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Abstract

We examine the statistical assumptions underlying different techniques of

estimating the age-at-death of a skeleton from one or more age indicators. The

preferred method depends on which property of the distribution of the data in

the reference sample is preserved in the skeleton to be aged. In cases where the

conditional distribution of age given indicator is preserved, we provide ‘look-up’

tables giving essentially unbiased age estimates and prediction intervals, using

a large reference sample and the auricular surface and pubic symphysis age

indicators. Where this assumption is violated, but the conditional distribution

of indicator given age is preserved, we find that an alternative model which

attempts to capture the biological process of development of an individual has

some attractive features, which may make it suitable for further study.

Key Words: Biological model; Conditional distribution; Linear regression; Look-

up table
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1 Introduction

The most appropriate method for estimating age-at-death from human skeletal re-

mains has been a source of vigorous debate among anthropologists over the last two

decades. See, for instance, Bouquet-Appel and Masset (1982, 1996); Konigsberg and

Frankenberg (1992, 1994); Lucy et al. (1996); Konigsberg et al. (1997); Aykroyd et al.

(1997, 1999); Hoppa and Vaupel (2002b). Several authors have suggested that regres-

sion techniques result in systematic under- or over-aging of skeletons (Konigsberg and

Frankenberg, 1994; Konigsberg et al., 1997; Aykroyd et al., 1997, 1999). Consequently,

a variety of other statistical methods have been explored with the aim of eliminating

this apparent bias (e.g. Konigsberg and Frankenberg (1992, 1994, 2002); Bouquet-

Appel and Masset (1996); Lucy et al. (1996); Konigsberg et al. (1997); Aykroyd et al.

(1997, 1999); Boldsen et al. (2002); Konigsberg and Herrman (2002)). This research

has culminated in the book ‘Paleodemography’, edited by Hoppa and Vaupel (2002b),

in which the authors conclude that aging of skeletal remains should utilise methods

based on an application of Bayes’ theorem in order to obtain age-at-death estimates.

In this article, we re-examine the statistical assumptions on which the different

proposed methods are based, and address some misconceptions which have arisen dur-

ing the course of the debate. We use a large sample of known-age skeletal material to

illustrate our discussion and to derive easy-to-use ‘look-up’ tables for estimating age-

at-death from the auricular surface and pubic symphysis, singly and in combination.

The known-age data were recorded from two skeletal collections: the 18th century

sample from Spitalfields, London and a sample of the early 20th century skeletons

from the Coimbra Identified Skeletal Collection (CISC), Portugal. The combina-

tion of two temporally and geographically diverse skeletal samples will go some way

towards encompassing the range of variation observed between different skeletal pop-

ulations (cf. Murray and Murray (1991); Hoppa (2000)). The auricular surfaces from

448 individuals and pubic symphyses from 376 individuals were scored according to
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the eight phase system of Lovejoy et al. (1985) and the six phase system of Brooks

and Suchey (1990) respectively. A single observer (the second author) recorded all

of the data in order to eliminate inter-observer error. Since, in the majority of cases,

the ages-at-death cited in the reference sample will have been rounded down to the

nearest whole number of years, we added 0.5 years to all of the ages.

2 Statistical assumptions in age-at-death estima-

tion

The statistical methods used to produce skeletal ageing techniques from known-age

skeletal data have been a source of considerable debate and contention. Different

techniques of age estimation make different assumptions; it is important to be precise

about their nature, and this is most easily done in mathematical notation. We may

assume that our reference sample consists of pairs (X1, Y1), . . . , (Xn, Yn), where Xi

represents the indicator measurement for the ith individual and Yi represents the age-

at-death of that individual. For simplicity, we assume for the moment that there is a

single indicator available; it may be recorded as a continuous variable, as is the case for

the transparency of dentin in teeth, or discrete, as for the auricular surface and pubic

symphysis measurements studied below. It is natural to assume that the different

pairs are independent (the indicator–age pair for one individual says nothing about the

corresponding pair for another individual) and that they are identically distributed.

To specify a model for the data, then, it suffices to prescribe the joint distribution of

a generic pair (Xi, Yi). In situations where it is the relationship between the variables

which is of primary interest, as is the case in age estimation, this is usually done by

proposing a model for the conditional distribution of one variable given the other.

(The marginal distribution of the second variable, which is required to complete the

specification of the joint distribution, is rarely of interest and mention of it is often
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suppressed.)

One very simple model, which we do not propose as realistic, is that

Yi = α + βXi + εi, (2.1)

where εi is independent of Xi and has a normal distribution with mean 0 and variance

σ2. We write εi ∼ N(0, σ2). This model specifies that the conditional distribution

of Yi given Xi is N(α + βXi, σ
2). For completeness, we may say that the marginal

distribution of Xi is fX(x). Using the data in our reference sample, we are able find

estimates α̂, β̂ and σ̂2 for the unknown parameters in the model. We now suppose that

a new individual (which we refer to as a target case, though it could be one individual

from a target sample) has indicator–age pair (X∗, Y ∗). We observe X∗, but not Y ∗,

of course. If, as in (2.1) above, we have specified the conditional distribution of Yi

given Xi, it is because we believe that the relationship between the variables for the

target case is the same as for the reference sample, i.e. that

Y ∗ = α + βX∗ + ε∗,

where ε∗ is independent of X∗ and has a N(0, σ2) distribution. We may then estimate

