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Summary. Suppose that X has a k -variate spherically symmetric distribution with mean vector
θ and identity covariance matrix. We present two spherical confidence sets for θ, both centred
at a positive part Stein estimator T C

S .X/. In the first, we obtain the radius by approximating
the upper α-point of the sampling distribution of kT C

S .X/�θk2 by the first two non-zero terms of
its Taylor series about the origin. We can analyse some of the properties of this confidence set
and see that it performs well in terms of coverage probability, volume and conditional behav-
iour. In the second method, we find the radius by using a parametric bootstrap procedure. Here,
even greater improvement in terms of volume over the usual confidence set is possible, at the
expense of having a less explicit radius function.A real data example is provided, and extensions
to the unknown covariance matrix and elliptically symmetric cases are discussed.

Keywords: Conditional properties; Confidence sets; Coverage probability; Location
parameter; Multivariate normal distribution; Parametric bootstrap; Spherically symmetric
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1. Introduction

Let X have a k-dimensional spherically symmetric distribution about θ, with density f.‖x−θ‖2/.
The usual .1−α/-level confidence set for θ is

C0.X/={θ ∈Rk :‖X−θ‖2 � c2},

where c2 satisfies ∫
Rk

f.‖x‖2/ 1{‖x‖2�c2} dx=1−α:

This paper is concerned with the construction of confidence sets for θ which improve—in a sense
which is made clear later—on C0.X/ when k �3. Specifically, we consider sets of the form

{θ ∈Rk :‖T +
S .X/−θ‖2 �v2.‖X‖/},

where

T +
S .X/=

(
1− a

‖X‖2

)
+

X

is a positive part Stein estimator, h+ = max.h, 0/ and a > 0. This version of the positive part
Stein estimator shrinks the observations towards the origin, with greater shrinkage as a increases.
We investigate two methods of construction of the radius function v.·/, both involving direct
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approximation of the upper α-point of the sampling distribution of ‖T +
S .X/− θ‖2. The first is

an analytic procedure, giving an explicit expression for v.·/ which is never larger than c and
which can be considerably smaller. Despite this, subject to minor conditions on the underlying
density, we can show that the resulting confidence set dominates C0.X/ in terms of coverage
probability, provided that ‖θ‖ is either less than a given bound, or sufficiently large. The result
for large ‖θ‖ is an immediate corollary of theorem 5.1 of Hwang and Chen (1986), whereas
our theorem 2 finds the optimal range of values of ‖θ‖ such that the θ-section corresponding
to the analytic confidence set (which is defined immediately before lemma 1) contains the
corresponding θ-section of C0.X/. This technique of proof cannot therefore be extended to
cover intermediate values of ‖θ‖. Simulations suggest that dominance may be attained for all
values of ‖θ‖, at least for moderate or large k. An alternative to the analytic procedure is to
apply the parametric bootstrap. Here, an even greater improvement in volume over the original
confidence set is possible, without the coverage probability dropping below the nominal level,
but at the expense of a less explicit radius function.

Structurally, the confidence sets are of the same form as those of Casella and Hwang (1983),
who considered only the multivariate normal case and who obtained their radius by modify-
ing the solution to an empirical Bayes problem. However, the sets that are constructed in this
paper, as well as having a more natural motivation, compare favourably in the region of the
parameter space which is of most interest when applying the positive part Stein estimator (see
the discussion in the final paragraph of Section 5).

Interest in the problem of point estimation of θ when X has a multivariate normal distribution
was sparked by the celebrated discovery of Stein (1956), who proved the existence of estimators
which strictly dominate X with respect to the squared error loss function when k �3. Brandwein
and Strawderman (1978) and Brandwein (1979) extended these results to cover spherically sym-
metric distributions. It is now known that the Stein phenomenon applies to a very wide class
of distributions and loss functions—see, for example, Brandwein and Strawderman (1990) or
Evans and Stark (1996). By contrast, progress on the confidence set problem has been much
slower, to the extent that results for confidence sets which strictly dominate the obvious con-
fidence set in terms of volume are still restricted to the multivariate normal distribution. As
several researchers testify, this is not to do with the lesser importance of the confidence set
problem, but rather because of its technical difficulty.

As an application of our techniques, consider for n�k the linear model

X
n×1

= A
n×k

θ
k×1

+ σ "
n×1

, .1:1/

where the design matrix A is assumed to be of full rank k, and where the error vector " has
a density which is spherically symmetric about the origin. Of course, this model includes the
standard linear model with normally distributed errors as an important special case. Zellner
(1976) cited several references in which the linear model with spherically symmetric errors as a
model for practical situations was considered and proposed other scenarios himself. Properties
of the usual least squares estimator, θ̂ = .ATA/−1ATX, in model (1.1), have been studied by
Thomas (1970), Zellner (1976) and Box (1953), among others.

