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Summary. It is shown that bagging, a computationally intensive method, asymptotically im-
proves the performance of nearest neighbour classifiers provided that the resample size is less
than 69% of the actual sample size, in the case of with-replacement bagging, or less than 50%
of the sample size, for without-replacement bagging. However, for larger sampling fractions
there is no asymptotic difference between the risk of the regular nearest neighbour classifier
and its bagged version. In particular, neither achieves the large sample performance of the
Bayes classifier. In contrast, when the sampling fractions converge to 0, but the resample sizes
diverge to 1, the bagged classifier converges to the optimal Bayes rule and its risk converges
to the risk of the latter. These results are most readily seen when the two populations have
well-defined densities, but they may also be derived in other cases, where densities exist in
only a relative sense. Cross-validation can be used effectively to choose the sampling fraction.
Numerical calculation is used to illustrate these theoretical properties.
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1. Introduction

Bagging, or bootstrap aggregation, was introduced by Breiman (1996, 1999) as a means for
improving the performance of a ‘predictor’, e.g. a classifier, by combining the results of many
empirically simulated predictions. Bagging a conventional classifier, in particular one based on
nearest neighbours, can sometimes, although not always, reduce the error rate. See, for example,
Bay (1998), whose ‘multiple-feature subsets’ approach is another method for improving nearest
neighbour classifiers. Other recent contributions to bagging and to related methodology include
those of Ho (1998a, b), Skurichina and Duin (1998), Bay (1999), Guerra-Salcedo and Whitley
(1999), Zemke (1999), Francois et al. (2001), Kuncheva et al. (2002) and Skurichina et al. (2002).

Nearest neighbour methods are one of the oldest approaches to classification, dating from
work of Fix and Hodges (1951). Nevertheless, they are constantly being adapted to new settings,
e.g. by replacing ‘prototypes’ by ‘representatives’ to produce new criteria for classification (see
for example Kuncheva and Bezdek (1998) and Mollineda et al. (2000)). A major attraction of
nearest neighbour classifiers is their simplicity. For implementation they require only a measure
of distance in the sample space, along with samples of training data; hence their popularity as
a starting-point for refinement and improvement.
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In this paper we show that, in circumstances where the relative densities of two populations
can be meaningfully defined, a bagged nearest neighbour classifier can converge, as the training
sample sizes increase, to the optimal Bayes classifier. However, this limit obtains if and only
if the simulated training samples are of asymptotically negligible size relative to the respective
actual training samples, and if the simulated training sample sizes diverge together with the
actual training sample sizes. If, as is common in practice, the simulated training sample sizes
are the same as those of the actual training samples, then the nearest neighbour classifier does
not converge to the Bayes classifier. These results apply to both with- and without-replacement
bagging, which are the two approaches that are most commonly used in practice.

The extent of the improvements can be determined by probability calculations, which we
discuss theoretically and illustrate numerically. It is shown, for example, that in the case of with-
replacement bagging the resample size should be at most 69% of the sample size if the bagged
nearest neighbour classifier is to improve on the performance of its unbagged counterpart
asymptotically. The ceiling is reduced to 50% in the case of without-replacement bagging. These
results are of interest because the majority of bagging experiments employ relatively large resam-
ple sizes; much of the evidence against the performance of bagged nearest neighbour classifiers
(e.g. Breiman (1996) and Bay (1998)) is for full size resamples.

An alternative way of enhancing the performance of nearest neighbour classifiers is to use
k-nearest-neighbour methods. If k is permitted to increase with n, in such a manner that k →∞
but k=n → 0, then k-nearest-neighbour methods, like bagged nearest neighbour techniques,
asymptotically achieve the performance of the Bayes classifier. The fact that bagging is cur-
rently under such wide study and development, with relatively little theoretical underpinning,
motivates the work in the present paper. We are not attempting to promote bagging against,
for example, k-nearest-neighbour techniques, only to describe its properties.

Nevertheless, if attention is confined to classification problems for Euclidean data, rather
than the more general setting that is treated in the present paper, then it is possible to develop
higher order theory describing the relative performance of bagging and nearest neighbour meth-
ods. There it can be shown that, if a Poisson model for the sample size is assumed, and for the
optimal choice of tuning parameters in either case, the bagged classifier is inferior to its nearest
neighbour counterpart in one dimension. However, the two are asymptotically equivalent in
two dimensions, and bagging is superior in higher dimensions. The theoretical arguments are
particularly complex, however, and so will not be given here.

Bagging one-nearest-neighbour techniques is more computer intensive than implementing
k-nearest-neighbour methods for general k. We could bag k-nearest-neighbour classifiers, and
let k increase with n, although there seems little motivation for doing this. Moreover, an advan-
tage of bagging is that, even in cases where we do not attempt to achieve optimality, performance
can be described quite simply, in absolute terms, via the ratio of the resample size to sample
size; see, for example, Section 3.1.

Bühlmann and Yu (2002) discussed the performance of bagging from the viewpoint of its
ability to reduce instability, and Buja and Stuetzle (2000a, b) and Friedman and Hall (2000)
explored it in terms of its success in accommodating difficulties that are caused by non-linear
features of a statistical method. The present paper takes up a different angle, addressing the
way that performance depends on the resample size.