Y ∗ by Ŷ = α̂ + β̂X∗. Thus the fundamental assumption in the use of regression

of age on indicator for age estimation is that the conditional distribution of age

given indicator is the same for the target case as for the reference sample. Notice,

however, that there is no assumption that the marginal distribution fX∗(x) of X∗

is the same as fX(x). In general, altering the marginal distribution of the indicator

while preserving the conditional distribution of age given indicator will mean that

the marginal distribution fY (y) of ages in the reference sample is not the same as the

corresponding marginal distribution fY ∗(y) for the target case. Hence regression of

age on indicator does not require the assumption that the target case comes from the

same marginal age-at-death distribution as does the reference sample. Incidentally,

this last statement is in conflict with the argument in Box 1 on p. 95 of Konigsberg

and Frankenberg (1994). In their application of Bayes’ theorem in their Equation (1),
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however, the first term in the numerator should refer to the target case rather than the

reference sample. See Equation (11.1) on p. 566 of Davison (2003) for the appropriate

version of Bayes’ theorem in this context. We also note that the argument in the

second paragraph of the same Box 1 is circular: an assumption is made that fY (y) is

equal to fY ∗(y), and the conclusion is that the regression of age on indicator makes

this assumption.

The alternative way of specifying the joint distribution of a generic pair (Xi, Yi)

is to propose a model for the conditional distribution of indicator given age. (Mention

of the marginal distribution fY (y) of age will usually be suppressed.) In this instance,

the fundamental assumption is that the conditional distribution of indicator given age

is preserved in the target case.

But which is the more reasonable assumption to make? In practice, of course,

each assumption will only be an approximation to the truth. In cases where assuming

that the conditional distribution of age given indicator is preserved is an adequate

approximation, we will see in Section 3 that making this assumption has several ad-

vantages. As well as the ease of modelling this distribution and the desirable features

of the estimates and prediction intervals, we find that the methods of Section 3 adapt

well to the multiple indicator setting, and do not require any assumption about the

form of the marginal distribution fY ∗(y) of age in the target case.

However, there may also be situations where making the assumption that the

conditional distribution of age given indicator is preserved is inappropriate. One

instructive (though admittedly extreme) such scenario would be where the target

sample is censored according to its age-at-death. Consider the hypothetical situation

where an oracle who knew the true ages-at-death in the target sample were to remove

those who were over 50 years old when they died. Except in unusual circumstances

(such as if the indicator were perfectly correlated with age) this would mean that the

conditional distribution of age given indicator would not be the same in the reference
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and target samples. Estimates from the methods based on this assumption would

therefore tend to be too high, particularly for later indicator stages. Of course, this

censoring does not happen in practice, but it may be regarded as an extreme case

of what might have happened at certain war graves, for example, where very few

casualties might be expected to have been over 50 years old when they died.

On the other hand, censoring according to the age-at-death does not change

the conditional distribution of indicator given age. This fact is demonstrated graph-

ically in Figure 4 of Aykroyd et al. (1997); see also Davison (2003), pp. 203–206 for

an excellent discussion of the effect of different types of censoring. In such circum-

stances, then, it would be more reasonable to assume that the conditional distribution

of indicator given age is the same for the reference sample and target case. We dis-

cuss approaches to modelling this distribution in Section 4, as well as presenting a

new model which attempts to capture the biological process of development of an

individual.

After modelling the conditional distribution of indicator given age, however,

there remains the issue of how to use this distribution to derive age estimates. There

have been several proposals, which proceed via an application of Bayes’ theorem, if

one is willing to assume a form for the marginal age-at-death distribution in the target

case – indeed much of the edited volume of Hoppa and Vaupel (2002b) is devoted to

such methods. Where prior information on the marginal age-at-death distribution is

available, which may be the case for certain burial sites, this may not be a problem.

However, in the absence of such information, as may well be the case if we have a

single skeleton to age, for example, it would seem prudent not to rely on such a model.

We should mention in this regard that it has been suggested (e.g. Konigsberg and

Frankenberg (1994), pp. 95-96) that a uniform marginal age distribution (with some

choice of upper limit, which also has to be made) is appropriate because it is weak

and equivalent to absence of information. Though this is a commonly-held belief, the

two statements are different: absence of information about the distribution of Y ∗ is
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equivalent to absence of information about the distribution of exp(Y ∗); but a uniform

distribution for Y ∗ does not give a uniform distribution for exp(Y ∗). In general, we

would not regard a uniform marginal age-at-death distribution as a realistic model

for most age estimation problems. An attractive feature of our model in Section 4 is

that we can obtain age estimates without assuming a particular form for the marginal

distribution of ages in the target case.

3 Age estimation when the conditional distribu-

tion of age given indicator is preserved

Throughout this section, we make the assumption that the conditional distribution

of age given indicator is the same for the reference sample and the target case. Based

on our reference sample mentioned in Section 1, we construct age estimates and pre-

diction intervals where either an auricular surface measurement or a pubic symphysis

measurement (or both) are available. In the Appendix we show that our estimates

are essentially unbiased.

3.1 Auricular surface present

Figure 1(a) gives a box and whisker plot of the ages at death of the individuals

in the reference sample for which an auricular surface measurement was available.

The numbers of individuals in stages 1 to 8 were 42, 45, 38, 74, 77, 75, 67 and 30.

We assume that the data consist of independent and identically distributed pairs

(X1, Y1), . . . , (Xn, Yn), where Xi denotes the stage of the auricular surface of the ith

individual (and so takes values between 1 and 8), and Yi denotes the age-at-death of

that individual. The aim is to model the conditional distribution of Yi given Xi, and

then to use this model to predict the age-at-death, Y ∗, of another individual whose
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age indicator measurement is X∗.

[Figure 1 to go here]

One striking feature of Figure 1(a) is that the spread of the data increases as

the indicator increases. In fact, Figure 1(b) indicates that the standard deviation of

the ages within a class is approximately proportional to the mean age in that class.

