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Abstract

Simulated tempering (ST) is an established Markov chain Monte Carlo (MCMC)

method for sampling from a multimodal density π(θ). Typically, ST involves intro-

ducing an auxiliary variable k taking values in a finite subset of [0, 1] and indexing a

set of tempered distributions, say πk(θ) ∝ π(θ)k. In this case, small values of k en-

courage better mixing, but samples from π are only obtained when the joint chain for

(θ, k) reaches k = 1. However, the entire chain can be used to estimate expectations

under π of functions of interest, provided that importance sampling (IS) weights are

calculated. Unfortunately this method, which we call importance tempering (IT), can

disappoint. This is partly because the most immediately obvious implementation is

näıve and can lead to high variance estimators. We derive a new optimal method for

combining multiple IS estimators and prove that the resulting estimator has a highly

desirable property related to the notion of effective sample size. We briefly report on

the success of the optimal combination in two modelling scenarios requiring reversible-

jump MCMC, where the näıve approach fails.

Key words: simulated tempering, importance sampling, Markov chain Monte Carlo

(MCMC), Metropolis–coupled MCMC
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1 Introduction

Markov chain Monte Carlo (MCMC) algorithms, in particular Metropolis–Hastings (MH)

and Gibbs Sampling (GS), are by now the most widely used methods for simulation–based

inference in Bayesian statistics. The beauty of MCMC is its simplicity. Very little user input

or expertise is required in order to establish a Markov chain whose stationary distribution

is proportional to π(θ), for θ ∈ Θ ⊆ R
d. As long as the chain is irreducible, the theory of

Markov chains guarantees that sample averages computed from this realisation will converge

in an appropriate sense to their expectations under π. However, difficulties can arise when

π has isolated modes, between which the Markov chain moves only rarely. In such cases

convergence is slow, meaning that often infeasibly large sample sizes are needed to obtain

accurate estimates.

New MCMC algorithms have been proposed to improve mixing. Two related algorithms

are Metropolis–coupled MCMC (MC3) (??) and simulated tempering (ST) (??). Both are

closely related to the optimisation technique of simulated annealing (SA) (?). SA works

with a set of tempered distributions πk(θ) indexed by an inverse–temperature parameter

k ∈ [0,∞). One popular form of tempering is called “powering up”, where πk(θ) ∝ π(θ)k.

Small values of k have the effect of flattening/widening the peaks and raising troughs in πk

relative to π.

In MC3 and ST we define a temperature ladder 1 = k1 > k2 > . . . > km ≥ 0, and call

the ki its rungs. Both MC3 and ST involve simulating from the set of m tempered densities

πk1 , . . . , πkm
. MC3 runs m parallel MCMC chains, one at each temperature, and regularly

proposes swaps of states at adjacent rungs ki and ki+1. Usually, samples are only saved from

the “cold distribution” πk1 . In contrast, ST works with a “pseudo–prior” p(ki) and uses a

single chain to sample from the joint distribution, which is proportional to πk(θ)p(k). Again,

it is only at iterations t for which k(t) = 1 that the corresponding realisation of θ(t) is retained.
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ST has an advantage over MC3 in that only one copy of the process {θ(t) : t = 1, . . . , T} is

needed—rather than m—so the chain uses less storage and also has better mixing (?). The

disadvantage is that it needs a good choice of pseudo–prior. For further comparison and

review, see ? and ?.

Both MC3 and ST suffer from inefficiency because they discard all samples from πk for

k 6= 1. The discarded samples could be used to estimate expectations under π if they were

given appropriate importance sampling (IS) weights. For an inclusive review of IS and related

methods see ?, Chapter 2. Moreover, it may be the case that an IS estimator constructed

with samples from a tempered distribution has smaller variance than one based on a sample

of the same size from π. As a simple motivating example, let π(θ) = N(θ|µ, σ2), and consider

estimating µ = Eπ(θ) by IS from a tempered distribution πk(θ) ∝ π(θ)k. A straightforward

calculation shows that the value of k which minimises the variance of the IS estimator is

k∗ =
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(1)

Note that k∗ ∈ (1/2, 1) for all µ and σ2. Moreover, one can compute (numerically) k− =

k−(σ/µ) < k∗ such that for all k ∈ (k−, 1), the variance of the IS estimator µ̂k based on

samples from πk is smaller than that of one based on a sample of the same size from π.