Hwang and Chen (1986) showed how the problem of finding a confidence set for θ in model
(1.1) can be reduced to the simpler form that is studied here, provided that the error variance σ2

is known. The need to assume knowledge of σ2 may be regarded as a weakness of our method.
Indeed, the analytic theory is greatly complicated by replacing σ2 with an estimate from the
data, though it is straightforward to extend the parametric bootstrap procedure to this situ-
ation; some simulations and discussion are presented in Section 4.1. However, the known σ2

model is a common assumption in nonparametric function estimation problems (Brown and
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Low, 1996; Brown et al., 1997), for instance when wavelet methods are used in nonparametric
regression problems with Gaussian noise. There the vector of wavelet coefficients has a mul-
tivariate normal distribution, and σ2 can typically be estimated accurately from the wavelet
coefficients at fine scales (which are discarded in the signal reconstruction) and is therefore
treated as known. Donoho and Johnstone (1994) and Donoho et al. (1995) have given further
details. We give a different application to some baseball data in Section 6, in which we may take
σ2 =1 after a variance stabilizing transformation of binomial data.

A loss function is rarely stated explicitly in the confidence set problem, though Casella and
Hwang (1983) and Beran (1995) are exceptions in this regard. Instead, different confidence pro-
cedures tend to be compared according to four criteria: shape, coverage probability, volume
and conditional properties. It is the need to ensure good performance in all of these respects
that makes the problem so demanding.

It is difficult to make concrete statements regarding the shape of a reasonable confidence set.
At first sight, it is difficult to look beyond a sphere when dealing with a spherically symmetric
distribution. However, Berger (1980) has given a heuristic argument suggesting that this choice
may not be so clear cut. In fact, Faith (1976), Shinozaki (1989) and Tseng and Brown (1997)
have all also proposed non-spherical confidence regions. There is a consensus that an acceptable
confidence set should be at least connected, though this still seems to be quite a weak require-
ment. We suspect that most practitioners would be reluctant to use a confidence set unless its
geometry were fairly well understood.

Fortunately, coverage probability and volume can be treated in a more satisfactory way, and
they are of course intimately linked. According to Joshi (1969), a confidence set C.X/ strictly
dominates C0.X/ if

(a) Pθ{C.X/�θ}�Pθ{C0.X/�θ}, for all θ ∈Rk, and
(b) Vol{C.x/}�Vol{C0.x/}, for all x∈Rk,

with strict inequality either in

(i) for some θ or in
(ii) for all x in some set with positive Lebesgue measure.

Joshi also pointed out that two confidence sets should be considered equivalent if their sym-
metric difference has zero volume. Of course, the practitioner is more interested in a reduction
in volume, provided that the coverage probability does not drop below the nominal level, than
in increased coverage probability at a fixed volume.

Appreciation of the importance of the conditional properties of confidence sets began with
Fisher (1956, 1959). Rules for satisfactory conditional performance were formalized by Buehler
(1959) and Robinson (1979a,b) in terms of a betting game between two players. Casella and
Hwang (1986) were the first to consider the conditional properties of confidence sets for the
mean of a multivariate normal distribution. Robinson (1979b), Lu and Berger (1989), Robert
and Casella (1994) and Wang (2000) all took a complementary approach and discussed how to
improve the reported confidence statements for the usual confidence set C0.X/.

Tseng and Brown (1997) have given an excellent review of the earlier literature on the mul-
tivariate normal confidence set problem, which, in addition to those references already given,
includes Stein (1962, 1981) and Hwang and Casella (1982, 1984). Tseng and Brown themselves
proposed somewhat egg-shaped sets which have exact coverage probability and they also found
sufficient conditions under which their sets uniformly dominate C0.X/ in terms of volume.
Unfortunately, as they themselves admitted, these sufficient conditions do not appear to be
entirely satisfactory, and it seems difficult to choose an optimal set from within the class that
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they studied. In addition, the shape of the sets can be quite complicated, although certain results
concerning the geometry are obtained.

Previous work on the spherically symmetric case, such as Ki and Tsui (1985), Hwang and
Chen (1986) and Robert and Casella (1990), has focused on proving that confidence sets of the
same radius as C0.X/ have higher coverage probability when recentred at a positive part Stein
estimator. In this paper, we recognize that, once a spherical confidence set centred at the positive
part Stein estimator has been decided on, the ideal, exact, .1−α/-level confidence set would be

{θ ∈Rk :‖T +
S .X/−θ‖2 �wα.θ/},

where wα.θ/ is the upper α-point of the sampling distribution of ‖T +
S .X/−θ‖2. Of course, this

is not a feasible confidence set as the radius depends on the unknown θ. The approach that is
taken in Section 2 is a direct analytic estimation of wα.θ/. Specifically, we compute the first two
non-zero terms in the Taylor series of wα.θ/ about the origin, allowing us to write

wα.θ/=wα.0/+ 1
2 w′′

α.0/‖θ‖2 +o.‖θ‖2/

as ‖θ‖→0. Ignoring the o.‖θ‖2/ term, we estimate ‖θ‖2 by ‖X‖2 and obtain the confidence set

C.X/={θ ∈Rk :‖T +
S .X/−θ‖2 �min{wα.0/+ 1

2 w′′
α.0/‖X‖2, c2}}:

We are motivated by the knowledge that T +
S .X/ performs best as an estimator of θ when ‖θ‖

is small, which suggests that this is the region of the parameter space where we would expect a
spherical confidence set centred at the positive part Stein estimator with radius v.‖X‖/ = c to
show the greatest improvement, in terms of coverage probability, over C0.X/. Simulations in
Hwang and Casella (1982) support this intuition. More importantly, this suggests that it is for
small values of ‖X‖ that we can hope to see the greatest reduction in volume while maintaining
at least the same coverage probability as C0.X/. The radius function v.r/ that we propose attains
the value c − a=c at r = 0, which is rather smaller than the suggestion in Casella and Hwang
(1983).