In some respects the problem is a little like bootstrap inference in settings where the statistic
of interest is not asymptotically normally distributed. There, the bootstrap gives consistency
only if the resample size is an order of magnitude smaller than the sample size; see, for example,
Mammen (1992) and Bickel et al. (1997). In each case it is necessary to select the resample
size.
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In the classification setting the leave-one-out method, or cross-validation, can be used to
minimize risk empirically. We point out that this approach will lead to an asymptotically opti-
mal choice of resample sizes, in the sense of minimizing large sample risk for either with- or
without-replacement sampling, but that cross-validation usually will not produce asymptotic
minimization of regret, i.e. of the distance between the actual risk and that of the Bayes classifier.

In most statistical work, the performance of classifiers is discussed in settings where popu-
lation densities are well defined and estimable. However, to construct the Bayes classifier only
the relative densities are needed, weighted by the prior probabilities. Indeed, the optimal Bayes
classifier depends only on whether the weighted density ratio is greater than 1 or less than 1, not
on its exact value. We show that our result about convergence of the bagged nearest neighbour
classifier to the Bayes rule can be set up in this context, so that it is relevant to a relatively general
class of problems.

There is an extensive literature on nonparametric methods for classification, including tech-
niques which converge to the Bayes rule. An example in the univariate case is Stoller’s (1954)
approach, which is based on the empirical distribution function. In multivariate settings, meth-
ods founded on nonparametric density estimation are sometimes used; they have been dis-
cussed by Hand (1981), have been shown by Marron (1983) to enjoy optimality properties and
are addressed in most recent monographs on nonparametric function estimation. Optimality
theory for nonparametric classifiers has been explored by many researchers; we mention only
the work of Lugosi and Nobel (1996), who proved the existence of a class of universally con-
sistent classifiers, and of Devroye (1982), Devroye et al. (1996), chapter 7, and Yang (1999),
who showed that optimal convergence rates can nevertheless be arbitrarily slow. Cover (1968),
Fukunaga and Hummels (1987) and Psaltis et al. (1994) have shown that, in d-variate settings,
the risk of nearest neighbour classifiers converges to its limit at rate n−2=d . However, the limit
here generally exceeds the risk of the Bayes classifier. Efron (1983) and Efron and Tibshirani
(1997) have discussed the performance of bootstrap-based estimators of risk for general classifi-
cation methods, and Steele and Patterson (2000) have shown how to make exact calculations of
bootstrap estimators of the expected prediction error for nearest neighbour classifiers. Recent
statistical work on classification in very high dimensional settings includes that of Breiman
(2001), Schapire et al. (1998), Friedman et al. (2000), Kim and Loh (2001), Dudoit et al. (2002)
and Jiang (2002). We mention also the method of boosting (e.g. Freund and Schapire (1997))
and the existence of a wide range of techniques that are based on combining the results of
different classifiers (e.g. Larkey and Croft (1996)).

2. Definitions of classifiers, and basic properties

2.1. Nearest neighbour, bagged and Bayes classifiers
Assume that there are two populations, ΠX and ΠY , from which we have random samples X
and Y . Suppose that X is of size m and Y of size n. A nearest neighbour classifier, based on X
and Y , assigns a new datum z to ΠX or ΠY according to whether z is nearest to an element of
X or Y respectively. Now draw resamples XÅ and YÅ, of sizes m1 �m and n1 �n, by resampling
randomly, with or without replacement, from X and Y respectively. The bagged version of the
nearest neighbour classifier allocates z to ΠX if the nearest neighbour classifier, based on XÅ

and YÅ rather than X and Y , assigns it more often to ΠX than to ΠY . For definiteness we shall
always treat the version of the bagged nearest neighbour classifier which uses an infinite number
of simulations in the ‘majority vote’ step.

Of course, nearest neighbour classification requires a measure of distance, which is generally
supplied through a metric, or norm. Therefore the data in X and Y will be assumed to come
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from a set on which a norm, ‖·‖, is defined; in mathematical terminology this set would be a
Banach space and will be denoted by B.

If well-defined densities, f and g say, exist for the populations ΠX and ΠY respectively, and
if the prior probabilities of these populations are p and 1 −p, then the ‘ideal’ Bayes rule clas-
sifier assigns z to ΠX or ΠY according to whether p f.z/ − .1 − p/ g.z/ is positive or negative.
Equivalently, z is assigned to ΠX if the probability

q.z/= p f.z/

p f.z/+ .1−p/ g.z/
.2:1/

exceeds 1
2 , and to ΠY if q.z/< 1

2 .

2.2. Error rates of Bayes and nearest neighbour classifiers
In cases where the population densities f and g exist, we define the average error rate, or risk,
for a general classification rule as

p

∫
P.z is classified as coming from ΠY / f.z/ dz

+ .1−p/

∫
P.z is classified as coming from ΠX/ g.z/ dz: .2:2/

Thus equal losses for each of the two types of error are assumed. The risk for the Bayes classifier
is therefore

errBayes =
∫

min{p f.z/, .1−p/ g.z/} dz: .2:3/

Still assuming the existence of f and g, the large sample limit of risk for the nearest neigh-
bour classifier can be deduced from a standard point process approximation, which is given
in Appendix A.1. This enables a range of properties of classifiers to be derived, including the
theorem below, which were discussed by Cover and Hart (1967). For simplicity we shall state
the theorem in the case of data from Rd , although it has analogues in other settings, e.g. in
functional data contexts such as that of theorem 3.

Theorem 1. Assume that the densities f and g are continuous and that m and n increase
together in such a manner that m=.m + n/ → p ∈ .0, 1/. Then, as m, n →∞, the risk of the
nearest neighbour classifier converges to

errNN =p

∫
{1−q.z/} f.z/ dz+ .1−p/

∫
q.z/ g.z/ dz:

Moreover, errNN � errBayes.

