are by now the most widely used methods for simulation–based inference in (par-

ticularly Bayesian) statistics. The beauty of MCMC is its simplicity. In order to sample

from a density proportional to π(θ), for θ ∈ Θ ⊆ R
d, the MH and GS algorithms require

very little user input or expertise to obtain a realisation of a Markov chain whose stationary

distribution is proportional to π. As long as the chain is irreducible, the theory of Markov

chains guarantees that sample averages computed from this realisation will converge in an

appropriate sense to their expectations under π.

However, classical MCMC methods such as MH and GS can encounter difficulties when

π has isolated modes, between which the Markov chain moves only rarely. In such cases

convergence is slow, meaning that often infeasibly large sample sizes are needed to ob-

tain accurate estimates. New MCMC algorithms have been proposed to improve mixing.

Two related algorithms are Metropolis–coupled MCMC (MC3) (Geyer, 1991; Hukushima

and Nemoto, 1996) and simulated tempering (ST) (Marinari and Parisi, 1992; Geyer and

Thompson, 1995). Both are inspired by the optimisation technique of simulated annealing

(SA) (Kirkpatrick et al., 1983). SA works with a set of tempered distributions πk(θ) indexed

by an inverse–temperature parameter k ∈ [0,∞). One popular form of tempering is called

“powering up”, where πk(θ) ∝ π(θ)k. Small values of k have the effect of flattening/widening

the peaks and raising troughs in πk relative to π. Conversely, large values of k widen/flatten

troughs while raising/sharpening peaks. This is illustrated in Figure 1 for a motivating toy
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problem described in Section 2.

In MC3 and ST we define a temperature ladder 1 = k1 > k2 > . . . > km ≥ 0, and call

the ki its rungs. Both MC3 and ST involve simulating from the set of m tempered densities

πk1 , . . . , πkm
. MC3 runs m parallel MCMC chains, one at each temperature, and regularly

proposes swaps of states at adjacent rungs ki and ki+1. Usually, samples are only saved from

the “cold distribution” πk1 . In contrast, ST works with a “pseudo–prior” p(ki) and uses a

single chain to sample from the joint distribution, which is proportional to πk(θ)p(k). Again,

it is only at iterations t for which k(t) = 1 that the corresponding realisation of θ(t) is retained.

ST has an advantage over MC3 in that only one copy of the process {θ(t) : t = 1, . . . , T} is

needed—rather than m—so the chain uses less storage and also has better mixing (Geyer,

1991). The disadvantage is that it needs a good choice of pseudo–prior.

Both MC3 and ST suffer from inefficiency because they discard all samples from πk for

k 6= 1. The discarded samples could be used to estimate expectations under π if they were

given appropriate importance sampling (IS) weights, and indeed it is often the case that an IS

estimator constructed with samples from a tempered distribution can have smaller variance

than one based on a sample of the same size from π (cf. Example 2.2 in Section 2). For an

inclusive review of IS and related methods see Liu (2001, Chapter 2). Jennison (1993) was

the first to suggest using a single tempered distribution as a proposal in IS, and Neal (1996,

2001, 2005) has since written several papers which combine IS and tempered distributions.

Indeed, in the discussion of the 1996 paper on tempered transitions, Neal writes “simulated

tempering allows data associated with pi other than p0 [the cold distribution] to be used to

calculate expectations with respect to . . . p0 (using an importance sampling estimator)”1. It

is this natural extension that we call importance tempering (IT), with IMC3 defined similarly.

Given the work of the above-mentioned authors, and the fact that calculating importance

weights is a relatively trivial matter, it may be surprising that successful IT and IMC3

1A similar note is made in the 2001 paper with regard to a method called annealed importance sampling.
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applications have yet to be published. Liu (2001) comes closest, in proposing to augment ST

with a dynamic weighting rule (Wong and Liang, 1997) added to guide transitions between

adjacent temperatures.

This paper addresses why the straightforward methodology described above has tended

not to work well in practice, primarily due to a lack of a principled way of combining the

importance weights collected at each temperature to obtain an overall estimator. If we are

interested in estimating Eπ{h(θ)}, one obvious way to do this is with

ĥ = W−1

T
∑

t=1

w(θ(t), k(t))h(θ(t)), where W =

T
∑

t=1

w(θ(t), k(t)), (1)

and w(θ, k) = π(θ)/π(θ)k = π(θ)1−k. Observe that this estimator is of the form ĥ =

∑m
i=1 λiĥi, where 0 ≤ λi ≤

∑m
i=1 λi = 1, with λi = W−1

∑T
t=1 w(θ(t), k(t))

�

{k(t)=ki}, and

where each ĥi is an IS estimator of Eπ{h(θ)} constructed using only the observations at the

inverse–temperature ki. We show to how improve this estimator by choosing λ1, . . . , λm to

maximise the effective sample size (see next paragraph), which approximately corresponds

to minimising the variance of ĥ (Liu, 2001, Section 2.5.3). For the applications that we have

in mind, it is important that our estimator can be constructed without knowledge of the

normalising constants of πk1 , . . . , πkm
. It is for this reason that methods like the balance

heuristic (Veach and Guibas, 1995) or MCV (Owen and Zhou, 2000) cannot be applied.