In Section 3, we make use of the simple analytic form of the radius function to prove some
results about the properties of the confidence set. A particularly interesting feature of the work
from a theoretical point of view is that the radius of the analytic confidence set depends on
the density f only through c2, and a quantity f ′.c2/=f.c2/, called the relative increasing rate
(RIR) of f at c2. Both Hwang and Chen (1986) and Robert and Casella (1990) have noted
the importance of this quantity in establishing dominance of their recentred sets over C0.X/.
Simulations of the coverage probabilities are provided for three spherically symmetric densities:
the k-variate normal, the multivariate t- and the double-exponential densities. These distribu-
tions were studied in Hwang and Chen (1986). The multivariate t-distribution with N degrees
of freedom has density

f.‖x‖2/∝
(

1+ ‖x‖2

N

)−.N+k/=2

:

Relative to the normal model, it gives more flexibility to the practitioner, through the choice of
the number of degrees of freedom, but is a close approximation to normality when the number
of degrees of freedom is large (see Zellner (1976)). The double-exponential distribution with
parameter d has density

f.‖x‖2/∝ exp.−d‖x‖/,

and the parameter choice d = .k +1/1=2 ensures that each component of X has unit variance.
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As was suggested by the work in Samworth (2003a), another appealing approach to the
problem for the modern statistician involves a parametric bootstrap procedure. In the re-
lated problem where we have independent random vectors X1, . . . , Xn, each having the same
spherically symmetric distribution as X, we encounter an inconsistency problem like the one
described in Samworth (2003a). Nevertheless, as Samworth (2003a) discussed, inconsistency
does not preclude the bootstrap from performing successfully at finite sample sizes. We inves-
tigate the parametric bootstrap confidence set in Section 4, and Section 5 consists of some
comments and generalizations. Section 6 is devoted to the baseball data example, and the
proofs of proposition 1 and theorem 2 are given in Appendix A. For all other proofs, which
mainly involve some fairly detailed computations, the interested reader is referred to Samworth
(2003b).

2. Constructing the analytic confidence set

We say that X has a k-variate spherically symmetric distribution about θ if X− θ has the same
distribution as P.X−θ/ for all k × k orthogonal matrices P . We assume that k �3 and that the
distribution Pθ of X has a density with respect to Lebesgue measure on Rk, whose value at a
point x∈Rk is denoted by f.‖x− θ‖2/. We begin with a useful result concerning all estimators
of θ of the form γ.‖X‖/X, where γ : [0, ∞/→R is a measurable function.

Proposition 1. For α∈ .0, 1/, the upper α-point of the sampling distribution of ‖γ.‖X‖/X−θ‖2

depends on θ only through ‖θ‖.

The positive part Stein estimator

T +
S .X/=

(
1− a

‖X‖2

)
+

X .2:1/

is of the form γ.‖X‖/X, and we let wα.‖θ‖/ denote the upper α-point of the sampling distribution
of ‖T +

S .X/−θ‖2. The theorem below is the main theorem of this section.

Theorem 1. Suppose that wα.0/ > 0, and that the spherically symmetric density f is twice
continuously differentiable. Then

wα.‖θ‖/=wα.0/+ 1
2 w′′

α.0/‖θ‖2 +o.‖θ‖2/

as ‖θ‖→0, where wα.0/= .c−a=c/2 and

1
2

w′′
α.0/= 1

k

(
1− a

c2

){
a.k −1/

c2 +a
− 2ac2

.c2 +a/2 − 2a2

c2 +a

f ′.c2/

f.c2/

}
+ a.k −1/

c2k
:

The condition that wα.0/>0 is equivalent to requiring that α<P0.‖X‖2 >a/, which in turn is
equivalent to c2 >a; this will rarely be restrictive in practice. For instance, when f is the standard
k-variate normal density, James and Stein (1961) showed that the ordinary Stein estimator

TS.X/=
(

1− a

‖X‖2

)
X

strictly dominates X in the point estimation problem with squared error loss for a∈ .0, 2.k −2//,
and that a=k −2 is the optimal choice. In this case, the confidence set

{θ ∈Rk :‖X−θ‖2 �k −2}
has only about 50% coverage probability.
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(a) (b)

(d)(c)

Fig. 1. Coverage probabilities of the confidence set (2.2) for the k-variate normal distribution, and the ratio
of each radius to the corresponding radius of C0.X/ ( , k D 3; – – –, k D 5; - - - - - - -, k D 10; - � - � - �,
k D20 (a Dk �2)): (a), (b) αD0:05; (c), (d) αD0:1

Having computed wα.0/ and w′′
α.0/, we estimate ‖θ‖2 by ‖X‖2 and therefore construct the

confidence set

C.X/={θ ∈Rk :‖T +
S .X/−θ‖2 �min{wα.0/+ 1

2 w′′
α.0/‖X‖2, c2}}: .2:2/

As noted in Section 1, an interesting feature of this confidence set is that it depends on the
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(a) (b)

(d)(c)