3. Bagged nearest neighbour classifiers

3.1. Main results
We shall show that bagging the nearest neighbour classifier with relatively small resample sizes
m1 and n1, satisfying m1=m→0 and n1=n→0 as n→∞, produces a classifier for which the risk
converges to errBayes, which is given at equation (2.3). Our argument also demonstrates that
this result holds for both with-replacement and without-replacement bagging. Furthermore, we
shall show that the result fails, for both types of bagging, if m1=m and n1=n converge to non-zero
limits; and we shall identify the asymptotic risk in the latter case, for both types of bagging.
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Again, for simplicity, we shall initially assume that the data are d variate, although our main
results are valid in cases where only ‘relative densities’ are available, and individual densities
may not be well defined. See Section 4.

Theorem 2. Assume that m1 and n1 diverge, but that m1=m converges to a limit, l �0 say, as
n→∞, and the ratio of the resample size to sample size is asymptotically the same for ΠX

and ΠY data, i.e.

m1=m−n1=n→0: .3:1/

Define ρ=exp.−l/ or ρ=1− l in the cases of with-replacement bagging and without-replace-
ment bagging respectively; thus, 0 � ρ� 1. Suppose also that f and g are continuous and
that m=.m+n/→p∈ .0, 1/. Then, the probability that a new data value z is identified by the
bagged nearest neighbour classifier as coming from ΠX converges to

P.ρ, z/=P

{ ∞∑
j=1

ρj−1.1−ρ/Jj > 1
2

}
.3:2/

as n→∞, where J1, J2, . . . are independent and identically distributed 0–1 random variables
with P.Jj =1/=q.z/, the latter defined at equation (2.1). Furthermore, the risk of the bagged
nearest neighbour classifier converges to

errbagg =p

∫
{1−P.ρ, z/} f.z/ dz+ .1−p/

∫
P.ρ, z/ g.z/ dz: .3:3/

We shall show in Section 6.2 that ρ can be interpreted as the probability of thinning a two-type
Poisson process, where the two types are X and Y . Assumption (3.1) implies that the probability
ρ is identical for each of the two types, which greatly simplifies discussion. In without-replace-
ment bagging, to obtain non-degenerate results we require 0 � l < 1. In contrast, l = 1 gives
non-degenerate results in the setting of with-replacement bagging.

A proof of theorem 2 is given in Appendix A.3, using properties that are developed in Appen-
dices A.1 and A.2. It is tacitly assumed in theorem 2 that either with-replacement bagging or
without-replacement bagging is used throughout; we do not, for example, use with replace-
ment for one type of data and without replacement for another. Furthermore, the value ρ=1 is
permitted in theorem 1; it arises when the sampling ratios m1=m and n1=n both converge to 0.

The value of P.ρ, z/ when ρ= 1 is defined by taking the limit in equation (3.2): as ρ↑ 1, and
for q.z/ �= 1

2 ,

P.ρ, z/= I

{ ∞∑
j=1

ρj−1.1−ρ/ E.Jj/> 1
2

}
+o.1/= I{q.z/> 1

2}+o.1/

→
{

1 if q.z/> 1
2 ,

0 if q.z/< 1
2 ,

.3:4/

where I.E/ denotes the indicator function of an event E . Therefore, we take P.1, z/=I{q.z/> 1
2}

if q.z/ �= 1
2 . To appreciate why the approximations in expression (3.4) are valid, it suffices to note

that, for all ρ, the expected value of the infinite series within the probability on the right-hand
side of equation (3.2) equals q.z/, and that, as ρ↑1, the variance of that series converges to 0.

For the bagged nearest neighbour classifier to converge to the Bayes classifier, it is necessary
and sufficient that the probability at equation (3.2) equals 1 if q.z/> 1

2 and equals 0 if q.z/< 1
2 ;

see Section 2.1. It is easy to see from equation (3.2), and from the argument in the previous
paragraph, that this property holds if and only if ρ= 1, i.e. if and only if m1=m and n1=n both
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converge to 0. Provided that this constraint holds, the risk of the bagged nearest neighbour
classifier converges to errBayes, which is defined at equation (2.3). This is also the limit, as ρ↑1,
of the risk at equation (3.3).

Cases where m=.m + n/ does not converge to p can be handled by choosing the sampling
fractions to represent the prior probabilities. In particular, one should select m1 and n1 so that
m1=n1 →p=.1−p/. However, to obtain the Bayes classifier as the limit of the nearest neighbour
rule one should still ensure that m1 and n1 both diverge, and m1=m and n1=n both converge to 0.

Several properties can be deduced from expressions (3.2) and (3.4). For example, if 0�ρ� 1
2 ,

then, by equation (3.2), P.ρ, z/=P.J1 =1/=q.z/. It follows that the asymptotic limit of risk for
the bagged nearest neighbour classifier will be the same as that for the regular nearest neigh-
bour classifier if 0 � ρ� 1

2 and will generally be reduced if ρ> 1
2 . Since, in the cases of with-

and without-replacement bagging, the respective values of ρ are the limits of exp.−m1=m/ and
1 − m1=m, then bagging the nearest neighbour classifier will asymptotically improve perfor-
mance if m1 < m log.2/ ≈ 0:69m in the with-replacement case, and if m1 < 1

2 m in the without-
replacement setting, but not otherwise. Therefore, reducing the sampling fraction m1=m does
not immediately lead to a reduction in risk; it must be reduced below the threshold, 0:69 or 0:5,
in the cases of with- or without-replacement bagging respectively.