It is therefore convenient to seek a model which relates log(Yi) and Xi, as this trans-

formation ensures that the conditional variance of log(Yi) given Xi is approximately

constant (cf. Brown (1993), p. 35). This transformation is also common practice when

the response (i.e. the y-variable) is necessarily positive, as is the case for age.

The next decision to be made is whether to regard the x-variable as an unordered

factor or as a numerical value. In the former case, the x-values are thought of as class

labels, which could equally well be eight different colours, or eight different types of

fruit. Our prediction for Y ∗ would then depend only on the data in the class to which

X∗ belongs. While this may at first sight seem attractive, it has the drawback that

there is no guarantee that the predictions will increase as the age indicator increases.

This is undesirable in view of the fact that the auricular surface measurement can

only have reached a given stage after having passed through the previous ones. It

could also lead to highly variable estimates when there is little data in a particular

class, which becomes a more significant problem when the observations are further

subdivided according to the pubic symphysis measurement.

For these reasons, we prefer to regard the auricular surface measurement as a

numerical value, though we should note that this requires the implicit assumption

that the age indicator stages are equally spaced (though see also the discussion in

the last paragraph of this subsection). As a very basic model, we first consider the

relationship

log(Yi) = α + βXi + εi, (3.1)
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where α and β are unknown parameters to be estimated from the reference sample,

and εi ∼ N(0, σ2). Thus in this model, the conditional distribution of log(Yi) given

Xi is N(α + βXi, σ
2). In particular, in this model the conditional expectation of

log(Yi) given Xi is assumed to increase linearly with Xi, and the conditional variance

of log(Yi) given Xi is assumed to be constant.

The parameters α and β may be estimated by the method of least squares, which

is equivalent in this instance (i.e. with normally distributed errors) to maximum

likelihood estimation. In other words, we seek the values of α and β which minimise

the residual sum of squares, given by

n
∑

i=1

(log Yi − α − βXi)
2.

Writing Zi = log Yi, it is well-known (e.g. Montgomery and Peck (1992), pp. 8–9)

that the least squares estimates of α and β are given by

β̃ =
SXZ

SXX

, α̃ = Z̄ − β̃X̄, (3.2)

where SXZ =
∑

(Xi − X̄)(Zi − Z̄), SXX =
∑

(Xi − X̄)2 and X̄ = n−1
∑

Xi, Z̄ =

n−1
∑

Zi. Applying these formulae to our reference sample, we obtain the estimates

α̃ = 3.08, and β̃ = 0.153, so our predictions for log(Y ∗) lie on the straight line shown

in Figure 2.

[Figure 2 to go here]

A closer examination of Figure 2 suggests, however, that the assumption that

the conditional expectation of log(Yi) given Xi increases linearly with Xi may not be

appropriate. We therefore consider the expanded model

log(Yi) = α + βXi + γX2
i + εi. (3.3)
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Since the model remains linear in the parameters α, β and γ, the parameters may

again be estimated by least squares, though we note that there is no reason why

our estimates of α and β should remain the same as in the model (3.1). Formulae

for the least squares estimates in this instance are given in the Appendix, and we

obtain α̂ = 2.79, β̂ = 0.321 and γ̂ = −0.0190. An analysis of variance (ANOVA) test

indicates that the slightly more complicated model (3.3) is preferable to the basic

model (3.1), and diagnostic plots suggest that the fit of the model with the quadratic

term is good.

Under our fundamental assumption on the property of the reference sample

which is preserved in the target case, we have that

log Y ∗ = α + βX∗ + ε∗,

where ε∗ ∼ N(0, σ2) and is independent of X∗. We therefore estimate Y ∗ by Ŷ =

exp{α̂ + β̂X∗ + γ̂(X∗)2}. We may also derive an expression for a 90% prediction

interval for Y ∗, though since this requires some familiarity with properties of the

multivariate normal distribution, we defer this derivation to the Appendix. Table 1

gives our results.

[Table 1 to go here]

For comparison, we did also examine the predictions from the model in which

the auricular surface is regarded as an unordered factor. In this model, we would

estimate log Y ∗ by the arithmetic mean of logarithm of the ages in the class to which

X∗ belongs, and this corresponds to estimating Y ∗ by the geometric mean of the

ages in the appropriate class. The predictions from this model were similar to those

presented in Table 1, in that all but two of the corresponding estimates from the two

different models were within two years of each other, and the biggest discrepancy was

an estimate of 52.6 years for Class 6 under the unordered factor model. A further

ANOVA test confirmed the preference for the model (3.3).
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3.2 Pubic symphysis present

Our analysis of the data for which only the pubic symphysis measurement was avail-

able was very similar to that in the previous subsection. The numbers of individuals

in each of the six stages were 35, 28, 39, 94, 81 and 99. Again, we are led to make a

logarithmic transformation of the ages, and the model

log Yi = α + βXi + γX2
i + εi (3.4)

(where now Xi represents the pubic symphysis stage) was found to be most success-

ful. Our parameter estimates were α̂ = 2.725, β̂ = 0.332 and γ̂ = −0.0159, giving

estimates for log Y ∗ which lie on the line in Figure 3. The predictions for Y ∗ are given

in Table 2.

[Figure 3 to go here]

[Table 2 to go here]

3.3 Both indicators present

In this subsection, we write XA
i and XP

i respectively for the auricular surface and

pubic symphysis measurements of the ith individual. The presence of both indicators

greatly increases the number of plausible models to be considered, particularly due

to possible interaction effects between the two predictors, as in the fifth and sixth

terms on the right-hand side of (3.5) below. ANOVA tests were used as a basis for

comparison of different models, and suggested that the model

log Yi = β1 + β2X
A
i + β3(X

A
i )2 + β4X

P
i + β5X

A
i XP

i + β6(X
A
i )2XP

i + εi (3.5)

was the most plausible. The presence of a quadratic term in the auricular surface but

not in the pubic symphysis is perhaps a little surprising at first, though the quadratic
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component does appear to be more significant in Figure 1 than in Figure 3. The

least squares estimators of the parameters were β̂1 = 2.54, β̂2 = 0.323, β̂3 = −0.0315,

β̂4 = 0.194, β̂5 = −0.0453 and β̂6 = 0.00576, yielding the predictions in Table 3.