However, Var(µ̂k) → ∞ as k → 0 for all µ and σ2. Table 29 gives k∗ and k− for various

values of σ/µ.

σ/µ 1/16 1/4 1 4 16
k∗ 1.00 0.95 0.70 0.52 0.50
k− 0.99 0.89 0.42 0.18 0.16

Table 1: Values of k∗ and k− for various values of σ/µ.

Therefore, there is a trade-off in the choice of tempered IS proposals. On the one hand,

low inverse–temperatures k in ST can guard against missing modes of π with large support
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by encouraging better mixing between modes, but can yield very inefficient (IS) estimators

overall. On the other hand, “lukewarm” temperatures k, especially k ∈ (1/2, 1), can yield

more efficient estimators within modes than those obtained from samples at k = 1.

? was the first to suggest using a single tempered distribution as a proposal in IS, and ???

has since written several papers combining IS and tempering. Indeed, in the discussion of the

1996 paper on tempered transitions, Neal writes “simulated tempering allows data associated

with pi other than p0 [the cold distribution] to be used to calculate expectations with respect

to . . . p0 (using an importance sampling estimator)”1. It is this natural extension that we

call importance tempering (IT), with IMC3 defined similarly. Given the work of the above-

mentioned authors, and the fact that calculating importance weights is relatively trivial, it

may be surprising that successful IT and IMC3 applications have yet to be published. ?

comes close in proposing to augment ST with dynamic weighting (?) and in applying the

Wang–Landau algorithm (?) to ST.

This paper addresses why the straightforward methodology described above has tended

not to work well in practice, primarily due to a lack of a principled way of combining the

importance weights collected at each temperature to obtain an overall estimator. If we are

interested in estimating Eπ{h(θ)}, one way to do this is with

ĥ = W−1
T

∑

t=1

w(θ(t), k(t))h(θ(t)), where W =
T

∑

t=1

w(θ(t), k(t)), (2)

and w(θ, k) = π(θ)/π(θ)k = π(θ)1−k. Observe that this estimator is of the form ĥ =
∑m

i=1 λiĥi, where 0 ≤ λi ≤
∑m

i=1 λi = 1, with λi = W−1
∑T

t=1 w(θ(t), k(t))I{k(t)=ki}, and

where each ĥi is an IS estimator of Eπ{h(θ)} constructed using only the observations at the

inverse–temperature ki. We show how to improve this estimator by choosing λ1, . . . , λm to

maximise the effective sample size (see next paragraph), which approximately corresponds

1A similar note is made in the 2001 paper with regard to annealed importance sampling.
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to minimising the variance of ĥ (?, Section 2.5.3). For the applications that we have in mind,

it is important that our estimator can be constructed without knowledge of the normalising

constants of πk1 , . . . , πkm
. It is for this reason that methods motivated by the balance heuristic

(???) cannot be applied.

The notion of effective sample size plays an important role in the study of IS esti-

mators. Suppose we are interested in estimating Eπ{h(θ)} using a vector of observations

θ = (θ(1), . . . , θ(T )) from a density π′. Define the vector of importance weights w ≡ w(θ) =

(w(θ(1)), . . . , w(θ(T ))), where w(θ) = π(θ)/π′(θ). Following ?, Section 2.5.3 we define the

effective sample size by

ESS
(

w(θ)
)

≡ ESS(w) =
T

1 + cv2(w)
, (3)

where cv2(w) is the coefficient of variation of the weights, given by

cv2(w) =

∑T
t=1(w(θ(t)) − w̄)2

(T − 1)w̄2
, where w̄ = T−1

T
∑

t=1

w(θ(t)).

This should not be confused with the concept of effective sample size due to autocorrelation

(?) (due to serially correlated samples from a Markov chain). This latter notion is discussed

briefly in Section 60.