Fig. 2. Coverage probabilities of the confidence set (2.2) for the multivariate t-distribution with N D 10
degrees of freedom, and the ratio of each radius to the corresponding radius of C0.X/ ( , k D3; – – –,
k D5; - - - - - - -, k D10; - � - � - �, k D20 (a Dk �2)): (a), (b) αD0:05; (c), (d) αD0:1

density f only through c2 and the RIR of f at c2. Typically, c2 will be sufficiently large to
ensure that the RIR at c2 is negative, with very negative values indicating that the distribution
has light tails. For the three distributions that were mentioned in Section 1, namely the standard
multivariate normal, the multivariate t- with N degrees of freedom and the double-exponential
distribution with parameter d, the RIRs at c2 are
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(a) (b)

(d)(c)

Fig. 3. Coverage probabilities of the double-exponential confidence set (2.2), and the ratio of each
radius to the corresponding radius of C0.X/ ( , k D 3; – – –, k D 5; - - - - - - -, k D 10; - � - � - �, k D 20
(a Dk �2; d D .k C1/1=2)): (a), (b) αD0:05; (c), (d) αD0:1

−1
2

, − N +k

2.N + c2/
and − d

2c

respectively.
Since C0.X/ is minimax (Stein, 1962), a necessary condition for the confidence set C.X/ in

equation (2.2) to dominate C0.X/ in coverage probability is that w′′
α.0/>0. Perhaps surprisingly

in view of the results of Hwang and Chen (1986) and Robert and Casella (1990), this condition
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corresponds to the RIR at c2 being less than some positive bound depending on a, c2 and k.
One of the themes of these previous works is that a confidence set of the same radius as C0.X/

has uniformly higher coverage probability when recentred at a positive part Stein estimator,
provided that the RIR at c2 is greater than some negative bound. As mentioned in the previous
paragraph, however, this positive bound will almost certainly be unrestrictive in practice.

The choice of a is more delicate in the spherically symmetric case than the multivariate nor-
mal; see Samworth (2003b) for a discussion. However, for simplicity and to ease comparison
between different distributions, we take a = k − 2 throughout in our numerical studies of the
confidence set (2.2), presented in Figs 1, 2 and 3. In each figure, 400000 Monte Carlo repetitions
were used to approximate the coverage probability at each value of θ, giving a simulation error
standard deviation of about 0.0005 at each point.

It appears that the confidence set (2.2) dominates C0.X/ in terms of coverage probability for
all of the distributions that are considered, apart from possibly in a narrow middle range of
values of ‖θ‖ for small values of k. These exceptions are similar to those which are found in
Casella and Hwang (1983) and the problems are sufficiently small that they can be ignored in
most practical contexts. In view of the point estimation results of Brandwein and Strawderman
(1978), the choice of a is almost certainly too large for these small values of k, although we do
not pursue this matter further here.

However, for all values of k, the radii show a great improvement over those of C0.X/, especially
for small ‖X‖, as we would expect from their construction. In fact, in the k-variate normal case,
the radii tend to be considerably smaller than those of Casella and Hwang (1983), with which
they are directly comparable, for small values of ‖X‖, at the expense of being slightly larger for
larger values of ‖X‖ (Table 1). The ratio of the radii of confidence set (2.2) and C0.X/ in the
best case, i.e. when ‖X‖=0, is 1−a=c2. Thus, for fixed a, the maximum improvement in volume
is greater for distributions with lighter tails. Table 2 gives estimates of the probability that the
radius of the confidence set (2.2) is less than c, which, of course, is a decreasing function of ‖θ‖.

Table 1. Ratio of the radii of the confidence set (2.2) to the corresponding radii
of Casella and Hwang (1983) in the k-variate normal case and with αD0:05

k Ratios of the radii for the following values of ‖X‖:

0 1 2 3 4 5 6 8 10 20

5 0.64 0.68 0.79 0.98 1.13 1.07 1.05 1.03 1.02 1.00
10 0.43 0.48 0.62 0.85 1.18 1.21 1.13 1.07 1.04 1.01

Table 2. Estimates of the probability that the radius of the
confidence set (2.2) is less than c in the k -variate normal
case and with αD0:05

k Probability estimates for the following values of ‖θ‖:

0 1 2 3 4 5 6

5 0.99 0.97 0.87 0.58 0.24 0.05 0.01
10 0.97 0.95 0.83 0.58 0.26 0.06 0.01
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3. Properties of the analytic confidence set

We have already seen that the RIR of f at c2 must be negative for the confidence sets C.X/ in
equation (2.2) to have adequate coverage probability. In this section we shall see that the sets
have several desirable properties provided also that the RIR at c2 is not too negative. These
results are more in line with the works of Hwang and Chen (1986) and Robert and Casella
(1990), where dominance occurs provided that the tails of the distribution are sufficiently heavy.
Throughout this section, we assume that k �3, and that f is twice continuously differentiable.
We start with some elementary bounds, which give simple yet general conditions under which
proposition 2 and lemma 2 hold.

Lemma 1.

(a) Let a∈ .0, k −1] and α∈ .0, P0.‖X‖2 >a//, and suppose that f ′.c2/=f.c2/�−1
2 . Then

1
2

w′′
α.0/� k −1

k
:

(b) Let a> 0 and α∈ .0, P0.‖X‖2 >a//, and suppose that f ′.c2/=f.c2/�0. Then

1
2

w′′
α.0/� a.k −1/

c2k
:

The next three results concern the θ-section that is associated with the confidence set (2.2),
given by

C.θ/={x∈Rk :‖T +
S .x/−θ‖2 �min{wα.0/+ 1

2 w′′
α.0/‖x‖2, c2}}:

The first is an extension of theorem A1 of Casella and Hwang (1983).