3.2. Numerical values of error
Recall that P.ρ, z/ depends on z only through the quantity q.z/ that is defined at equation (2.1).
In a slight abuse of notation, and in this section only, we shall write P.ρ, q/ for the value of P.ρ, z/

when q.z/=q, for any q∈ [0, 1]. In this notation, Fig. 1(a) shows P.ρ, q/ as a function of q, for
ρ=0:5, 0:7, 0:9. The last two curves were obtained by simulation and show the convergence of
the large sample approximation of the bagged nearest neighbour classifier to the Bayes classifier
that was defined in the last paragraph of Section 2.1. Fig. 1(b) gives the complementary plot of
P.ρ, q/ as a function of ρ, for q= 1

8 , 1
4 , 3

8 , . . . , 7
8 .

To demonstrate the asymptotic improvement in risk of the bagged nearest neighbour clas-
sifier over its nearest neighbour counterpart, we study two examples. In the first, we choose
f =φ, the standard normal density, and set g.z/ =φ.z −µ/, for µ∈ [0, 3]. In Fig. 2(a) we plot
errbagg, given by equation (3.3), as a function of µ, for ρ= 0:5, 0.7, 0.9, 1. Throughout, where

(a) (b)

Fig. 1. Plots of P .ρ, q/ (. . . . . . ., ρD 0:5; - - - - - - -, ρD 0:7; , ρD 0:9): (a) P .ρ, q/ as a function of q for
fixed ρ; (b) P .ρ, q/ as a function of ρ for fixed q, the latter ranging from 1

8 (bottom line) to 7
8 (top line) in steps

of 1
8
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Plots of errbagg for the bagged nearest neighbour classifier when mDnD200: (a), (b) errbagg as
a function of µ, the difference between the means of the distributions with respective densities f and g D
f .� �µ/: in (a) f Dφ, i.e. the standard normal density, and in (b) it is the density at equation (3.5) (. . . . . . .,
ρD0:5; � - � - � -, ρD0:7; - - - - - - -, ρD0:9; , ρD1); (c), (d), (e), (f) errbagg as a function of m1 .Dn1/, for
various values of m1 (in (c) and (e), the densities are the same as in (a), but with µD2; likewise, in (d) and
(f), the densities are the same as in (b), but again with µD2; resampling was done with replacement in the
case of (c) and (d), and without replacement for (d) and (f); . . . . . . ., Bayes risks)

a finite number of bagged samples needed to be drawn, we took B =199. Recall that the cases
ρ= 0:5 and ρ= 1 correspond to errNN and errBayes respectively. In this problem, the graphs of
the functions y = f.z/ and y = g.z/ cross at only one point, so we expect classification to be
relatively straightforward, provided that µ is not too small.

In the second of these two examples we choose f to have the mixture density

f.z/= 1
5

4∑
i=0

φ.z−4i/, .3:5/

and we set g.z/ = f.z −µ/ for µ∈ [0, 2]. For these versions of f and g, Fig. 2(b) again plots
errbagg as a function of µ, for the same values of ρ. Here the densities cross at nine points, and
classification is therefore much more difficult.
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In both examples, we observe that the bagged nearest neighbour classifier can provide con-
siderable asymptotic improvement in risk over the nearest neighbour classifier. To see whether
these gains are manifested in practice, we studied both the examples above with µ=2 and sim-
ulated training samples of size m=n=200. The risks of the bagged nearest neighbour classifier
as functions of m1 are given in Figs 2(c), 2(d), 2(e) and 2(f). Figs 2(c) and 2(e) refer to the first
example, whereas Figs 2(d) and 2(f) refer to the second. Resampling was done with replacement
in Figs 2(c) and 2(d) and without replacement in Figs 2(e) and 2(f) to show that the risk becomes
flat at different points, specifically at m1 ≈0:7m and m1 ≈0:5m respectively. The behaviour for
relatively small m1 is virtually identical for either resampling scheme. Two further points are
worthy of note:

(a) in all four cases, the optimal choice of m1 is much smaller than m;
(b) whereas the optimal choice appears to be m1 =1 in the first example under both types of

resampling, this is a poor choice in the more complicated second example. There, m1 =14
and m1 =16 are optimal for with- and without-replacement sampling respectively.

The next two examples concern functional data sets, one real and one simulated. The real
data are the mean monthly temperatures recorded at 27 different weather-stations, averaged
over the years 1960–1994. The stations are classified according to their geographical climate,
there being m=13 continental stations and n=14 Atlantic stations. These data are represented
by their first 13 Fourier coefficients, yielding the curves in Fig. 3(a). The square of the distance
between two curves is taken to be the sum of the squares of the differences between these
Fourier coefficients. Nearest neighbour and bagged nearest neighbour classification was per-
formed by leaving out one curve at a time, and attempting to classify the missing curve by
using the remaining data. Taking p = 13=27, the risk of the nearest neighbour classifier was
0.185. Using with-replacement resampling, and n1 =m1, the risk of the bagged nearest neigh-
bour classifier was 0.111 for m1 �8, 0.148 for m1 =9 and 0.185 for m1 �10.