Observe that the swap operations in MC3 require that the state space Θ be common

for all m tempered distributions. This is not a requirement for ST, as the state stays fixed

when changes in temperature are proposed. Thus applying MC3 is less straightforward

in (Bayesian) model selection/averaging problems which typically involve trans–dimensional

Markov chains as in reversible–jump MCMC (RJMCMC) (?), though it is possible (?). Since

RJMCMC algorithms are particularly prone to slow mixing, and hence are an excellent source

of applications of our idea (as illustrated in Section 59), the rest of the paper will focus on
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IT. Most of our results apply equally to IMC3 by ignoring the pseudo–prior.

The outline of the paper is as follows. In Section 58 we derive the optimal convex combi-

nation of multiple IS estimators, and show how this estimator has a particularly attractive

property with regard to its effective sample size. In Section 59 we briefly report on the

effectiveness of optimal IT, and the poor performance of the näıve approach, on several real

and synthetic examples. Section 60 concludes with a discussion.

2 Importance tempering

The simulated tempering (ST) (?) algorithm is an application of MH on the product space

of parameters and inverse–temperatures. That is, samples are obtained from the joint chain

π(θ, k) ∝ π(θ)kp(k). This is only possible if π(θ)k is integrable, but Hölder’s inequality may

be used to show that this is indeed the case provided that Eπ(‖θ‖
1−k

k
+δ) < ∞ for some δ > 0,

where ‖ · ‖ denotes the Euclidean norm. The success of ST depends crucially on the ability

of the Markov chain frequently to: (a) visit high temperatures (low k) where the probability

of escaping local modes is high; (b) visit k = 1 to obtain samples from π. The algorithm

can be tuned by: (i.) adjusting the number and location of the rungs of the temperature

ladder; or (ii.) adjusting the pseudo-prior p(k). ? give some automated ways of adjusting the

spacing of the rungs of the ladder. ? reviews similar techniques from the physics literature.

A recent alternative—and very promising—approach involves the Wang–Landau algorithm

(?). However, many authors prefer to rely on defaults, e.g.,

ki =











(1 + ∆k)
1−i geometric spacing

{1 + ∆k(i − 1)}−1 harmonic spacing
i = 1, . . . , m. (4)

The rate parameter ∆k > 0 can be problem specific. Motivation for such default spacings is

outlined by ?, Chapter 10: pp. 213 & 233. Geometric spacing, or uniform spacing of log(ki),
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is also advocated by ??.

Once a suitable ladder has been chosen, the goal is typically to choose the pseudo–prior

so that the posterior over temperatures is uniform. The best way to accomplish this is

to set p(ki) = 1/Zi, where Zi =
∫

Θ
π(θ)kidθ is the normalising constant in πki

= πki/Zi,

which is generally unknown. So while normalising constants are not a prerequisite for ST,

it can certainly be useful to know them. We follow the suggestions of ? in setting the

pseudo–prior by a method that roughly approximates the Zi in two–stages: first by stochastic

approximation (?), and then by observation counts accumulated through pilot runs. To some

extent, a non-uniform posterior on the temperatures is less troublesome in the context of IT

than ST. So long as the chain still visits the heated temperatures often enough to get good

mixing in Θ, and if the ESS of the IS estimators at some temperature(s) is not too low,

useful samples can be obtained without ever visiting the cold distribution.

2.1 A new optimal way to combine IS estimators

ST provides us with {(θ(t), k(t)) : t = 1, . . . , T}, where θ(t) is an sample from πk(t) . Write

Ti = {t : k(t) = ki} for the index set of observations at the ith temperature, and let Ti = |Ti|.

Let the vector of observations at the ith temperature collect in θi = (θi1, . . . , θiTi
), so that

{θij}
Ti

j=1 ∼ πki
. Similarly, the vector of IS weights at the ith temperature is wi = wi(θi) =

(wi(θi1), . . . , wi(θiTi
)), where wi(θ) = π(θ)/πki

(θ).