Proposition 2. Let a > 0, and suppose that 0 < w′′
α.0/=2 < 1. Then C.θ/ is connected, for all

θ ∈Rk.

In fact, C.θ/ can have a stronger property when ‖θ‖ lies in a range which is of particular
importance to us (Section 5).

Lemma 2. Let a> 0, and suppose that 0 < w′′
α.0/=2 < 1. For ‖θ‖� c−a=c, if x∈C.θ/, then so

is tx, for all t ∈ [0, 1].

To present the main theorem of this section, we let

C0.θ/={x∈Rk :‖x−θ‖2 � c2}
denote the θ-section corresponding to the usual confidence set C0.X/.

Theorem 2. Let a∈ .0, k−1], α∈ .0, P0.‖X‖2 >a// and also suppose that −1
2 �f ′.c2/=f.c2/�0.

If

‖θ‖2 �min
[

wα.0/,
c2 −a

2w′′
α.0/c4 {2w′′

α.0/c4 − .c2 −a/a}
]
,

then C0.θ/⊆C.θ/.

The upper bound on the range of values of ‖θ‖ for which the conclusion of theorem 2 holds
is the best possible, and theorem 2 is clearly non-vacuous since it holds for ‖θ‖=0. In fact, the
upper bound corresponds to a point just before the sharp drop in coverage probability that is
seen in Figs 1–3. For instance, when k = 5, α= 0:05 and f is the k-variate normal density, we
have C0.θ/⊆C.θ/ for ‖θ‖�2:7.
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An obvious corollary of theorem 2 is that C.X/ dominates C0.X/ in terms of coverage prob-
ability for the particular range of values of ‖θ‖ above. Since the confidence set C.X/ will have
constant radius c for large ‖X‖ (provided that c2 >a), it follows immediately from theorem 5.1
of Hwang and Chen (1986) that we have strict dominance in coverage probability of C.X/ over
C0.X/ for sufficiently large ‖θ‖, under their mild conditions on f and provided that

0 <a<
.k −2/f.c2/

f ′.c2/
:

Further, for large ‖θ‖, the greatest coverage probability is attained with

a= .k −2/f.c2/

2f ′.c2/
:

Theorem 2 also has implications for the conditional properties of C.X/, which we now describe.
When making an assertion of the form

Pθ{C.X/�θ}=1−α,

the statistician is averaging (integrating) over the sample space. However, the confidence set
must be specified on the basis of observing X=x, say. The statistician should, therefore, ques-
tion whether the probability assertion is still valid in the light of the data. For instance, such
considerations provide a strong criticism of confidence sets that are centred at the ordinary, as
opposed to positive part, Stein estimator. For, if ‖x‖ were very small, the confidence set would
presumably be well away from the origin, and the statistician would be unable to justify the
probability statement in the light of the data, whatever the true value of θ. Put another way,
a hypothetical opponent of the statistician could specify a very small sphere A centred at the
origin, staking an amount α to win 1−α that C.x/ does not contain θ if x∈A, and not making
a bet otherwise. Under infinitely many hypothetical repetitions of the experiment with a referee
who knows the true value of θ, the opponent would win almost surely.

More formally, Buehler (1959) and Robinson (1979a) introduced various criteria for judging
the conditional performance of a confidence set. In our situation, if A is a subset of Rk of positive
Lebesgue measure, Robinson called A a negatively biased relevant subset for C.X/ if there is an
"> 0 such that

Pθ{C.X/�θ|X∈A}�1−α− "

for all θ∈Rk and advocated that we should not use a confidence set if there is a negatively biased
relevant subset.

Another simple corollary of theorem 2 is that, for any subset A of Rk of positive Lebesgue
measure, we have

Pθ{C.X/�θ|X∈A}�Pθ{C0.X/�θ|X∈A} .3:1/

for ‖θ‖ in the given range. Casella and Hwang (1986) showed that, for any u > 0, there is a
δ = δ.u/> 0 such that

Pθ{C0.X/�θ|‖X‖2 �u}> 1−α

for all ‖θ‖2 < δ, and a very similar argument shows that, for any ξ ∈ Rk and u > 0, there is a
δ = δ.u/> 0 such that

Pθ{C0.X/�θ|‖X− ξ‖2 �u}> 1−α .3:2/
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for all ‖θ − ξ‖2 < δ. Combining inequalities (3.1) and (3.2), we see that there are no negatively
biased relevant spheres centred at ξ for C.X/, provided that

‖ξ‖2 < min
[

wα.0/,
c2 −a

2w′′
α.0/c4 {2w′′

α.0/c4 − .c2 −a/a}
]
:

4. The bootstrap confidence set

Here we investigate another way of approximating the ideal confidence set

{θ ∈Rk :‖T +
S .X/−θ‖2 �wα.‖θ‖/}: .4:1/

In a parametric bootstrap procedure, we estimate θ by θ̂, say, and approximate expression (4.1)
by

{θ ∈Rk :‖T +
S .X/−θ‖2 �wÅ

α.‖θ̂‖/}, .4:2/

where wÅ
α.‖θ̂‖/ = inf [x ∈ R : PÅ{‖T +

S .XÅ/ − θ̂‖2 � x}� 1 −α]. Here, the conditional density of
XÅ given X is f.x− θ̂/, and PÅ denotes the probability under this conditional distribution. In
practice, wÅ

α.‖θ̂‖/ is still unavailable explicitly, but we can approximate it to any required degree
of accuracy (in probability) by Monte Carlo simulation. An algorithm which first approximates
the radius of the bootstrap confidence set at a fixed number of equally spaced points, and then
uses linear interpolation to find the radius for the observed value of ‖X‖, greatly improves the
computational efficiency.