The notion of effective sample size plays an important role in the study of IS esti-

mators. Suppose we are interested in estimating Eπ{h(θ)} using a vector of observations

θ = (θ(1), . . . , θ(T )) from a density π′. Define the vector of importance weights w ≡ w(θ) =

(w(θ(1)), . . . , w(θ(T ))), where w(θ) = π(θ)/π′(θ). Following Liu (2001, Section 2.5.3) we

define the effective sample size by

ESS
(

w(θ)
)

≡ ESS(w) =
T

1 + cv2(w)
, (2)
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where cv(w) is the coefficient of variation of the weights, given by

cv2(w) =

∑T
t=1(w(θ(t)) − w̄)2

(T − 1)w̄2
, where w̄ = T−1

T
∑

t=1

w(θ(t)).

This should not be confused with the concept of effective sample size due to autocorrelation

(Kass et al., 1998) (due to serially correlated samples coming from a Markov chain as in

MCMC). This latter notion is discussed briefly in Section 5.

Observe that the swap operations in MC3 require that the state space Θ be common

for all m tempered distributions. This is not a requirement for ST, as the state stays fixed

when changes in temperature are proposed. Thus MC3 is less useful in (Bayesian) model

selection/averaging problems which typically involve trans–dimensional Markov chains as in

reversible–jump MCMC (RJMCMC) (Richardson and Green, 1997). Since RJMCMC algo-

rithms are particularly prone to slow mixing, and hence an excellent source of applications

of our methodology and results (as illustrated in Section 4), the rest of the paper will focus

on IT. Most of our results apply equally to IMC3 by ignoring the pseudo–prior.

The outline of the paper is as follows. Section 2 consists of two toy examples, as moti-

vation and to help fix ideas. We show how IS with tempered distributions can be helpful

in these simple problems, but that ultimately the more powerful apparatus of IT is needed.

In Section 3, after a quick review of ST, we discuss how IS can be applied to create more

efficient estimators. We derive the optimal convex combination of multiple IS estimators,

and show that this optimal combination has a particularly attractive property with regard

to its effective sample size. Section 4 shows the effectiveness of optimal IT, and the poor

performance of the näıve approach, for model selection in treed and mark–recapture models

which require RJMCMC. Section 5 concludes with a discussion.
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2 Two motivating examples

Example 2.1: Consider the following toy density π, a mixture of two normals:

π(θ) = 0.6N(θ|µ1 = −8, σ2
1 = 0.52) + 0.4N(θ|µ2 = 8, σ2

2 = 0.92). (3)

Figure 1 plots πk(θ) ∝ π(θ)k for various values of k in [0, 1] (scaled appropriately for clarity).
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Figure 1: Mixture of two normals with density in (3) at inverse–temperatures k ∈ [0, 1]. The
solid black curve corresponds to k = 1.

Now consider using the symmetric random–walk Metropolis (RWM) algorithm to sample

from π, starting at the mean of the left–hand mode θ(0) = µ1 and using proposal distribution

q(θ(t) → θ(t+1)) = N(θ(t+1)|θ(t), σ2
q). For good mixing Roberts et al. (1997) suggest choosing

σ2
q so that the RWM has an acceptance rate of approximately 0.234; pilot tuning suggests

σ2
q = 6.5. Standard MCMC diagnostics indicate good mixing has been achieved after 105

MCMC iterations, but the Markov chain has not explored the right–hand mode at all!

Following the suggestion of Jennison (1993), we considered the IS estimator obtained

from the same RWM algorithm starting at θ(0) = µ1, using π′(θ) = π(θ)0.1. When using

RWM on a tempered distribution, it makes sense to temper the proposal similarly, so that

q(θ(t) → θ(t+1)) = N(θ(t+1)|θ(t), σ2
q)

k ∝ N(θ(t+1)|θ(t), σ2
q/k). Figure 2 illustrates the improved
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Figure 2: RWM samples {θ(t) : t = 1, . . . , T} from π′(θ) = π(θ)0.1 with original proposal
σ2

q = 6.5 (left) and tempered proposal σ2
q/0.1 = 65 (right).