Each vector θi can be used to construct an IS estimator of Eπ{h(θ)} by setting

ĥi =

∑Ti

j=1 wi(θij)h(θij)
∑Ti

j=1 wi(θij)
≡

∑Ti

j=1 wijh(θij)

Wi

.
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It is natural to consider an overall estimator of Eπ{h(θ)} defined by a convex combination:

ĥλ =

m
∑

i=1

λiĥi, where 0 ≤ λi ≤

m
∑

i=1

λi = 1. (5)

Unfortunately, if λ1, . . . , λm are not chosen carefully, Var(ĥλ), can be nearly as large as

the largest Var(ĥi) (?). Notice that ST is recovered as a special case when λ1 = 1 and

λ2 = · · · = λm = 0. It may be tempting to choose λi = Wi/W , where W =
∑m

i=1 Wi,

recovering the estimator in Eq. (156). This can lead to a very poor estimator, even compared

to ST, which is demonstrated empirically in Section 59.

Observe that we can write

ĥλ =
m

∑

i=1

Ti
∑

j=1

wλ
ijh(θij), (6)

where wλ
ij = λiwij/Wi. Let wλ = (wλ

11, . . . , w
λ
1T1

, wλ
21, . . . , w

λ
2T2

, . . . , wλ
m1, . . . , w

λ
mTm

). At-

tempting to choose λ1, . . . , λm to minimise Var(ĥλ) directly can be difficult. In the balance

heuristic, ? explore combinations of IS estimators of the form (160), where wi(θ) = π(θ)/gi(θ)

for a family of proposal densities gi, with

λij =
cigi(θij)

∑m
r=1 crgr(θij)

, (7)

and where 0 ≤ ci ≤
∑m

i=1 ci = 1 is the proportion of samples taken from gi. It turns out

that this is equivalent to IS with the mixture proposal π̃(θ) =
∑m

r=1 crgr(θ):

ĥbal ≡
1

T

T
∑

t=1

w(θt)h(θt), where w(θ) =
π(θ)

∑m
r=1 crgr(θ)

. (8)

The balance heuristic has since been generalised by ?; it was reinvented by (?, Section 4) in

the context of applied probability.

Note that due to the denominator in the definition of w(θ) in Eq. (162), the gi must
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be normalised densities. This precludes us from using the balance heuristic with gi ∝ πki
.

When MCMC is necessary to sample from π, the normalisation constant of π, and therefore

πki
, is generally unknown. The method also requires evaluations of πki

(θ(t)), i = 1, . . . , m,

at all T rounds, an O(mT ) operation that trivialises any computational advantage ST has

over MC3. Instead, we consider maximising the ESS of ĥλ in (159).

Proposition 2.1. Among estimators of the form (159), ESS(wλ) is maximised by λ = λ∗,

where, for i = 1, . . . , m,

λ∗
i =

`i
∑m

i=1 `i

, and `i =
W 2

i
∑Ti

j=1 w2
ij

.

Proof. Since
∑m

i=1

∑Ti

j=1 wλ
ij = 1, the problem of maximising the effective sample size is the

same as

min
λ1,...,λm

m
∑

i=1

Ti
∑

j=1

(

λi
wij

Wi

−
1

T

)2

, subject to 0 ≤ λi ≤
m

∑

i=1

λi = 1.

The result then follows by a straightforward Lagrange multiplier argument.

In the following discussion and in Remark 58.2 below, we assume that for i = 1, . . . , m,

Ti ≥ 2. The efficiency of each IS estimator ĥi can be measured through ESS(wi). Intuitively,

we hope that with a good choice of λ, the ESS of ĥλ, given by

ESS(wλ) =
T (T − 1)

T 2
∑m

i=1 λ2
i /`i − 1

,

would be close to the sum over i of the effective sample sizes of ĥi, namely

ESS(wi) =
Ti(Ti − 1)`i

T 2
i − `i

. (9)

The remark below shows that this is indeed the case for ĥλ∗ .
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Remark 2.2. We have

ESS(wλ∗

) ≥

m
∑

i=1

ESS(wi) −
1

4
−

1

T
.

Proof. Since ESS(wi) ≤ Ti, it follows from (163) that `i ≤ Ti. Thus

ESS(wλ∗

) =
(1 − T−1)

∑m
i=1 `i

1 −
∑m

i=1
`i

T 2
i

≥
(

1 −
1

T

)

(

1 +
1

T 2

m
∑

i=1

`i

) m
∑

i=1

`i

=

m
∑

i=1

`i −

∑m
i=1 `i

T

(

1 −

∑m
i=1 `i

T

)

−
(
∑m

i=1 `i)
2

T 3

≥
m

∑

i=1

`i −
1

4
−

1

T
,

since x(1 − x) attains its maximum of 1/4 at x = 1/2 and
∑

`i ≤
∑

Ti = T .