It is possible to generate random vectors from many spherically symmetric distributions as

X=RU +θ,

where R has the same density as ‖X‖, and U is independent of R and has a uniform distribution
on the unit sphere S ={x∈Rk :‖x‖=1}. It follows that R has density proportional to rk−1 f.r2/

(Fang et al. (1989), page 35), whereas U has the same distribution as Y=‖Y‖, where Y ∼Nk.0, I/.
For the double-exponential distribution with parameter d, we have R ∼Γ.k, d/. We can simu-
late random vectors from a multivariate t-distribution with N degrees of freedom as follows:
generate Z ∼n=χ2

n, and, conditional on Z, generate X∼Nk.0, ZI/ (Zellner, 1976).
The results of simulating the coverage probabilities of the bootstrap confidence sets for the

multivariate normal distribution and using ‖θ̂‖=‖X‖ are given in Fig. 4. The corresponding
simulations for the multivariate t- and double-exponential distributions are similar but have a
slightly less severe undercoverage problem for small k and moderate ‖θ‖; see Samworth (2003b).

The coverage probabilities and radii exhibit many of the same features as those of the analytic
confidence set (2.2) for small ‖θ‖ and ‖X‖ respectively. However, we find that it is possible to
achieve an even smaller radius for larger ‖X‖ by bootstrapping, while retaining coverage proba-
bility at the nominal level. Of course, it is much more difficult to prove any results concerning the
properties of the bootstrap confidence set, such as those presented in Section 3 for the analytic
confidence set, as the radius is given in a less explicit form. Nevertheless, Beran (1995) has stud-
ied the large k asymptotics of similar bootstrap confidence sets centred at the positive part Stein
estimator in the multivariate normal case, using a different approach involving a geometrical
risk criterion as well as coverage probability. Beran obtained the radii for his confidence sets in
a different way, however, and his simulation results suggest greater undercoverage problems,
which persist for larger values of k.
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(a) (b)

(d)(c)

Fig. 4. Coverage probabilities of the bootstrap confidence set (4.2) for the k-variate normal distribution, and
the ratio of each radius to the corresponding radius of C0.X/ ( , k D 3; – – –, k D 5; - - - - - - -, k D 10;
- � - � - �, k D20 (a Dk �2)): (a), (b) αD0:05; (c), (d) αD0:1

4.1. The unknown scale factor case
Recall the linear model (1.1) that was introduced in Section 1:

X
n×1

= A
n×k

θ
k×1

+ σ "
n×1

:

In this section, we consider the problem where σ2 is unknown but can be estimated from the
data. The canonical model is where Z = .XT, YT/T has a .k + ν/-dimensional spherically sym-
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metric density with location parameter θ′ = .θT, 0T/T and covariance matrix σ2Ik+ν . Here, Ik+ν

denotes the .k +ν/× .k +ν/ identity matrix, and, despite the increased dimension, we write the
density of Z as fσ2.‖z − θ′‖2/. The appropriate version of the positive part Stein estimator in
this set-up is

T +
S .X, Y/=

(
1− a‖Y‖2=ν

‖X‖2

)
+

X:

In the multivariate normal case,

‖Y‖2

ν
∼ σ2

ν
χ2

ν

and is independent of X; James and Stein (1961) showed that a=ν.k −2/=.ν +2/ is the optimal
choice with respect to quadratic loss for a point estimate of θ. As mentioned in Section 1, ana-
lytic theory for confidence sets is very difficult when σ2 is unknown (though we expect a good
approximation to the known σ2 case in the limit as ν →∞). Bootstrapping, however, remains
a viable possibility, and in Table 3 we present some coverage probabilities of the confidence set

{θ ∈Rk :‖T +
S .X, Y/−θ‖2 �wÅ

α.‖X‖, ‖Y‖/}, .4:3/

where

wÅ
α.‖X‖, ‖Y‖/= inf [x∈R : PÅ{‖T +

S .XÅ, YÅ/−X‖2 �x}�1−α]:

Here, the conditional density of .XÅ, YÅ/ given .X, Y/ is f‖Y‖2=ν.‖z−X′‖2/, where X′ =.XT, 0T/T,
and PÅ denotes the corresponding probability measure. The usual confidence set in this situation
is {

θ ∈Rk :‖X−θ‖2 � k

ν
‖Y‖2 Fα.k, ν/

}
, .4:4/

where Fα.k, ν/ is the upper α-point of an F -distribution with k and ν degrees of freedom. This
is an exact .1−α/-level confidence set, since it follows from theorem 11 of Kelker (1970) that

‖X−θ‖2=k

‖Y‖2=ν

has an F -distribution with k and ν degrees of freedom, regardless of the spherically symmetric
distribution. Table 4 gives the ratios of the radii of expression (4.3) to the corresponding radii
of expression (4.4). We find that it is possible to achieve similar gains in volume to those which