Mean Squared Error
σ2

q Pπ(θ < 0) Eπ(θ) Varπ(θ)

Standard RWM for π 6.5 1.6 × 10−1 40.971 3802.43
IS with RWM for π0.1 65 6.9 × 10−5 0.018 0.212

Table 1: MSEs for estimating Pπ(θ < 0), Eπ(θ) and Varπ(θ) over 100 repeated samples of size
105. The true values of these functionals for π in (3) are 0.6, -1.6, and 61.914, respectively.

mixing in the RWM for π0.1 by showing traces under the original and tempered proposal

schemes. Suppose we are interested in estimating Pπ(θ < 0), Eπ(θ) and Varπ(θ). Table 1

compares RWM sampling from π versus IS with RWM samples from π0.1 with tempered

proposals via the mean squared error (MSE) obtained when estimating these functionals.

Jointly, the table and figure attest to the power of combining tempering with IS to improve

mixing in the Markov chain between the isolated modes of a distribution. The discussion of

this example is continued at the end of Section 3.2.

Example 2.2: Let π(θ) = N(θ|µ, σ2), and consider estimating µ = Eπ(θ) by IS from a

tempered distribution πk(θ) ∝ π(θ)k. A straightforward calculation shows that the value of

k which minimises the variance of the IS estimator is

k∗ =











1/2 if µ = 0

3
2

+
(

σ
µ

)2

− 1
2

{

1 + 8
(

σ
µ

)2

+ 4
(

σ
µ

)4}1/2

otherwise.
(4)

Note that k∗ ∈ (1/2, 1) for all µ and σ2. Moreover, there exists k− = k−(σ/µ) < k∗ such

that for all k ∈ (k−, 1), the variance of the IS estimator µ̂k based on samples from πk is
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smaller than that of one based on a sample of the same size from π. However, Var(µ̂k) → ∞

as k → 0 for all µ and σ2. Table 2 gives k∗ and k− for various values of σ/µ.

σ/µ 1/16 1/4 1 4 16
k∗ 1.00 0.95 0.70 0.52 0.50
k− 0.99 0.89 0.42 0.18 0.16

Table 2: Values of k∗ and k− for various values of σ/µ.

This example, and the previous one, highlight a trade-off in the choice of tempered IS

proposals. On the one hand, low inverse–temperatures k guard against missing modes of π

with large support by encouraging better mixing between modes, but can yield very inefficient

estimators overall. On the other hand, “lukewarm” temperatures k, especially k ∈ (1/2, 1),

can yield more efficient estimators within modes than those obtained from samples at k = 1

by exploiting a bias/variance trade-off. Desire to get the best of both worlds will serve as

our motivation for combining ST and IS in the next section.

3 Importance tempering

We begin by outlining standard approaches to rung–spacing and pseudo–prior adjustment

for ST. Next, an IS estimator is constructed for each rung on the temperature ladder 1 =

k1 > . . . > km ≥ 0, giving a total of m estimators. A new optimal algorithm is given for

combining the m IS estimators, where proposals need only be known up to a normalising

constant.

3.1 Simulated tempering

The simulated tempering (ST) (Geyer and Thompson, 1995) algorithm is an application of

the Metropolis–Hastings (MH) algorithm on the product space of parameters and inverse–

temperatures. That is, ST uses MH to sample from the joint chain π(θ, k) ∝ π(θ)kp(k).
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This is only possible if π(θ)k is integrable, but Hölder’s inequality may be used to show

that this is indeed the case provided that Eπ(‖θ‖
1−k

k
+δ) < ∞ for some δ > 0, where ‖ · ‖

denotes the Euclidean norm. The inverse–temperature is allowed to take on a discrete set

of values k ∈ {k1, . . . , km : k1 = 1, ki > ki+1 ≥ 0}. Typically, ST calls for sampling

(θ, k)(t+1) by first updating θ(t+1) conditional on k(t) and (possibly) on θ(t), using MH or

GS. Then, for a proposed k′ ∼ q(k(t) → k′), usually giving equal probability to the nearest

inverse–temperatures greater and less than k(t), an acceptance ratio is calculated:

A(t+1) =
π(θ(t+1))k′

p(k′)q(k′ → k(t))

π(θ(t+1))k(t)p(k(t))q(k(t) → k′)
.

Finally, k(t+1) is determined according to the MH accept/reject rule: set k(t+1) = k′ with

probability α(t+1) = min{1, A(t+1)}, or k(t+1) = k(t) otherwise. Standard theory for MH and

GS gives that samples from the marginals πki
can be obtained by collecting samples θ(t)

where k(t) = ki. Samples from π(θ) are obtained when k(t) = 1.