Certain predicted ages and associated intervals in the top-right of Table 3 have been

left blank, as there is insufficient data in these categories to justify a prediction via

this model. Of course, since these pairs of age indicator measurements are very rare,

this is unlikely to be a problem when using the table in practice.

[Table 3 to go here]

Table 3 has several interesting features. First, notice that moving down or to the

right in the table increases both the estimated age and the endpoints of the prediction

interval. Second, if the estimated ages from the individual indicator models are in

broad agreement, then the prediction interval from the combined model tends to be

a little narrower than either interval from the separate models. Thus, if an individual

has an auricular surface measurement in stage 5, then from Table 1, we estimate the

age-at-death to be 50.3 with a 90% prediction interval of width 47.0 years, while a

pubic symphysis measurement of 5 gives an estimated age of 53.8 with an interval of

width 57.8 years, from Table 2. However, from the combined model (3.5), we obtain

a predicted age of 50.7 with an interval of width 41.4 years.

Another important point to note is that it is not necessarily the case that the

predicted ages from the combined model lie between the two predictions from the

separate models. For instance, an auricular surface measurement of 8 gives an esti-

mated age of 62.8, while a pubic symphysis measurement of 6 gives an estimated age

of 62.9. However, the combined prediction is 74.2. In fact we regard this as a desir-

able characteristic: the second piece of evidence strengthens the argument that the

individual died in old age. Interestingly, the mean age-at-death of the 13 individuals

having the age indicator pair (8, 6) was 70.0, but this may be considered a little lower
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than might be expected, as the mean of the 28 individuals having the indicator pair

(7, 6) was 71.3. Thus the predicted age from the combined model (3.5) seems entirely

reasonable.

4 Age estimation when the conditional distribu-

tion of indicator given age is preserved

The techniques of Section 3 give very satisfactory answers to the problem of age

estimation when the conditional distribution of age given indicator is the same in the

reference sample as for the target case. It was argued in Section 2, though, that there

may be circumstances where this assumption would be a poor approximation, and

it would be more reasonable to assume that the conditional distribution of indicator

given age is preserved. But how should one model the conditional distribution of

indicator given age? And how should one use this model to estimate the age-at-

death of a target skeleton? The first obvious possibility is to use a similar regression

technique to that employed in Section 3. This has several drawbacks: an examination

of Figure 1(a) suggests that the conditional variance of indicator given age is certainly

not constant (it appears to increase up to ages around 50 before decreasing again)

and there does not appear to be an obvious transformation to correct this. Moreover,

when using the method of least squares in a prediction problem, it is natural to place

the unobserved variable to be predicted (age) on the y-axis. The variable (indicator)

which is on the x-axis is (by assumption) observed without error, and the error in

the prediction is in the y-direction. Regression of y on x then minimises the errors

in the direction in which they occur, but this is not the case for the regression of

x on y. Additional practical problems are mentioned in Aykroyd et al. (1997): the

variance of the predicted ages is larger for the regression of x on y than y on x, and

the confidence intervals are of a more complicated form.
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We also argued in Section 2 that there may well be situations where prior infor-

mation on the marginal age-at-death distribution of the target case is not available.

In the remainder of this section, therefore, we investigate a new model for the condi-

tional distribution of indicator given age and with the aim of producing age estimates

which do not rely on a model for the marginal age-at-death distribution in the target

case.

The idea of this model is to try to capture the underlying biological process

by which an individual moves between stages over time. In order to describe this

model, it is convenient to alter our notation from what we have used previously.

We can consider that at time t after the birth of an individual, its indicator (either

auricular surface or pubic symphysis) is in stage Xt. Although the aging process is

continuous, the pubic symphysis and auricular surface measurements are recorded as

whole numbers. We can therefore think of the individual ‘jumping’ up a stage at

particular times. As an initial model, then, we may say that the individual spends an

exponential length of time in stage 1, before jumping to stage 2, where the individual

spends another exponential length of time (independent of the time spent in the first

stage, and possibly with a different parameter for the exponential distribution) before

jumping to stage 3, and so on. The exponential family of distributions provides a

natural model for the waiting time before jumping up a stage, because it has a

memoryless property. That is, the probability that an exponential random variable

is greater than s + t, given that it is greater than s, is equal to the (unconditional)

probability that it is greater than t. In fact, no other family of continuous distributions

has this property, so it is often used to model failure times for components (e.g. light

bulbs), waiting times for calls at a telephone exchange etc..

At some random time T (with marginal distribution fT (t), say), the individual

dies, and we observe XT , the indicator stage at that time. In mathematical notation,

then, we may consider the data to be independent and identically distributed pairs

(T1, XT1
), . . . , (Tn, XTn

), where Ti represents the age-at-death of the ith individual,

15



and XTi
represents its indicator stage at that time. Given the age-at-death Ti for the

ith individual, we have

XTi
= 1 + max

{

m ≤ M :

m
∑

j=1

Ei
j ≤ Ti

}

,

where M is the maximum possible indicator stage and Ei
1, . . . , E

i
M are independent

random variables with Ei
j having an exponential distribution with parameter λj (that

is, mean 1/λj). We set λM = 0 to ensure that XT cannot be greater than M . In fact,

we found that the slight modification of the model obtained by preventing a jump to

the second stage before a years resulted in a much better fit to the data. Thus we

now have

XTi
= 1 + max

{

m ≤ M :
m

∑

j=1

Ei
j ≤ Ti − a

}

.