Simulated functional data were obtained by generating m = 100 and n = 100 temperature
curves, the joint distributions of the temperatures over the 12 months being Gaussian and
having the same mean and covariance as those of the continental and Atlantic weather data

(a) (b)

Fig. 3. Weather data plots and bagged nearest neighbour classifier risks for simulated weather data:
(a) temperature curves generated from the monthly records at 27 weather-stations (. . . . . . ., continental sta-
tions; , Atlantic stations); (b) risks of the bagged nearest neighbour classifier at various resample sizes
for the simulated weather data, for with-replacement resampling (the sample sizes were mDnD100)
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respectively. The data were again represented by their first 13 Fourier coefficients. The reason for
choosing such large sample sizes is that, since virtually any classifier can be expected to perform
very well in such cases, the effects of choosing different resample sizes might be expected to be
non-observable for these values of m and n. Risks of the nearest neighbour and bagged nearest
neighbour classifiers were computed over 1000 test data and are given in Fig. 3(b). They are
indeed quite low, but the benefits that are gained by bagging with a relatively small resample
size are nevertheless clear.

4. Surrogates for densities of X and Y

In general circumstances, extending beyond Euclidean data models, the bagged nearest neigh-
bour classifier will tend to assign a new data value z to X or Y depending on which of these two
distributions has ‘greater likelihood’ in the vicinity of z. Following convention, in Section 2 we
argued that the distribution of X has greater likelihood if p f.z/ > .1 −p/ g.z/, where f and g
denote densities of X and Y , and p and 1 − p are the respective prior probabilities. However,
standard definitions of f and g, requiring differentiable distribution functions, are not meaning-
ful in some cases, e.g. when X and Y are random functions. Significant progress can nevertheless
be made under less restrictive assumptions, involving little more than smoothness, as a function
of ball radius, of the probability that X or Y lies in a ball, and properties of approximations to
relative densities, rather than existence of actual densities.

To appreciate how this is done, let us assume that X and Y take values in a common sample
space B, which we take to be a Banach space equipped with a norm, ‖·‖. Our smoothness
assumption on balls is

for both Z =X and Z =Y , and for each z∈B, the function πZ.δ|z/

=P.‖Z − z‖� δ/ is continuous in δ∈ [0, ∞/, with πZ.0|z/=0: .4:1/

We define relative density in terms of ratios of probabilities that X and Y lie in balls. Specifically,
given η> 0 let SX.η/ or SY .η/ denote the sets of z∈B such that, for all δ∈ .0, η/,

p πX.δ|z/

.1−p/ πY .δ|z/
�1+η or

.1−p/ πY .δ|z/

p πX.δ|z/
�1+η .4:2/

respectively. Thus, if z∈SX.η/ then we can fairly say that the distribution of X has greater den-
sity than that of Y in the neighbourhood of z, weighted by the prior probabilities p and 1−p,
without having to specify what we mean by ‘the’ densities of the distributions of X or Y .

It is straightforward to construct realistic, non-Euclidean, examples, for instance in function
spaces, where assumption (4.1) holds and the definition of relative density at expression (4.2)
is meaningful. See the next paragraph for discussion. Of course, such constructions depend on
the norm, ‖·‖, that is chosen for the sample space. This dependence is to be expected; even
for finite dimensional, d-variate Euclidean data, where B = Rd and suitable norms for the dis-
tance between .x.1/, . . . , x.d// and .y.1/, . . . , y.d// include .Σi |x.i/ −y.i/|2/1=2, Σi |x.i/ −y.i/| and
maxi |x.i/ −y.i/|, each choice gives rise to a different definition of densities f and g, defined in
each case by

δ−d P.‖X− z‖� δ/→ cd f.z/,

δ−d P.‖Y − z‖� δ/→ cd g.z/

as δ→0, where cd denotes the d-variate content of a d-dimensional sphere of unit radius. Our
argument in Sections 2 and 3 would usually be interpreted in the context of the traditional
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Euclidean norm, ‖x − y‖ = .Σi |x.i/ − y.i/|2/1=2, but it can also be validly understood in the
setting of the other two norms that were mentioned above.

When B denotes a function space, ‖·‖ might be an Lr-norm for some r �1. However, it is eas-
ier to construct examples in the case of a componentwise supremum norm, as follows. Assume
that X- and Y -distributions may be represented as X = Σj�1 αjUjψj and Y = Σj�1 αjVjψj,
where α1,α2, . . . is a sequence of non-negative constants satisfying Σj�1 jαj <∞, U1, U2, . . .
and V1, V2, . . . are sequences of independent and identically distributed random variables with
finite variance and ψ1,ψ2, . . . is a sequence of bounded orthogonal functions. In this model the
distance between the distributions of X and Y expresses the distance between the distributions
of Uj and Vj. Given functions u =Σj�1 αjujψj and v =Σj�1 αjvjψj in the common sample
space of X and Y , define ‖u−v‖=maxj.αj|uj −vj|/. Then, for example,

P.‖u−X‖� δ/=∏
j

P.|uj −Uj|� δ=αj/:

Using this formula, its analogue for P.‖u−Y‖�δ/ and the definition (4.2) of SX.η/ and SY .η/,
it may be determined whether u∈SX.0/ or u∈SY .0/, where SZ.0/ denotes the limit, as η↓0, of
SZ.η/.

We conclude this section by illustrating theory that can be developed when the distributions
of X and Y are smooth in the sense of assumption (4.1), and relative density is defined by using
expression (4.2). Theorem 3 below asserts that the bagged nearest neighbour classifier, applied
to z, converges to the generalized Bayes classifier which assigns z to the population with greater
relative density in the sense at expression (4.2). Under an additional assumption it may be proved
that the risk of the bagged nearest neighbour classifier converges to that of the Bayes classifier.