The success of ST depends crucially on the ability of the Markov chain frequently to: (a)

visit high temperatures (low k) where the probability of escaping local modes is increased;

(b) visit k = 1 to obtain samples from π. The algorithm can be tuned by: (i.) adjusting

the number and location of the rungs of the temperature ladder; or (ii.) setting the pseudo-

prior p(k) for inverse–temperature. Geyer and Thompson (1995) give ways of adjusting the

spacing of the rungs of the ladder so that the ST algorithm achieves between–temperature

acceptance rates of 20–40%. More recently, authors have preferred to rely on defaults, e.g.,

ki =











(1 + ∆k)
1−i geometric spacing

{1 + ∆k(i − 1)}−1 harmonic spacing
i = 1, . . . , m. (5)

The rate parameter ∆k > 0 can be problem specific. Rather than work with ∆k, we prefer

to set the ladder via m and the hottest temperature km, thus fixing ∆k implicitly. I.e., for
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the geometric ladder ∆k = (km)1/(1−m) − 1, and for the harmonic ladder ∆k = (km)−1−1
m−1

.

Motivation for such default spacings is outlined by Liu (2001, Chapter 10: pp. 213 &

233). Geometric spacing, or uniform spacing of log(ki), is also advocated by Neal (1996,

2001) to encourage the Markov chain to traverse rapidly the breadth of the temperature

ladder. Harmonic spacing (Geyer, 1991) is more often used for MC3 (e.g. Altekar et al.,

2004).

Once a suitable ladder has been chosen, we follow the suggestions of Geyer and Thompson

(1995) in setting the pseudo–prior, starting from a uniform p0. First, p0 is adjusted by

stochastic approximation: add c0/[m(t + n0)] to log p0(k) for each ki 6= k(t) and subtract

c0/(t+n0) from log p0(k
(t)) over t = 1, . . . , B burn–in MCMC rounds sampling from the joint

posterior of (θ, k). Then, p0 is normalised to obtain p1. Finally, a second MCMC run is used

to collect occupation numbers o(ki) =
∑B

t=1

�

{k(t)=ki}, which are used set p(ki) ∝ p1(ki)/o(ki).

3.2 A new optimal way to combine IS estimators

ST provides us with {(θ(t), k(t)) : t = 1, . . . , T}, where θ(t) is an observation from πk(t) .

It is convenient to write Ti = {t : k(t) = ki} for the index set of observations at the ith

temperature, and let Ti = |Ti|. Let the vector of observations at the ith temperature collect

in θi = (θi1, . . . , θiTi
), so that {θij}

Ti

j=1 ∼ πki
. Similarly, the vector of IS weights at the ith

temperature is wi = wi(θi) = (wi(θi1), . . . , wi(θiTi
)), where wi(θ) = π(θ)/πki

(θ).

Each vector θi can be used to construct an IS estimator of Eπ{h(θ)} by setting

ĥi =

∑Ti

j=1 wi(θij)h(θij)
∑Ti

j=1 wi(θij)
≡

∑Ti

j=1 wijh(θij)

Wi
,

say. It is natural to consider an overall estimator of Eπ{h(θ)} defined by a convex combina-
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tion:

ĥλ =

m
∑

i=1

λiĥi, where 0 ≤ λi ≤

m
∑

i=1

λi = 1. (6)

Unfortunately, if λ1, . . . , λm are not chosen carefully, Var(ĥλ), can be nearly as large as the

largest Var(ĥi) (Owen and Zhou, 2000). Notice that ST is recovered as a special case when

λ1 = 1 and λ2, . . . , λm = 0. It may be tempting to choose λi = Wi/W , where W =
∑m

i=1 Wi,

recovering the estimator in Eq. (1). This can lead to a very poor estimator, even compared

to ST, which is demonstrated empirically in Section 4.