The parameter a must be estimated from the data in the reference sample, in addition

to λ1, . . . , λM−1, though since one individual died aged 20.5 years in auricular surface

stage 2, we constrained a to lie between 0 and 20 years. The parameters may be esti-

mated by the method of maximum likelihood. The log-likelihood for the parameters

(excluding the term involving fT (t), which does not depend on the parameters) is

`(a, λ1, . . . , λM−1) =

n
∑

i=1

log

{

P

(XTi
−1

∑

j=1

Ei
j ≤ Ti − a

)

− P

(XTi
∑

j=1

Ei
j ≤ Ti − a

)}

.

It may be proved that

P

( m
∑

j=1

Ei
j ≤ y

)

= 1 −
m

∑

j=1

e−λjy
∏

1≤k≤m
k 6=j

λk

λk−λj
, (4.1)

so the log-likelihood is

`(λ1, . . . ,λM−1, a)

=

n
∑

i=1

log

{XTi
∑

j=1

e−λj(Ti−a)
∏

1≤k≤XTi
k 6=j

λk

λk−λj
−

XTi
−1

∑

j=1

e−λj(Ti−a)
∏

1≤k≤XTi
−1

k 6=j

λk

λk−λj

}

.
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This function may be maximised numerically to yield maximum likelihood estimates

â, λ̂1, . . . , λ̂M−1 of the parameters, for example, using the ‘optim’ function in the

statistical programming language ‘R’. Given XT ∗ , the age indicator measurement of

a new individual at its time of death, we propose to estimate T ∗ by

T̂ = â +
1

λ̂1

+ . . . +
1

λ̂XT∗−1

+
1

2λ̂XT∗

.

In other words, after the initial period of â years, we estimate the time spent in each

of the earlier indicator stages by their estimated means, and add on one half of the

estimated mean length of time spent in the final stage. The rationale for the factor of

one half here is that if death had not occurred and we were to observe that the next

jump happened at time E after the final jump which did occur, it would be natural

to estimate that the death occurred at time E/2 after this final jump. As we do not

observe E, we estimate it by estimating its mean.

For the auricular surface data, the maximum likelihood estimates for the pa-

rameters were â = 20, λ̂1 = 0.365, λ̂2 = 0.132, λ̂3 = 0.193, λ̂4 = 0.0959, λ̂5 = 0.0928,

λ̂6 = 0.0730, λ̂7 = 0.0297. The resulting age estimates for the first five indicator

stages were 21.4, 26.5, 32.9, 40.7 and 51.3, in close agreement with those presented

in Table 1. Estimates for later stages were unreliably high. There appear to be

two problems: firstly, while each data point gives information about the parameter

λ1, only individuals who died in stages 7 and 8 yield any information about λ7, so

the parameter estimates will be more variable for later parameters. It also appears,

however, that the assumption of the exponential distribution may be too restrictive

in later stages. The exponential distribution has its standard deviation equal to its

mean, and the small parameter estimates for λ6 and λ7 may be more a reflection

of the increased standard deviation for the waiting time for a jump (a fact noted

by Boldsen et al. (2002), p. 83) rather than the increased mean. Ideally, we would

like to be able to use a more flexible family (such as the Weibull family, of which

the exponential distribution is a special case). In order to apply this in practice, we

would need to be able to compute the analogue of (4.1) for a Weibull family – in other
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words, to compute the distribution function of a sum of independent Weibull random

variables having different parameters. This does not appear to be straightforward,

though Monte-Carlo methods may help in this regard.

For the pubic symphysis data, the maximum likelihood estimates were â = 20,

λ̂1 = 0.669, λ̂2 = 0.141, λ̂3 = 0.157, λ̂4 = 0.0642, λ̂5 = 0.0505, yielding estimates

for the first four indicator stages of 20.7, 25.0, 31.8 and 42.8, again in very close

agreement with the estimates in Table 2. The later estimates are again unreliably

high.

The main attractions of this model over those proposed in Section 3 and else-

where in the literature are that it represents an attempt to model the underlying

biological process and that the estimates do not rely on a model for the marginal

age-at-death distribution. However, in addition to the lack-of-fit problem in the later

stages mentioned above, there are other drawbacks. Firstly, even if the model were

correct, we would still have the problem of how to estimate the age in the final in-

dicator stage. One way to do this would be to model the time spent in the final

indicator stage before death. It could also be argued that the method is not as eas-

ily adapted to the multiple indicator setting. Assuming that the processes XA
t and

XP
t , representing the auricular surface and pubic symphysis measurements at time

t, evolved independently, we would estimate the age-at-death by the average of the

individual estimates. Thus the combined prediction would always lie between the

two separate predictions, which may not always be desirable (cf. the discussion at the

end of Section 3.3). Lastly, while the model does have a theoretical, biological basis,

ideally we would also like to be able to verify the model empirically.

To obtain prediction intervals for the age-at-death in each indicator stage, we

do have to assume a form for the marginal age-at-death distribution for the target

case. The following bootstrap algorithm could then be applied:
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1. Generate T ∗ from the assumed marginal age-at-death distribution fT ∗(t) for the

target case

2. Generate independent exponential random variables E1, . . . , EM where Ej ∼
Exp(λ̂j)

3. Set XT ∗ = 1 + max
{

m ≤ M :
∑m

j=1 Ej ≤ T ∗ − â
}

4. Repeat steps 1–3 a total of 100,000 times, recording each value of T ∗ and XT ∗

5. Sort into ascending order the values of T ∗ for which the corresponding value

of XT ∗ was equal to 1. If there are n1 such values of T ∗, the (0.05n1)th and

(0.95n1)th values in the sorted list give lower and upper endpoints for a 90%

prediction interval (round 0.05n1 and 0.95n1 to the nearest whole number if

necessary). Repeat for the other possible values of XT ∗ .