Table 3. Coverage probabilities of the confidence set (4.3) in the k-variate normal
case†

ν Coverage probabilities for the following values of ‖θ‖=σ:

0 1 2 3 4 8 12 16 20

100 0.996 0.996 0.994 0.974 0.944 0.938 0.936 0.937 0.937
1000 0.998 0.998 0.997 0.974 0.953 0.949 0.948 0.950 0.948
10000 0.999 0.998 0.997 0.975 0.953 0.950 0.950 0.950 0.950

†Parameter values: α=0:05; a=ν.k −2/=.ν +2/; k =10.
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Table 4. Ratio of the radii of the confidence set (4.3) to the corresponding radii of
confidence set (4.4) in the k-variate normal case†

‖Y‖2=νσ2 Ratios for the following values of ‖X‖:

0 1 2 3 4 6 10 20

0.6 0.57 0.61 0.69 0.82 0.87 0.93 0.96 0.97
0.8 0.57 0.60 0.67 0.77 0.85 0.91 0.95 0.97
1 0.57 0.60 0.66 0.72 0.83 0.90 0.94 0.97
1.2 0.57 0.59 0.65 0.70 0.80 0.88 0.94 0.97
1.4 0.57 0.59 0.63 0.69 0.77 0.87 0.94 0.96

†Parameter values: α=0:05; k =10; a=ν.k −2/=.ν +2/; ν =100.

were observed in Section 4 for the known covariance matrix case, but that undercoverage is
more a problem, and ν needs to be very large before it disappears entirely.

5. Comments and generalizations

We have seen that the confidence sets (2.2), (4.2) and (4.3) successfully harness the power of the
positive part Stein estimator to produce confidence sets which can be much smaller than the
usual set C0.X/, while still maintaining adequate coverage probability. Unfortunately, we could
not provide a proof that the confidence set (2.2) strictly dominates C0.X/ in terms of coverage
probability for sufficiently large k.

The assumption of a spherically symmetric density may be generalized as follows. If Y =
µ+BTX, where µ∈Rm, B is a k ×m matrix with BTB=Σ having rank k and X has a k-dimen-
sional spherically symmetric density f about the origin, we say that Y has an m-dimensional ellip-
tically symmetric distribution with parameters µ and Σ. If m= k, it follows from theorem 2.16
of Fang et al. (1989) that Σ−1=2Y has spherically symmetric density f about θ=Σ−1=2µ, so here
the problem reduces to the spherically symmetric case provided that Σ is known. In particular,
if Y ∼Nk.µ, σ2Σ/, where σ is an unknown scale factor and Σ is a k ×k known, positive definite
matrix, then the transformed vector X=Σ−1=2Y satisfies X∼Nk.θ, σ2Ik/, where θ=Σ−1=2µ. As
an application, consider a one-way analysis of variance with k cells and ni observations in cell i,
for i=1, . . . , k. If Y denotes the vector of cell means, then Σ is a diagonal matrix with diagonal
entries n−1

1 , . . . , n−1
k .

One extension which is especially important for our work is the choice of origin for the Stein
estimator. Both confidence set (2.2) and confidence set (4.2) only represent a significant improve-
ment over C0.X/ if θ is reasonably near the origin. If a prior estimate of θ, say θ0, is available,
then we should redefine the positive part Stein estimator as

T +
S,θ0

.X/=θ0 +
(

1− a

‖X−θ0‖2

)
+

.X−θ0/

and replace the radius function v2.‖X‖/ by v2.‖X− θ0‖/. The region of greatest improvement
is then near θ0, so our confidence sets will perform particularly well if the prior guess is nearly
correct.

6. Baseball data example

The data in Table 5 give the baseball batting averages (the number of hits divided by the num-
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Table 5. Number of times at bat ni ,
batting average Zi in 1990 and career
batting average pi , of 10 baseball play-
ers

Player ni Zi pi

Baines 415 0.284 0.289
Barfield 476 0.246 0.256
Bell 583 0.254 0.265
Biggio 555 0.276 0.287
Bonds 519 0.301 0.297
Bonilla 625 0.280 0.279
Boggs 619 0.302 0.328
Brett 544 0.329 0.305
Brooks, Jr 568 0.266 0.269
Browne 513 0.267 0.271

ber of times ‘at bat’) of k = 10 players, all of whom were active players in 1990. The source
was http://www.baseball-reference.com. For i = 1, . . . , k, let ni and Zi respectively
denote the number of times at bat and the batting average of the ith player during the 1990
season. Further, let pi denote the player’s true batting average, taken to be his career batting
average. (Each player had at least 3000 at bats in his career.) We consider the model where
Z1, . . . , Zk are independent, with

Zi ∼ 1
ni

Bin.ni, pi/:

Making the variance stabilizing transformation

Xi =√
ni sin−1.2Zi −1/,

and letting θi =n
1=2
i sin−1.2pi −1/, then we have, approximately,

X∼Nk.θ, I/,

with X = .X1, . . . , Xk/ and θ = .θ1, . . . , θk/. In fact, since mini.ni/ � 400, an exact calculation
gives that the variance of each Xi is between 1 and 1.005 for pi ∈ [0:2, 0:8]. For our prior guess
θ0 = .θ0,1, . . . , θ0,k/, we take

θ0,i =n
1=2
i sin−1.2p0 −1/, i=1, . . . , k,

with p0 =0:275. Letting p= .p1, . . . , pk/ and recalling that θ = θ.p/, we may write the analytic
confidence set for p as

{p∈ [0, 1]k :‖T +
S,θ0

.X/−θ‖2 �16:0}:

This compares with the bootstrap confidence set, which has 16.0 replaced with 12.8 above,
and the usual confidence set {p : ‖X − θ‖2 � 18:3}. Numerical integration using the algo-
rithm of Arthur Stroud, which is available at http://www.csit.fsu.edu/burkardt/
f-src/stroud/stroud.html, gives the analytic to usual and bootstrap to usual volume
ratios as 0.51 and 0.17 respectively.