Define SZ.η, "/ to be the set of z∈SZ.η/ for which P.‖Z − z‖�η/ > ". Restricting attention
to z∈SZ.η, "/ for some " > 0, rather than just to z∈SZ.η/, amounts to asking that the density
of the distribution of Z is not too small in the neighbourhood of z.

Theorem 3. Making assumption (4.1), and that

the resample sizes m1 and n1 satisfy min.m1, n1/→∞, max.m1=m, n1=n/

→0 and m1=n1 →p=.1−p/ as m→∞, .4:3/

then, for each η, "> 0,

inf
z∈SX.η,"/

{P.bagged nearest neighbour classifier assigns z to ΠX/}→1,

inf
z∈SY .η,"/

{P.bagged nearest neighbour classifier assigns z to ΠY /}→1
.4:4/

as m→∞.

Condition (4.3) reflects remarks that were made in the second-last paragraph of Section 3.1.

5. Choice of sampling fraction by cross-validation

5.1. Methodology
Let Xi =X \ {Xi} and Yi =Y \ {Yi} denote the two data sets after the ith data value has been
dropped, where 1 � i � m or 1 � i � n in the respective cases. Write C−i,X and C−i,Y for the
bagged nearest neighbour classifiers based on the sample pairs .Xi, Y/ and .X , Yi/ respec-
tively, rather than on .X , Y/. The classifier C−i,X is constructed by sampling m1 data from Xi

and n1 data from Y , using either with- or without-replacement sampling, and analogously for
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C−i,Y . To simplify optimization we shall put r = m1=m and take n1 = [rn], i.e. the integer part
of rn, so that optimization is over only a single parameter. Both with- and without-replace-
ment resampling could be used, and leave-one-out methods employed to minimize risk over
both approaches as well as over r. However, for simplicity we shall assume that just one of the
two types of resampling is employed, and that optimization over r is attempted for just that
type.

A leave-one-out, or cross-validation-based, estimator of risk is

êrr.r/= p

m

m∑
i=1

I{C−i,X.Xi/=Y}+ 1−p

n

n∑
i=1

I{C−i,Y .Yi/=X},

where ‘C−i,X.Xi/=Y ’ means that the classifier C−i,X, when applied to Xi, misclassifies the latter
as coming from the Y -population. It is suggested that r be chosen to minimize êrr.r/.

5.2. Large sample properties
The expected value of êrr.r/ equals p times the average error of the bagged nearest neighbour
classifier when the training sample sizes are m − 1 and n, and data come from ΠX, plus 1 − p

times the average error when the training sample sizes are m and n−1, and data come from ΠY .
Therefore, assuming for the moment that

max
1�m1�m−2, 1�n1�n−2

∣∣êrr.r/−E{êrr.r/}∣∣→0 .5:1/

in probability, where m1 = rm and n1 = [rn], we would expect êrr.r/ to represent accurately the
risk of bagged nearest neighbour classifiers in cases where reducing the training sample sizes by
1 does not appreciably affect the risk, given by expression (2.2). Moreover, as argued in Sections
3 and 4, when m1 and n1 diverge but m1=m and n1=n converge to 0, the risk of the bagged nearest
neighbour classifier is less than the risk when this condition fails.

It follows that the value, r̂ say, of r which minimizes êrr.r/ must satisfy r̂ → 0 and mr̂ →∞,
both convergences occurring in probability. In consequence, it may be proved that the risk of
the empirical classifier, constructed by choosing r to minimize êrr.r/, converges to the risk of the
Bayes classifier under regularity conditions. An outline derivation of expression (5.1) is given
in Appendix A.5.

Importantly, this is not the same as saying that cross-validation leads to asymptotic minimi-
zation of regret, i.e. of the difference between the risk of the bagged nearest neighbour classifier
and that of the Bayes rule to which the bagged nearest neighbour classifier converges. Indeed,
it can be shown that, in many cases, the regret depends on local rather than global properties
of the two sampling distributions. For example, if the populations ΠX and ΠY are univariate
with densities f and g, and if the graphs of y = p f.z/ and y = .1 − p/ g.z/ cross, in the .z, y/

plane, at only a finite number of points, say z1, . . . , zν , then the values of m1 and n1 which
minimize regret depend, to first order, on the behaviour of f and g in neighbourhoods of the
points zi. In the nomenclature of statistical classification, these points form the ‘margin’ of the
present problem, i.e. the parts of the sample space where classification is difficult. It is known
that standard cross-validation algorithms generally fail to produce optimality in such local, as
distinct from global, settings and require additional smoothing, or regularization, to perform
well at that level; see, for example, Hall and Schucany (1989) and Mielniczuk et al. (1989). In the
present problem the smoothing that would be necessary to enable cross-validation to minimize
regret asymptotically would depend intimately on the problem, e.g. on whether the data were d

variate or functional.
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(a) (b)

(d)(c)

Fig. 4. Typical plots of cross-validation criterion and the frequencies with which different values of m1 are
selected by cross-validation: the sample sizes are m D n D 200; the densities in (a) and (c) are the same as
those in Fig.2(a), but with µD2, whereas in (b) and (d) they are the same as those in Fig.2(b), again with µD2;
in (a) and (b), results for two typical samples are shown, indicated by the broken and full lines; the horizontal
and vertical axes graph r Dm1=m .Dn1=n/ and êrr.r/ respectively; (c) and (d) give the relative frequencies,
obtained from 100 simulations, with which cross-validation selects different values of m1; resampling is done
without replacement in (a) and (c), and with replacement in (b) and (d)

5.3. Numerical properties
Figs 4(a) and 4(b) show, for the same distribution pairs that were used in Figs 2(a) and 2(b)
respectively, plots of êrr.r/ against r = m1=m for two typical data sets. The sample size is m =
n = 200, as in Figs 2(c), 2(d), 2(e) and 2(f). Figs 4(c) and 4(d) give the frequencies with which
different values of m1 are selected by cross-validation. Resampling is without replacement for
Figs 4(a) and 4(c) and with replacement for Figs 4(b) and 4(d). The results reflect very closely the
fact, indicated in Fig. 2, that m1 =1 and m1 =14 are optimal in the respective cases of Figs 4(a)
and 4(b).