To illustrate this method, we applied it to our reference sample with two different

marginal age-at-death distributions for the target case. In the first, we took fT ∗(t)

to be the empirical distribution of the ages in the reference sample (so step 1 of the

algorithm above corresponded to sampling T ∗ uniformly at random from the ages in

the reference sample). Thus, in this example, the marginal age-at-death distributions

were virtually identical in the reference sample and the target case. For the auricular

surface indicator, the lower and upper endpoint pairs in the first five stages were

(16.5, 27.5), (22.5, 46.5), (24.5, 53.5), (27.5, 65.5) and (32.5, 72.5) respectively, while

for the pubic symphysis, the corresponding pairs in the first four indicator stages were

(16.5, 22.5), (21.5, 43.5), (23.5, 53.5) and (28.5, 70.5). These values are generally in

close agreement with those presented in Tables 1 and 2.

On the other hand, in the second example we chose T ∗ = 15 + Γ, where Γ had

a gamma distribution with parameters 1.5 and 0.1 (so T ∗ has mean 30 years and

standard deviation 12.2 years). This distribution was chosen to represent a crude
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approximation to the marginal age-at-death distribution at a war grave. The inter-

val endpoints for first five stages of the auricular surface indicator were (15.8, 24.9),

(21.2, 37.7), (23.0, 43.1), (25.6, 52.0) and (28.8, 59.7), while the endpoints for the first

four stages for the pubic symphysis indicator were (15.7, 22.3), (21.0, 35.9), (22.8, 42.1)

and (25.5, 54.1). We see that the upper endpoints of the intervals in particular are

dramatically reduced. It is not a surprise that these intervals are markedly different

from those in Tables 1 and 2 since the conditional distributions of age given indica-

tor are dissimilar in the reference and target cases. One might also modify the age

estimates in this situation, for instance by estimating the age-at-death in stage 1 by

the average of the values of T ∗ for which XT ∗ was equal to 1. The revised estimates

from the auricular surface indicator were 19.6, 27.4, 31.0, 36.5 and 42.0, while for the

pubic symphysis indicator, they were 18.7, 26.2, 30.4 and 37.1. Finally, we note that

it is not necessarily clear how best to combine the two intervals if both indicators are

available.

5 Conclusions

In the last twenty years, a wide variety of different techniques have been proposed for

the aging of adult skeletons. We have found that different methods rely on different

assumptions, and the question of which is the most appropriate procedure depends

on the assumptions that the investigator is prepared to make. In particular, one

must decide which property of the distribution of the data in the reference sample is

preserved in the target sample.

In situations where the assumption that the conditional distribution of age given

indicator is preserved is adequate, we recommend the methodology of Section 3. We

have applied our methodology to a large reference sample and produced look-up

tables which give anthropologists straightforward estimates, together with prediction
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intervals, in cases where an auricular surface or pubic symphysis measurement (or

both) are available.

However, we have also seen that there may be other situations in which it may be

more reasonable to assume that the conditional distribution of indicator given age is

preserved. Such circumstances are more problematic, particularly if prior information

on the marginal age-at-death distribution of the target skeleton is not available. We

have examined a simple model of the biological process of indicator development. The

model appears to have some attractive features, although further research into more

general versions of the model presented in Section 4 may yield more reliable estimates,

particularly at later indicator stages. Even though the estimates in Section 3 should

not be regarded as ‘correct’ if the conditional distribution of age given indicator is

not preserved, they still serve as a useful basis for comparison with estimates from

other models. Moreover, we find it reassuring that the estimates agree very closely

with those from the model in Section 3, at least for the early indicator stages.
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A Appendix

A.1 Least squares regression and unbiasedness

In this subsection, we discuss the statistical theory underlying the predictions in

Section 3. This is important because of the current criticism levelled at the use of

regression in skeletal age estimation. For simplicity, we will again treat the case
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where only a single age indicator is available, though the argument easily extends to

the multiple predictor setting. Recall that the data in the reference sample consists

of pairs (X1, Y1), . . . , (Xn, Yn), where Xi denotes the age indicator measurement of

the ith individual and Yi denotes the age-at-death of that individual. We assume

that the pairs are independent and identically distributed and attempt to model

the conditional distribution of age given indicator under the assumption that this

distribution is preserved in the target case.

Assume for the moment that it is through the raw ages themselves, rather than

their logarithms, that we model this distribution. One simple possibility is that

Yi = α + βXi + εi, (A.1)

where εi is independent of Xi and has a N(0, σ2) distribution. Notice that if we write

Y = (Y1, . . . , Yn)
T , ε = (ε1, . . . , εn)T and θ = (α, β)T , then we can write the model in

vector form as

Y = Xθ + ε, (A.2)

where X is the n × 2 matrix whose first column consists entirely of ones, and whose

second column has entries X1, . . . , Xn. Similarly, the model

Yi = α + βXi + γX2
i + εi, (A.3)

can be written in the same form (A.2), where now θ = (α, β, γ)T , and X has the

same first two columns as before, as well as an additional third column with entries

X2
1 , . . . , X

2
n. In general, we let p denote the number of columns of X. Apart from the

fact that we are now discussing raw ages rather than logarithms of ages, all of the

models considered in Section 3 are of the form (A.3). The least squares estimator θ̂

of θ minimises
n

∑

i=1

{Yi − (Xθ)i}2,
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where (Xθ)i denotes the ith component of the vector Xθ. The famous formula (Brown

(1993), p. 40) for the least squares estimator is

θ̂ = (XTX)−1XTY, (A.4)

and it is well-known that θ̂ has a multivariate normal distribution with mean vector θ

and covariance matrix σ2(XTX)−1. For the model (3.1), it may be verified that (A.4)

yields the same estimates of the parameters as does (3.2), once Y has been replaced

by log Y in (A.4).