In practice we have found that this bound is slightly conservative and that often it is

the case that ESS(wλ∗

) ≥
∑m

i=1 ESS(wi). Thus our optimally–combined IS estimator has a

highly desirable and intuitive property in terms of its effective sample size.

3 Empirical Results

Here we briefly report on the success of optimal IT, relative to the näıve approach and ST,

on one simple example and two involving RJMCMC.

3.1 A simple mixture of normals

Consider the following toy density π, a mixture of two normals:

π(θ) = 0.6N(θ|µ1 = −8, σ2
1 = 0.52) + 0.4N(θ|µ2 = 8, σ2

2 = 0.92). (10)
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Table 30 summarises Kolmogorov–Smirnov distances obtained under three IT estimators: ST

(λ1 = 1), näıve IT (λi = Wi/W ) and the optimally–combined IT estimator (ĥλ∗). Observe

K–S distance
Method ESS(wλ) mean var
ST 2535 0.0938 8.5 × 10−4

näıve IT 17779 0.0849 1.4 × 10−4

ĥλ∗ 22913 0.0836 5.2 × 10−5

∑

i ESS(wi) 22910

Table 2: Summary of K–S distances to the true mixture of normals (164) for ST (λ1 = 1),
näıve IT (λi = Wi/W ), the optimally–combined IT estimator (ĥλ∗). We used 100 repeated
samples of size 105, with tempered RWM proposals.

that the optimally–combined IT estimator has both the largest ESS and the smallest variance

of the three estimators, and that ESS(wλ∗

) >
∑

i ESS(wi). Näıve IT improves upon ST in

this example, but has higher variance than ĥλ∗.

3.2 Bayesian treed Gaussian process models

Bayesian treed models extend classification and regression tree (CART) models (?), by

putting a prior on the tree structure. We focus on the implementation of ? who fit Gaussian

Process (GP) models at the leaves of the tree, specify the tree prior through a process that

limits its depth, and then define the tree operations grow, prune, change, and swap, to allow

inference to proceed by RJMCMC. The RJMCMC chain usually identifies the correct maxi-

mum a posteriori (MAP) tree, but consistently and significantly over estimates the posterior

probability of deep trees.

To guard against the transdimensional chain getting stuck in local modes of the posterior,

? resorted regularly restarting the chain from the null tree. ST provides an alternative by

increasing the rate of accepted tree operations in higher temperatures. In particular, we find

that ST can increase the rate of accepted prune operations by an order of magnitude, thus

enabling the chain to escape the local modes of deep trees. To demonstrate IT we fit a treed
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GP model with ST using a geometric ladder with m = 40 and km = 0.1 to two datasets first

explored by ?: the 1-d motorcycle accident data and 2-d exponential data. We refer to that

paper for details about the data and models.

For the motorcycle accident data the ST chain was run for T = 1.5×105 iterations, where

a total of T1 = 3732 (≈ T/m = 3750) samples were obtained from the cold distribution. That

ESS(wλ∗

) = 9338 ≈ 2.5T1 shows the considerable improvement of IT over ST. Moreover,

we have ESS(wλ∗

) >
∑

i ESS(wi) = 9334. The näıve combination λi = Wi

W
in (156) yields

ESS(wλ) = 285 < 1
10

T1, undermining the very motivation of IT. For the exponential data the

ST chain was run for a total of T = 5×105 iterations. A total of T1 = 12436 (≈ T/m = 12500)

samples were obtained from the cold distribution. We found that ESS(wλ∗

) = 21778 ≈

1.75T1, illustrating how IT improves on ST. Moreover, we have ESS(wλ∗

) >
∑

i ESS(wi) =

21776. The näıve combination λi = Wi

W
in (156) yields ESS(wλ∗

) = 654 ≈ 1
18

T1—worse than

ST.