Observe that we can write

ĥλ =
m

∑

i=1

Ti
∑

j=1

wλ
ijh(θij), (7)

where wλ
ij = λiwij/Wi. Let wλ = (wλ

11, . . . , w
λ
1T1

, wλ
21, . . . , w

λ
2T2

, . . . , wλ
m1, . . . , w

λ
mTm

). At-

tempting to choose λ1, . . . , λm to minimise Var(ĥλ) directly can be difficult. In the balance

heuristic, Veach and Guibas (1995) explore combinations of IS estimators of the form in (7),

except that wλ
ij = λijwij/Wi, where

λij =
cigi(θij)

∑m
r=1 crgr(θij)

, (8)

and 0 ≤ ci ≤
∑m

i=1 ci = 1 is the proportion of samples taken from gi.
2 It turns out that this

is equivalent to IS with the mixture proposal π̃(θ) =
∑m

r=1 crgr(θ):

ĥbal ≡
1

T

T
∑

t=1

w(θt)h(θt), where w(θ) =
π(θ)

∑m
r=1 crgr(θ)

. (9)

The balance heuristic is a special case of a more general approach called MCV (Owen and

Zhou, 2000) that combines defensive Mixture importance sampling (Hesterberg, 1995) with

2gi may be any IS proposal density, not necessarily a tempered version of π

11



Control Variates (Ripley, 1987) to yield a pooled estimator with variance nearly equal to that

of the best estimator in the pool—even when some ĥi have infinite variance. The method

involves regressing h(θt)π(θt)/
∑m

r=1 gr(θt) on gi(θt)/
∑m

r=1 gr(θt), and the special case of ĥbal

arises when the regression coefficients are set to zero.

Note that due to the denominator in the definition of w(θ) in Eq. (9), the gi must be

normalised densities. This precludes us from using the balance heuristic with gi ∝ πki
. When

MCMC is necessary to sample from π, the normalisation constant of π, and therefore πki
,

is generally unknown. Moreover, the balance heuristic requires evaluations of πki
(θ(t)), i =

1, . . . , m, at all T rounds, an O(mT ) operation that trivialises any computational advantage

ST has over MC3. Instead, we seek maximise the effective sample size of ĥλ in (6), and look

for an O(T ) operation to determine the optimal λ∗.

Theorem 3.1. Among estimators of the form (6), ESS(wλ) is maximised by λ = λ∗, where,

for i = 1, . . . , m,

λ∗
i =

`i
∑m

i=1 `i
, and `i =

W 2
i

∑Ti

j=1 w2
ij

.

Proof. Since
∑m

i=1

∑Ti

j=1 wλ
ij = 1, the problem of maximising the effective sample size is the

same as

min
λ1,...,λm

m
∑

i=1

Ti
∑

j=1

(

λi
wij

Wi
−

1

T

)2

, subject to 0 ≤ λi ≤

m
∑

i=1

λi = 1.

The result then follows by a straightforward Lagrange multiplier argument.

In the following discussion and in Theorem 3.2 below, we assume that Ti ≥ 2 for

i = 1, . . . , m. The efficiency of each IS estimator ĥi can be measured through ESS(wi).
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Intuitively, we hope that with a good choice of λ, the ESS (2) of ĥλ, given by

ESS(wλ) =
T (T − 1)

T 2
∑m

i=1 λ2
i /`i − 1

,

would be close to the sum over i of the effective sample sizes of ĥi, namely

ESS(wi) =
Ti(Ti − 1)`i

T 2
i − `i

. (10)

Theorem 3.2 below shows that this is indeed the case for ĥλ∗.

Theorem 3.2. We have

ESS(wλ∗

) ≥
m

∑

i=1

ESS(wi) −
1

4
−

1

T
.

Proof. Since ESS(wi) ≤ Ti, it follows from (10) that `i ≤ Ti. Thus

ESS(wλ∗

) =
(1 − T−1)

∑m
i=1 `i

1 −
∑m

i=1
`i

T 2
i

≥
(

1 −
1

T

)

(

1 +
1

T 2

m
∑

i=1

`i

) m
∑

i=1

`i

=
m

∑

i=1

`i −

∑m
i=1 `i

T

(

1 −

∑m
i=1 `i

T

)

−
(
∑m

i=1 `i)
2

T 3

≥

m
∑

i=1

`i −
1

4
−

1

T
,

since x(1 − x) is maximised at x = 1/4 and
∑

`i ≤
∑

Ti = T .

In practice we have usually found that this bound is conservative and that in fact

ESS(wλ∗

) ≥
∑m

i=1 ESS(wi). Thus our optimally–combined IS estimator has a highly de-

sirable and intuitive property in terms of its effective sample size.