In this example, we had ‖X−θ0‖2 =15:5, but almost half of the contribution to this squared
norm comes from the exceptionally good 1990 season of Brett. If his records are removed and



Small Confidence Sets 359

the process is repeated using the nine other players, the volume ratios above are reduced to 0.13
and 0.07 respectively, with ‖X−θ0‖2 =8:0.
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Appendix A

A.1. Proof of proposition 1
The upper α-point w satisfies ∫

Rk
f.‖x−θ‖2/ 1{‖γ.‖x‖/x−θ‖2�w} dx=1−α:

If P is a k ×k orthogonal matrix, then
∫

Rk
f.‖x−Pθ‖2/ 1{‖γ.‖x‖/x−Pθ‖2�w} dx=

∫
Rk

f.‖PTx−θ‖2/ 1{‖γ.‖x‖/PTx−θ‖2�w} dx,

from which the result follows, on substituting y =PTx.

A.2. Proof of theorem 2
In view of lemma 2, it suffices to show that the boundary @C0.θ/ of C0.θ/ lies inside C.θ/. Suppose that
x∈ @C0.θ/, let r =‖x‖ and, for r> 0 and ‖θ‖> 0, define cos.β/=xTθ=‖x‖‖θ‖. Then

r =‖θ‖ cos.β/+{c2 −‖θ‖2 sin2
.β/}1=2:

In their theorem 2.1, Hwang and Casella (1982) proved that C0.θ/ is contained in the set

{x∈Rk :‖T +
S .x/−θ‖2 � c2},

for ‖θ‖� c, and the result is trivial if either ‖θ‖=0 or r �a1=2. Therefore, for 0 <‖θ‖�wα.0/ and r>a1=2,
we let

f.β, ‖θ‖/=γ2.r/r2 −2‖θ‖ γ.r/r cos.β/+‖θ‖2 −wα.0/− 1
2

w′′
α.0/r2

=−a2

c2
+ a2

r2
+ 2a‖θ‖cos.β/

r
− 1

2
w′′

α.0/r2

=−a2

c2
+ a2

r2
+ a.r2 +‖θ‖2 − c2/

r2
− 1

2
w′′

α.0/r2,

where r =‖θ‖cos.β/ + {c2 −‖θ‖2 sin2
.β/}1=2, so it is enough to show that f.β, ‖θ‖/ � 0 for all β ∈ [0, π]

and ‖θ‖ in the given range.
Since @r=@β =−‖θ‖r sin.β/={c2 −‖θ‖2 sin2

.β/}1=2, we find that

@f

@β
= −2‖θ‖sin.β/

{c2 −‖θ‖2 sin2
.β/}1=2

{
a.c2 −‖θ‖2 −a/

r2
− 1

2
w′′

α.0/r2

}
,

from which we deduce that f has turning-points at β =0, π and possibly at βÅ, where

[‖θ‖cos.βÅ/+{c2 −‖θ‖2 sin2
.βÅ/}1=2]4 = 2a.c2 −‖θ‖2 −a/

w′′
α.0/

:
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Since r is a decreasing function of β ∈ [0, π], a solution to this last equation exists if and only if

.c−‖θ‖/4 � 2a.c2 −‖θ‖2 −a/

w′′
α.0/

� .c+‖θ‖/4:

Observe first that

f.π, ‖θ‖/=
(

c− a

c−‖θ‖
)2

−
(

c− a

c

)2
− 1

2
w′′

α.0/.c−‖θ‖/2 �0:

Next,

f.0, ‖θ‖/�−a2

c2
+ a2

.c+‖θ‖/2
+ 2a‖θ‖

c+‖θ‖ − a.k −1/

c2k
.c+‖θ‖/2

� 1
c2.c+‖θ‖/2

[
‖θ‖

{
2ac3 − 4a.k −1/c3

k

}
+‖θ‖2

{
2ac2 − 6ac2.k −1/

k

}]

�0:

Finally,

f.βÅ, ‖θ‖/= 1
r2

[
a
(

1− a

c2

){
2a.c2 −‖θ‖2 −a/

w′′
α.0/

}1=2

−2a.c2 −‖θ‖2 −a/

]

= a.c2 −‖θ‖2 −a/1=2

r2

[(
1− a

c2

){
2a

w′′
α.0/

}1=2

−2.c2 −‖θ‖2 −a/1=2

]
:

Thus we find f.βÅ, ‖θ‖/ is non-positive for

‖θ‖2 � c2 −a−
(

1− a

c2

)2 a

2 w′′
α.0/

= c2 −a

2 w′′
α.0/c4

{2 w′′
α.0/c4 − .c2 −a/a}:
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