Now suppose that the age indicator and age-at-death of a new individual are

given by the pair (X∗, Y ∗). By assumption, we may write

Y ∗ = X∗θ + ε∗,

where X∗ is equal to the first row of X, but with X1 replaced with X∗, and ε∗ has a

N(0, σ2) distribution and is independent of X∗. Notice that we make no assumption

that the marginal distribution fX∗(x) of X∗ is equal to fX(x).

In this situation, we would estimate Y ∗ by Ŷ = X∗θ̂. Thus, in the model (A.3),

we would have X∗ =
(

1 X∗ (X∗)2
)

and Ŷ = X∗θ̂ = α̂ + β̂X∗ + γ̂(X∗)2. It then

follows from a standard property of the multivariate normal distribution that X∗θ̂ ∼
N(X∗θ, σ2τ 2), where τ 2 = X∗(XTX)−1(X∗)T .

The crucial point is this: the expected value of Ŷ is X∗θ, which is equal to the

expected value of Y ∗. In this natural sense, then, our predicted age is unbiased. (As

is conventional in regression problems, we have treated X1, . . . , Xn and X∗ as fixed

at their observed values; in mathematical terminology, the expectations are taken

conditional on these values.)

The unbiasedness described above is in contrast with the argument of Aykroyd

et al. (1997) and Aykroyd et al. (1999), which says that the least squares regression

technique overestimates the age of young individuals and underestimates the age of
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old individuals. Their justification is that if, after fitting the basic linear model (A.2),

one plots the points (Yi, ε̂i) for i = 1, . . . , n, where ε̂i = Yi−α̂−β̂Xi is the ith residual,

then the least squares regression line of ε̂i on Yi has positive gradient. While this is

true, we do not regard the predicted ages as biased as a result, as this argument says

nothing about the predicted age for a new individual. The real question of interest

is: given that we observe the age indicator measurement X∗ for an individual not in

the reference sample, do we on average over- or under-predict their age? This is the

question addressed in the previous paragraph.

A minor complication arises when we first take a logarithmic transformation of

the y-values, as in Section 3. In this case, our model is

log Y = Xθ + ε,

and we estimate Y ∗ by Ŷ = exp(X∗θ̂). Now Ŷ has a lognormal distribution, and it

may be shown that the expected value of Ŷ is exp(X∗θ+σ2τ 2/2). On the other hand,

the expected value of Y ∗ is exp(X∗θ +σ2/2). The value of τ 2 depends on X∗, but for

each of the data sets in Section 3 and each possible value of X∗, it is less than 1. If we

define the multiplicative bias of our estimate to be the ratio of these expected values,

then the multiplicative bias is exp{σ2(τ 2 − 1)/2}. To gain an idea of its magnitude,

we estimate the multiplicative bias by exp{σ̂2(τ 2 − 1)/2}, where

σ̂2 =
1

n − p

n
∑

i=1

{Yi − (Xθ)i}2

is an unbiased estimate of σ2. For each of the data sets in Section 3 and each possible

value of X∗, our estimate of the multiplicative bias of Ŷ was between 1 and 4 per cent.

The bias is therefore relatively small, though we could modify our estimate of Y ∗ as

Ỹ = exp{X∗θ̂ + σ̂2(1 − τ 2)/2} to obtain a virtually unbiased estimate. This has the

drawback that the variance of Ỹ is greater than that of Ŷ , so we did not implement

this in Section 3. It should be emphasised that this small bias arises purely as a

result of the logarithmic transformation, and is not related to the points raised in,
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for example, Aykroyd et al. (1997), Konigsberg et al. (1997), Aykroyd et al. (1999)

and Konigsberg and Frankenberg (1994).

The next problem is to derive a 100(1 − α)% prediction interval for Y ∗, where

0 < α < 1. Now log Ŷ − log Y ∗ = X∗(θ̂ − θ) − ε∗, which has a normal distribution

with mean 0 and variance σ2(τ 2 + 1). It follows from an elementary property of the

family of t-distributions (cf. Casella and Berger (1990), pp. 225–226), that

log Ŷ − log Y ∗

σ̂
√

τ 2 + 1

has a t-distribution with n− p degrees of freedom. If we denote the upper α-point of

this symmetric distribution by tn−p(α), then

1 − α = P

(

−tn−p(α/2) ≤ log Ŷ − log Y ∗

σ̂
√

τ 2 + 1
≤ tn−p(α/2)

)

= P

(

Ŷ exp
{

−σ̂
√

τ 2 + 1 tn−p(α/2)
}

≤ Y ∗ ≤ Ŷ exp
{

σ̂
√

τ 2 + 1 tn−p(α/2)
}

)

,

so a 100(1 − α)% interval for Y ∗ has endpoints at Ŷ exp{−σ̂
√

τ 2 + 1 tn−p(α/2)} and

Ŷ exp{σ̂
√

τ 2 + 1 tn−p(α/2)}. These were the expressions which were used for the

construction of prediction intervals throughout Section 3.