Example 2.1 (cont.): Returning to our toy example of the mixture of normals (3), Table 3

summarises Kolmogorov–Smirnov distances obtained under three IT estimators: ST (λ1 =
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1), näıve IT (λi = Wi/W ) and the optimally–combined IT estimator (ĥλ∗). Observe that the

K–S distance
Method ESS(wλ) mean var
ST 2535 0.0938 8.5 × 10−4

näıve IT 17779 0.0849 1.4 × 10−4

ĥλ∗ 22913 0.0836 5.2 × 10−5

∑

i ESS(wi) 22910

Table 3: Summary of K–S distances to the true mixture of normals (3) for ST (λ1 = 1),
näıve IT (λi = Wi/W ), the optimally–combined IT estimator (ĥλ∗). We used 100 repeated
samples of size 105, with tempered RWM proposals.

optimally–combined IT estimator has both the largest ESS and the smallest variance of the

three estimators. Also notice that on average ESS(wλ∗

) >
∑

i ESS(wi). Näıve IT improves

upon ST in this example, but has higher variance than ĥλ∗. In the next section we show how

the näıve method can fail spectacularly, yielding lower ESS than vanilla ST.

4 Applications to reversible-jump MCMC

Bayesian model selection, and averaging, with RJMCMC (Richardson and Green, 1997) is

notoriously prone to poor mixing. The trans–dimensional Markov chains can easily become

stuck in a local mode of the posterior of model space, failing to “back–out” to find other

equivalent, or better, models with disparate parameterisation. Prime examples include treed

models (e.g., Chipman et al., 1998), covariate selection (e.g., George and McCulloch, 1997),

choosing the order of an auto–regressive or moving–average (ARMA) process (e.g., Ehlers

and Brooks, 2006), etc.

In this section we apply the IT methodology to two recent applications of RJMCMC. The

first is a treed Gaussian process (GP) (Gramacy and Lee, 2006), which uses RJMCMC to

integrate out the tree component. Standard and importance–tempered treed GP models are

implemented in the (beta version 1.3) R package called tgp. The second is an application to
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model selection for integrated recovery/recapture data (King and Brooks, 2002). Applying

the balance heuristic in either application is infeasible since calculating the normalising

constants is intractable.

4.1 Bayesian treed Gaussian process models

Bayesian treed models extend classification and regression tree (CART) models (Breiman

et al., 1984), by putting a prior on the tree structure and using RJMCMC to integrate out the

treed partitions (Denison et al., 1998; Chipman et al., 1998). We focus on the implementation

of Chipman et al. (1998), who specify the tree prior through a process that limits how deep

trees can be grown, and then define the tree operations grow, prune, change, and swap, which

are accepted or rejected following the reversible jump acceptance ratio. “Constant” models

(i.e., i.i.d. normal with mean and variance independent of other partitions) are used at the

leaves. Chipman et al. (2002) extended this idea to fitting linear models at the leaves of the

trees, and Gramacy and Lee (2006) to full GP models.

To ensure that the RJMCMC for the tree process did not get stuck in local modes of the

posterior, Chipman et al. (1998, 2002) recommended regularly restarting the chain from the

null tree. Though treed GP models tend not to grow as deeply, similar tactics are necessary.

We apply ST to the treed GP model using a geometric ladder with m = 40 and km = 0.1.

Only the multivariate normal likelihood (for the GP) and the tree prior were tempered, by

powering up; hierarchical priors were left untempered. Proposals for most parameters in the

model are naturally tempered via GS with a tempered likelihood. Parameters to the GP

correlation function, which require MH steps, use tempered random–walk proposals.

4.1.1 Univariate Motorcycle accident data

With one–dimensional input–data, the treed GP model is a regression model with change–

points. Consider a fit of the motorcycle accident data (Silverman, 1985) shown in Figure 3.
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Figure 3: Treed GP fit to the motorcycle accident data.

The main advantage of treed partitioning on this data is to enable the estimation to take

into account the heteroscedasticity. Even in this simple case the mixing in tree space can

be poor. Figure 4 summarises the mixing in terms of tree heights and acceptance rates

for tree operations under the original RJMCMC algorithm, and those obtained from all

temperatures under the entire ST chain. Both chains were run for T = 1.5 × 105 iterations.

A total of T1 = 3732 (≈ T/m = 3750) samples were obtained from the cold distribution.

Notice in the figure how the original RJMCMC algorithm never returns to trees of height
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Figure 4: Tree heights encountered for the motorcycle accident data, and tree operations
accepted, under vanilla RJMCMC and with ST. All temperatures refers to {k(t)}T

t=1 obtained
from the ST chain on (θ, k), whereas the IT temperatures are weighted according to wλ∗

.
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one (after burn–in) in contrast to the many visits by the ST chain. The improved mixing

of the ST chain is also evident in the increased rate of accepted tree operations, also shown

in the figure. In particular, the doubled rate of accepted prune operations explains how

the tempered distributions helped the chain escape the local modes of deep trees. Re–

weighting with the optimally–combined importance weights from Theorem 3.1 facilitates

a comparison between IT and vanilla RJMCMC in terms of posterior tree heights. The

original RJMCMC chain correctly identified a maximum a posteriori (MAP) tree height of

three, but overestimated the posterior of height four. Consequently, it also underestimated

the posterior probability of trees with height two and one. That ESS(wλ∗

) = 9338 ≈ 2.5T1

shows the considerable improvement of IT over ST. The näıve combination λi = Wi

W
in (1)

yields ESS(wλ) = 285 < 1
10

T1, undermining the very motivation of IT.