Not only does cross-validation lead to an appropriate choice of m1, it also produces significant
reductions in risk, as we point out next. Of course, we expect that

Bayes risk < risk of bagged nearest neighbour classifier with m1 chosen by cross-validation

< risk of regular nearest neighbour classifier:

The values of these three risks, in the contexts of the first two numerical examples that were
treated in Section 3.2, are 0:158 < 0:163 < 0:224 and 0:283 < 0:311 < 0:379.

As an alternative to leave-one-out cross-validation, tenfold cross-validation could be used.
Here, the training data are divided randomly into 10 equal parts and the classifier is based on
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the data in all except one of the parts. The risk is estimated by attempting to classify the data
in the remaining part. The risks of the bagged nearest neighbour classifier with m1 chosen by
tenfold cross-validation were 0.163 and 0.307 in the two examples.
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Appendix A: Technical details

A.1. Poisson approximations to spatial distributions
As the density of points in the sample space increases, and provided that m=.m+n/→p, the distribution
of data in the neighbourhood of each z∈ Rd converges to that for a marked Poisson process P , in which
each point has one of two marks, X and Y , chosen independently of the marks for all other points. See for
example Daley and Vere-Jones (1988), page 205, for discussion of marked point processes.

Indeed, let P denote a homogeneous Poisson process with intensity pf + .1−p/g in Rd , and let each of
its points be marked as X or Y , with respective probabilities q.Z/ and 1−q.Z/ (given that the point occurred
at Z), independently of all other points. Assume that f and g are continuous and that m=.m+n/→p. Let
R⊆Rd be a compact set on which f +g>0. Given z∈R, let T.z/= .T1, . . . , Tk/ denote the vector of marks,
each either X or Y , for the (nearest, . . . , kth-nearest) respectively data in Z =X ∪Y , or in P , to z. Denote
by P the probability measure for the finite marked point process that is created by the points in Z, with
point marks X and Y ascribed in the obvious way, and let PPois be the analogous probability measure
for the marked point process P . Let T be the set of all 2k vectors t = .t1, . . . , tk/ of k marks, each either
X or Y . Then,

sup
z∈R

sup
t∈T

|P{T.z/= t}−PPois{T.z/= t}|→0 .A.1/

as n→∞. Result (A.1) implies that the probability that a new datum at z is classified as coming from X
converges to q.z/. This property directly gives theorem 1.

A.2. Bagging a marked Poisson point process
Bagging applied to P amounts to the majority vote rule for classifiers based on resamples PÅ drawn inde-
pendently from P . In the case of sampling with replacement, PÅ will typically involve repeated data, but
the number of repeats of any given data value is not used by the bagged classifier. Therefore we may dis-
regard repeats and view PÅ as simply a randomly chosen subset of P . In the case of without-replacement
resampling it is clear that PÅ is a randomly chosen subset of P .

Hence, we may view PÅ as having been obtained from P by standard point process ‘thinning’, i.e. each
point in P is ‘killed or kept’ with probability κ or 1 −κ respectively, where 0 �κ� 1 will depend on the
type of resampling, and each point will be thinned independently of all other points.

Let Tj = Tj.z/ denote the type, either X or Y , of the point in P that is jth nearest to z ∈B. It follows
from the definition of the thinned point process PÅ that

π.P/≡P.the point in PÅ that is nearest to z has mark X|P/=
∞∑

j=1
κj−1.1−κ/ I.Tj =X/: .A.2/

Since the marks of the points of P are independent and identically distributed as X or Y , the former hav-
ing probability q.z/ at equation (2.1), then the 0–1 variables Jj = I.Tj =X/ are independent and identically
distributed, taking the value 1 with probability q.z/.

Suppose that we create PÅ a total of B independent times, on each occasion starting from the same
P . Then, using a weak law of large numbers for a sum of B independent and identically distributed 0–1
variables, it may be proved that, excepting the case π.P/= 1

2 ,
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the limit as B →∞ of the conditional probability, given P , that for the majority of resampled point
processes PÅ the nearest point in PÅ to z is from the X-population equals I{π.P/> 1

2 }.

Therefore, the probability that the bagged nearest neighbour classifier applied to P assigns z to ΠX

converges to P{π.P/ > 1
2 }, provided that we take κ= ρ at result (A.2). Now, P{π.P/ > 1

2 } is exactly
the probability P.ρ, z/ at equation (3.2). It follows that the risk of the bagged nearest neighbour classi-
fier converges to that given by equation (3.3). Recall that we always treat the infinite simulation case of
bagging.