[Table 4 to go here]

[Table 5 to go here]

[Table 6 to go here]
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Auricular surface 1 2 3 4 5 6 7 8

Lower 90% endpoint 14.0 18.3 22.9 27.6 32.1 35.9 38.6 39.9

Estimated age 22.0 28.7 35.9 43.3 50.3 56.3 60.6 62.8

Upper 90% endpoint 34.7 45.0 56.4 68.1 79.1 88.4 95.1 98.9

Table 1: The middle row shows the estimate Ŷ of Y ∗, when the auricular surface

measurement X∗ takes each of the values 1 to 8. The other two rows give the endpoints

of a 90% prediction interval for Y ∗. Endpoints for a 68% interval are given in Table 4.
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Pubic symphysis 1 2 3 4 5 6

Lower 90% endpoint 13.6 18.1 23.2 29.0 34.5 40.9

Estimated age 20.9 27.8 35.7 44.5 53.8 62.9

Upper 90% endpoint 32.3 42.7 55.0 68.5 82.7 96.8

Table 2: The middle row shows the estimate Ŷ of Y ∗, when the pubic symphysis

measurement X∗ takes each of the values 1 to 6. The other two rows give the endpoints

of a 90% prediction interval for Y ∗. Endpoints for a 68% interval are given in Table 5.

30



Lower Auricular surface

90% endpoint 1 2 3 4 5 6 7 8

P
u
b
ic

sy
m

p
h
y
si

s 1 13.3 16.3 18.8 20.6 21.6 - - -

2 15.5 18.5 21.0 23.0 24.3 - - -

3 18.1 21.0 23.5 25.7 27.2 28.0 - -

4 20.9 23.7 26.3 28.5 30.5 31.9 32.8 -

5 24.1 26.8 29.3 31.7 34.0 36.4 38.6 40.7

6 27.7 30.1 32.5 35.1 38.0 41.4 45.2 49.6

Estimated Auricular surface

age 1 2 3 4 5 6 7 8

P
u
b
ic

sy
m

p
h
y
si

s 1 19.9 24.2 28.2 31.0 32.5 - - -

2 23.2 27.5 31.4 34.5 36.3 - - -

3 27.1 31.2 35.1 38.3 40.6 41.8 - -

4 31.6 35.4 39.1 42.5 45.3 47.8 49.1 -

5 36.8 40.2 43.7 47.2 50.7 54.1 57.5 60.8

6 43.0 45.6 48.7 52.3 56.6 61.6 67.4 74.2

Upper Auricular surface

90% endpoint 1 2 3 4 5 6 7 8

P
u
b
ic

sy
m

p
h
y
si

s 1 29.7 36.3 42.3 46.7 48.8 - - -

2 34.6 41.0 46.9 51.5 54.3 - - -

3 40.5 46.6 52.2 57.0 60.5 62.4 - -

4 47.6 53.0 58.3 63.2 67.5 70.8 73.3 -

5 56.2 60.4 65.1 70.2 75.4 80.5 85.6 90.8

6 66.6 69.0 72.9 78.1 84.4 91.8 100.5 111.2

Table 3: The middle block of entries give estimates Ŷ of Y ∗ when both auricular sur-

face and pubic symphysis measurements are available. The other two blocks give the

endpoints of the corresponding lower and upper 90% prediction intervals. Endpoints

for a 68% interval are given in Table 6.
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Auricular surface 1 2 3 4 5 6 7 8

Lower 68% endpoint 16.7 21.8 27.4 33.0 38.4 42.9 46.1 47.7

Upper 68% endpoint 29.0 37.7 47.2 56.9 66.1 73.9 79.6 82.6

Table 4: Endpoints of a 68% prediction interval for Y ∗, for each possible auricular

surface measurement.
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Pubic symphysis 1 2 3 4 5 6

Lower 68% endpoint 16.1 21.4 27.6 34.4 41.5 48.5

Upper 68% endpoint 27.2 36.0 46.4 57.8 69.7 81.6

Table 5: Endpoints of a 68% prediction interval for Y ∗, for each possible pubic sym-

physis measurement.
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Lower Auricular surface

68% endpoint 1 2 3 4 5 6 7 8

P
u
b
ic

sy
m

p
h
y
si

s 1 15.6 19.1 22.1 24.3 25.4 - - -

2 18.2 21.6 24.7 27.0 28.5 - - -

3 21.2 24.6 27.6 30.1 31.9 32.8 - -

4 24.6 27.8 30.8 33.4 35.7 37.4 38.5 -

5 28.5 31.4 34.3 37.1 39.9 42.6 45.2 47.7

6 32.9 35.5 38.2 41.1 44.5 48.4 53.0 58.2

Upper Auricular surface

68% endpoint 1 2 3 4 5 6 7 8

P
u
b
ic

sy
m

p
h
y
si

s 1 25.3 30.9 36.0 39.7 41.5 - - -

2 29.5 35.0 40.0 43.9 46.3 - - -

3 34.5 39.8 44.6 48.7 51.6 53.3 - -

4 40.5 45.2 49.8 54.0 57.6 60.5 62.5 -

5 47.6 51.4 55.6 60.0 64.4 68.8 73.1 77.4

6 56.0 58.6 62.2 66.7 72.1 78.4 85.8 94.7

Table 6: Endpoints of a 68% prediction interval for Y ∗ when both auricular surface

and pubic symphysis measurements are available.
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Figure 1: Panel (a) is a box and whisker plot of the ages-at-death within each auricular

surface class for the reference sample. Panel (b) is a plot of the mean age-at-death

within each class against the corresponding standard deviation.

35



1 2

3

3

4

4 5 6 7 8

3.
5

4.
5

Auricular surface

lo
g(

A
ge

)

Figure 2: A plot of the logarithm of the ages at death against the auricular surface

stage. The dotted straight and solid curved lines are those obtained from fitting the

models (3.1) and (3.3) respectively.
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Figure 3: A plot of the logarithm of the ages at death against the pubic symphysis

stage. The line is obtained from fitting the model (3.4) respectively.
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