4.1.2 Simulated 2–d data

Figure 5 shows a fit, using a treed GP, to 400 observations from a model for independent

realisations of (x1, x2, z) in which (x1, x2) ∈ [−6, 6]2 are chosen D–optimally (Santner et al.,

2003) and

z = x1 exp(−x2
1 − x2

2) + ε, where ε ∼ N(0, 0.0012).

There are many equivalent treed partitionings that separate the interesting region near the

origin from the flat region on the periphery. One possible partitioning—the MAP found in

a single RJMCMC run—is shown graphically in the centre panel, and diagrammatically on

the right. Partitioning is useful since it allows for a calculation of region–specific predictive

variance (centre panel).

Once the RJMCMC chain finds a tree like the one in Figure 5 it can become stuck,

unable to prune back to find other high posterior trees which split up the (x1, x2) space in
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Figure 5: Treed GP fit to the 2–d simulated bivariate data in terms of posterior mean (left)
and variance (centre) surfaces with MAP tree (centre and right).

a different order (say, starting with x1 rather than x2). The split x_1 <> 1.127 is spurious;

it is not clear how this split is supported by the data. Deeper trees, i.e. those with height

larger than five, should be viewed with even greater scepticism.

Figure 6 summarises mixing in terms of tree heights under the untempered RJMCMC

algorithm, and those obtained from all temperatures under ST. Both chains were run for

a total of T = 5 × 105 iterations. The untempered RJMCMC was restarted every 5 × 104

iterations, following the recommendation of Chipman et al. Under ST, a total of T1 = 12436

(≈ T/m = 12500) samples were obtained from the cold distribution. The left–hand side of

the figure compares tree heights observed in the two chains and those obtained by weighting

according to wλ∗

. The right–hand figures show traces of tree–heights captured every 100

iterations. Notice how the untempered RJMCMC chain (top–right panel) gets trapped

until the tree is re–started, producing ten visually detectable regimes. After the burn–in

period briefly following each tree restart, the Markov chain never visits trees below height

four. Unable to prune successfully, the chain makes periodic and lengthy excursions into

trees as deep as height ten, which is clearly not warranted by the data. The ST chain,

by contrast, moves much more freely between trees, frequently pruning back to null trees

(bottom panels). It spends most of its time at height five or lower, making periodic but
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Figure 6: Tree heights in the untempered RJMCMC and ST chains via histogram (top–left);
accepted tree operations (bottom–left); and traces (right) taken every 100 iterations (top:
RJMCMC; bottom: ST).

short excursions into deeper trees. Compared to IT, it is clear that the RJMCMC chain

has missed many more parsimonious models, particularly those at height three. Finally,

ESS(wλ∗

) = 21778 ≈ 1.75T1, illustrating how IT improves on ST. The näıve combination

λi = Wi

W
in (1) yields ESS(wλ∗

) = 654 ≈ 1
18

T1—worse than ST.

4.2 Mark-Recapture-Recovery Data

We now consider a Bayesian model selection problem with data relating to the mark-

recapture and recovery of shags on the Isle of May, off the coast of Scotland. The three

demographic parameters of interest are: survival rates, recapture rates and recovery rates.

Models in which each of these parameters was allowed to be age–and/or time–dependent

were considered, where the time dependence was conditional on the age structure of the

parameters. For further details of the data, model structure, and RJMCMC algorithm see

King and Brooks (2002). Typically, movement between the different possible models—by
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adding/removing time dependence for a given age group, or updating the age structure of

the parameters—is slow, with small acceptance probabilities.

In implementing ST, we use a geometric ladder with m = 40 and km = 0.1. We use

a random–walk MH algorithm to update the parameters within each model. The proposal

distribution was chosen to be uniform within ± δ of the current parameter value— for the

recapture rate δ = 0.05; δ = 0.1 for the recovery and survival parameters. Between model

moves (modifying time or age dependence) are as described by King and Brooks (2002).