3.3 Mark-Recapture-Recovery Data

We now consider a Bayesian model selection problem with data relating to the mark-

recapture and recovery of shags on the Isle of May (?). The three demographic parameters

of interest are: survival rates, recapture rates and recovery rates. The models considered for

each of the demographic parameters allowed a possible age– and/or time–dependence, where

the time dependence was conditional on the age structure of the parameters. Typically,

movement between the different possible models—by adding/removing time dependence for

a given age group, or updating the age structure of the parameters—is slow, with small

acceptance probabilities. For further details of the data, model structure, and RJMCMC

algorithm see ?.

Using the same ST setup as above, we ran T = 107 iterations and discarded the first 10%

as burn-in. As with the treed examples, higher temperatures yielded higher acceptance rates
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and an order of magnitude better exploration of model space compared to (untempered)

RJMCMC. A total of T1 = 248158 (≈ T/m = 225000) realisations were obtained from the

cold distribution. By comparison, for optimal IT we have ESS(wλ∗

) = 612026 ≈ 2.5T1 and

ESS(wλ∗

) >
∑

i ESS(wi) = 612020. The corresponding näıve IT approach (using λi = Wi

W
)

performed exceptionally poorly, with ESS(wλ) of only 5.43, due to a few large weights

obtained at hot temperatures.

4 Discussion

This paper has addressed the inefficiencies and wastefulness of simulated tempering (ST),

and related algorithms that are designed to improve mixing in the Markov chain using tem-

pered distributions. We argued that importance sampling (IS) from tempered distributions

can produce estimators that are more efficient than ones based on independent sampling,

provided that the temperature is chosen carefully. This motivated augmenting the ST algo-

rithm by calculating importance weights to salvage discarded samples—a technique which

we have called importance tempering (IT). This idea has been suggested before, but to our

knowledge little exploration has been carried out for real, complex, applications. We have

derived optimal combination weights for the resulting collection of IS estimators, which can

be calculated even when the normalisation constants of the tempered distributions are un-

known. The weights are essentially proportional to the effective sample size (ESS) of the

individual estimators, and we found that the resulting combined ESS in this case would be

approximately equal to their sum.

We note that the overall success of the optimal IT estimator depends crucially on a

successful implementation of ST, i.e., having a good temperature ladder and pseudo–prior.

However, it is also important to recognise that the optimal combination, as a resource–

efficient post-processing step, is equally applicable in other contexts, i.e., within MC3, or
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even outside of the domain of tempered MCMC to combine any collection IS estimators.

Sequential Monte Carlo samplers (?) may facilitate a natural extension. We have illustrated

IT on several examples which benefit from the improved mixing ST provides. For example,

the optimal IT methodology can increase the resulting ESS compared to retaining samples

only from the cold distribution by roughly a factor of two.

Since IT involves sampling from a Markov chain, ideally one would take into account

the serial correlation in the objective criteria for combining the individual estimators. The

effective sample size due to autocorrelation is defined (?) by

ESSρ(θ) =
T

1 + 2
∑T−1

`=1 ρ̂(`, θ)
, (11)

where ρ̂(`, θ) is the sample autocorrelation in θ at lag `; thus for scalar θ we have that

ρ̂(`, θ) = γ̂(`, θ)/γ̂(0, θ), where γ̂(`, θ) = (T − `)−1
∑T−`

t=1 (θ(t) − θ̄)(θ(t+`) − θ̄), and θ̄ =

T−1
∑T

t=1 θ(t). The results from the previous section suggest that, when the temperature

ladder is fixed, a sensible heuristic might be to consider combining the individual estima-

tors with weights λ∗
i proportional to product of T−1

i ESSρ(θi) and ESS(wi), say. However,

when considering modifications to the number (m) and spacing of inverse temperatures

k = {k1, . . . , km}, there is clearly a conflict of interest between the two measures of effective

sample size. Adding more inverse temperatures near one may increase ESS(wλ∗

), but may

also increase autocorrelation in the marginal chain for k. Therefore it may be sensible to

factor ESSρ(k) into the objective as well. Searching for temperature ladders that maximise

a hybrid of ESS and ESSρ would represent a natural extension of this work.
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