A.3. Approximating finite sample bagging by Poisson process bagging
Assume initially that we are conducting with-replacement resampling with a resample of size m1 �m, and
define ρn = exp.−m1=m/. Let j �1 denote a fixed integer. Then the probability that a resample of size m1
drawn from X excludes j specified data in X equals

.1− jm−1/m1 =ρj
n{1+O.m1=m2/}∼ρj

n,

since m1=m is bounded and m→∞. Likewise, if assumption (3.1) holds then the probability that a resample
of size n1 drawn from Y excludes j specified data in Y is asymptotic to ρj

n as n→∞.
If, in contrast, resampling is without replacement, if we redefine ρn = 1 − m1=m and if m − m1 → ∞,

then the probability that a resample of size m1, drawn from X without replacement, excludes j specified
data in X equals(

1− j

m

)(
1− j

m−1

)
. . .

(
1− j

m−m1 +1

)
=ρj

n

[
1+O

{
m1

m.m−m1/

}]
∼ρj

n:

Provided that assumption (3.1) holds, the probability that a resample of size n1 from Y excludes j specified
data in Y is also asymptotic to ρj

n.
Combining the results in the previous two paragraphs we deduce that for either with- or without-replace-

ment resampling, provided that we take ρn = exp.−m1=m/ or ρn =1−m1=m respectively, the probabilities
that resamples exclude j specific data are, in each case, asymptotic to ρj

n. Combining this property with
the results in Appendix A.2 we deduce that, if ρn →ρ, the probability that a new datum z is identified by
the bagged nearest neighbour classifier, applied to the original finite data sets X and Y , as coming from
ΠX, converges to P{π.P/> 1

2 } as n→∞, where π.P/ is defined at equation (A.2), with κ=ρ. This proves
the first part of theorem 2. The second part is a direct consequence of the first.

A.4. Proof of theorem 3
Order the values of U.z/=‖z−Z‖, for Z ∈Z =X ∪ Y , as U1.z/ < . . . < Um+n.z/, where Uj.z/=‖z−Zj‖
and Zj =Zj.z/∈Z. Define ZÅ =XÅ ∪YÅ, let ZÅ denote a generic value in ZÅ and put

ρj =P.Zj =∈ZÅ|Z1, . . . , Zj−1 =∈ZÅ;X , Y/,

π.z|Z/=P.nearest ZÅ to z is in X |X , Y/

=
m+n∑
j=1

ρ1. . . ρj−1.1−ρj/ I.Zj ∈X /: .A.3/

In this notation,

P.bagged nearest neighbour classifier assigns z to ΠX/=P{π.z|Z/> 1
2 }:

It may be proved from equation (A.3) that var{π.z|Z/}→ 0 uniformly in z ∈SX.η, "/, for each η, " > 0;
compare the argument below expression (3.4). From this result and Chebyshev’s inequality we see that, to
prove the first part of expression (4.4), it suffices to show that, for each η, "> 0,

lim inf
m→∞

inf
z∈SX.η, "/

[E{π.z|Z/}] > 1
2 : .A.4/

The second part of expression (4.4) follows analogously.
Finally we derive inequality (A.4). Let M and N equal the numbers of distinct values in XÅ and YÅ

respectively. For example, in the case of without-replacement sampling, M =m1 and N =n1. Now,
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Q.z|M, N/≡P.nearest ZÅ to z is in X |M, N/

=
∫
δ>0

P.‖Y − z‖> δ/Ndδ{1−P.‖X− z‖> δ/M}

= 1
2 +Q1.z|M, N/,

where

Q1.z|M, N/=M

∫
δ>0

{1−πX.δ|z/}2M−1

[ {1−πY .δ|z/}N

{1−πX.δ|z/}M
−1

]
dδπX.δ|z/:

Given η∈ .0, ∞/, put Q1 =Q2 +Q3 where

Q2.z|M, N/=M

∫
δ�η

{1−πX.δ|z/}2M−1

[ {1−πY .δ|z/}N

{1−πX.δ|z/}M
−1

]
dδπX.δ|z/, .A.5/

|Q3.z|M, N/|�M

∫
δ>η

{1−πX.δ|z/}2M−1

[ {1−πY .δ|z/}N

{1−πX.δ|z/}M
+1

]
dδπX.δ|z/

�2{1−πX.η|z/}M: .A.6/

The distributions of M and N depend only on m, n, m1 and n1, not on z or on the distributions of X or Y ;
and M = .1−∆1/m1 and N = .1−∆2/n1, where ∆j denotes a random variable satisfying P.0�∆j �1/=1
and P.∆j >γ/→ 0, as m→∞, for each γ> 0. Call this property (P1). It follows from property (P1) and
the definition of SX.η, "/ that E[{1−πX.η|z/}M ]→0 uniformly in z∈SX.η, "/. Hence, by inequality (A.6),
E|Q3.z | M, N/|→ 0 uniformly in the same sense. Call this property (P2). Note also that, by assumption
(4.3), m1=n1 →p=.1−p/. Using this property, property (P1) and equation (A.5) we deduce that

lim inf
m→∞

inf
z∈SX.η, "/

[E{Q2.z|M, N/}] > 0: .A.7/

Combining this formula with property (P2) we deduce that inequality (A.7) continues to hold if Q2 there
is replaced by Q1. Since E{π.z|Z/}=E{Q.z|M, N/}= 1

2 +E{Q1.z|M, N/} then this result is equivalent
to inequality (A.4).

A.5. Derivation of assumption (5.1)
Assume that n=m is bounded. Moment methods may be used to prove that, for sufficiently large integers
k �1,

E[êrr.r/−E{êrr.r/}]2k =o.m−1/

uniformly in r, as m→∞. Therefore, by Markov’s inequality,

P [|êrr.r/−E{êrr.r/}|> "]=o.m−1/,

uniformly in r, for each " > 0. This implies assumption (5.1); note that there are no more than m distinct
values of r.
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