The simulations are run for 107 iterations with the first 10% discarded as burn-in. Table

4 tallies the total number of (marginal) models that are visited along the ST chain compared

to the (untempered) vanilla RJMCMC algorithm. It can be clearly seen that the number of

models visited is significantly improved under the ST chain (i.e., ST & IT). Overall, the total

numbers of different models visited by the Markov chain (i.e. combinations of the marginal

models for all of the demographic parameters), were 3080 for IT, compared to 233 for the

standard RJMCMC and only 177 for ST. Table 5 summarises the between–model acceptance

rates under each model move. All rates are increased in the ST chain, drastically in the cases

of merge age and add time.

Marginal Survival rates Recapture rates Recovery rates
model IT ST RJ IT ST RJ IT ST RJ

Age and time 51 26 16 12 5 3 75 25 28
Age only 7 4 3 7 4 2 15 11 12

Table 4: Number of models visited in an untempered RJMCMC, compared to the ST chain.
For survival rates there are 54 possible marginal models with age– and time–dependence
and 10 with age dependence only; for recapture and recovery rates there are 94 and 15
respectively.

For the ST approach, from the T = 9 × 106 iterations following burn-in, a total of

T1 = 248158 (≈ T/m = 225000) realisations were obtained from the cold distribution. By

comparison, for optimal IT we have ESS(wλ∗

) = 612026 ≈ 2.5 × T1. The corresponding
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Model Moves: % accept
Approach split age merge age add time remove time
RJMCMC 1.30 0.50 0.01 0.14
ST chain 1.32 1.21 0.30 1.45

Table 5: Acceptance rates for model moves under the ST chain and untempered RJMCMC:
“split” and “merge” age—increasing or decreasing the number of age groups by one; “add”
and “remove” time—for the given age group, propose to add or remove time dependence.

näıve IT approach (using λi = Wi

W
) performed exceptionally poorly, with ESS(wλ) of only

5.43. This can be blamed on a few very large weights obtained at hot temperatures.

5 Discussion

This paper has addressed the inefficiencies and wastefulness of simulated tempering (ST),

and related algorithms that are designed to improve mixing in the Markov chain using tem-

pered distributions. We argued that importance sampling (IS) from tempered distributions

can produce estimators that are more efficient than ones based on independent sampling,

provided that the temperature is chosen carefully. This motivated augmenting the ST algo-

rithm by calculating importance weights to salvage discarded samples—a technique which

we have called importance tempering (IT). This idea has been suggested before, but to our

knowledge a successful application has never been published in the literature.

One reason for the lack of IT applications has been the absence of a principled way of

combining the IS estimators obtained at each temperature. We have therefore derived opti-

mal combination weights, which can be calculated even when the normalisation constants of

the tempered distributions are unknown—as is usually the case in practice. This framework

is equally applicable within MC3, and can certainly be applied outside of the domain of

tempered MCMC to combine IS estimators obtained from any proposal distributions. We

proved that the effective sample size of the optimally–combined estimator is guaranteed to

be almost as large as the sum of the corresponding effective sample sizes at each temperature,
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and in fact it is often larger in practice.

In addition to using a motivating example, IT has been applied to two different model

selection problems which require the use of reversible–jump MCMC, and are thus prone

to poor mixing. The first involved Bayesian treed models with model averaging, and the

second involved a model selection task for mark–recapture data. In both cases we showed

that ST yields improved mixing in model space, and that, when applied carefully, the IT

methodology can indeed increase the resulting ESS compared to retaining samples only from

the cold distribution. The computational cost required of this post-processing operation is

O(T ), and its implementation requires minimal programming effort.

Since IT involves sampling from a Markov chain, ideally one would take into account the

serial correlation in an appropriate notion of effective sample size. The effective sample size

due to autocorrelation is defined (Kass et al., 1998) by

ESSc(θ) =
T

1 + 2
∑T−1

`=1 ρ̂(`)
, (11)

where ρ̂(`) is the sample autocorrelation at lag `; thus ρ̂(`) = γ̂(`)/γ̂(0), where γ̂(`) =

(T − `)−1
∑T−`

t=1 (θ(t) − θ̄)(θ(t+`) − θ̄), and θ̄ = T−1
∑T

t=1 θ(t). It is natural to try to combine

these two concepts of effective sample size. In the light of Theorem 3.2, one way to do this

might be to define an overall effective sample size (OESS) by

OESS(θ) = T−1ESSc(k)
m

∑

i=1

ESSw

(

wi(θi)
)

× ESSc(θi)

Ti

, (12)

where k = (k(1), . . . , k(T )). For example, when modifying the temperature ladder, adding

more inverse–temperatures near one will increase ESS(wλ∗

), but will also increase autocor-

relation in the marginal chain for k. Searching for temperature ladders that maximise (12)

would represent a natural next step in the development of importance tempering.
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