The Extremal types theorem

Lemma 1. If G is max-stable, then there exist real-valued functions $a(s)>0$ and $b(s)$, defined for $s>0$, such that

$$
G^{n}(a(s) x+b(s))=G(x) .
$$

Proof. Since G is max-stable, there exist $a_{n}>0$ and b_{n} such that

$$
G^{s}\left(a_{n} x+b_{n}\right)=G(x) \xrightarrow{d} G(x) .
$$

Thus $G^{\lfloor n s\rfloor}\left(a_{\lfloor n s\rfloor} x+b_{\lfloor n s\rfloor}\right)=G(x)$, and we deduce that

$$
G^{n}\left(a_{\lfloor n s\rfloor} x+b_{\lfloor n s\rfloor}\right)=\exp \left\{\frac{n}{\lfloor n s\rfloor}\lfloor n s\rfloor \log G\left(a_{\lfloor n s\rfloor} x+b_{\lfloor n s\rfloor}\right)\right\} \xrightarrow{d} G^{1 / s}(x) .
$$

Since $G^{1 / s}$ is non-degenerate, the lemma from lectures gives that there exist $a(s)>0$ and $b(s)$ such that $G(a(s) x+b(s))=G^{1 / s}(x)$, so $G^{s}(a(s) x+b(s))=G(x)$.

Theorem 2 (Extremal types theorem). Let $\left(X_{n}\right)$ be independent with distribution function F and let $X_{(n)}=\max _{1 \leq i \leq n} X_{(i)}$. If there exist constants $a_{n}>0$ and b_{n} and a non-degenerate distribution function G such that

$$
\mathbb{P}\left(\frac{X_{(n)}-b_{n}}{a_{n}} \leq x\right) \xrightarrow{d} G(x),
$$

then G must be of the same type as one of the three extreme value classes below:

Type I (Fréchet): $G_{1, \alpha}(x)=\left\{\begin{array}{ll}0 & \text { if } x \leq 0 \\ \exp \left(-x^{-\alpha}\right) & \text { if } x>0\end{array}\right.$ for some $\alpha>0$
Type II (Negative Weibull): $G_{2, \alpha}(x)=\left\{\begin{array}{ll}\exp \left\{-(-x)^{\alpha}\right\} & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{array}\right.$ for some $\alpha>0$
Type III (Gumbel): $G_{3}(x)=\exp \left(-e^{-x}\right)$ for $x \in \mathbb{R}$.

Conversely, any distribution function of the same type as one of these extreme value classes can appear as such a limit.

Proof. It suffices to show that the class of max-stable distribution functions coincides with the set of distribution functions of the same type as the three given extreme value
classes. To check that the given distribution functions are max-stable, it suffices to observe that if $a_{n}=n^{1 / \alpha}, b_{n}=0$, then

$$
G_{1, \alpha}^{n}\left(a_{n} x+b_{n}\right)=\left\{\begin{array}{ll}
0 & \text { if } x \leq 0 \\
\exp \left\{-n\left(a_{n} x+b_{n}\right)^{-\alpha}\right\} & \text { if } x>0
\end{array}=G_{1, \alpha}(x) .\right.
$$

Similarly, if $a_{n}=n^{-1 / \alpha}, b_{n}=0$, then

$$
G_{2, \alpha}^{n}\left(a_{n} x+b_{n}\right)=\left\{\begin{array}{ll}
\exp \left\{-n\left(-a_{n} x-b_{n}\right)^{\alpha}\right\} & \text { if } x<0 \\
1 & \text { if } x \geq 0
\end{array}=G_{2, \alpha}(x) .\right.
$$

Finally, if $a_{n}=1, b_{n}=\log n$, then

$$
G_{3}\left(a_{n} x+b_{n}\right)=\exp \left\{-n e^{-\left(a_{n} x+b_{n}\right)}\right\}=\exp \left(-e^{-x}\right)
$$

Conversely, suppose G is max-stable, so by Lemma 1 we can write $G^{s}(a(s) x+b(s))=$ $G(x)$. It follows that for $0<G(x)<1$,

$$
-\log \{-\log G(a(s) x+b(s))\}-\log s=\log \{-\log G(x)\}
$$

The max-stability property with $n=2$ gives that $G^{2}(a x+b)=G(x)$ for some $a>0$ and $b \in \mathbb{R}$, which means G cannot have a jump at $x_{-}=\sup \{x: G(x)=0\}$ or $x_{+}=\inf \{x: G(x)=1\}$ if these are finite. Thus the non-decreasing function $\psi(x)=-\log \{-\log G(x)\}$ is such that

$$
\lim _{x \rightarrow x_{-}} \psi(x)=-\infty, \quad \lim _{x \rightarrow x_{+}} \psi(x)=\infty
$$

Therefore ψ has an inverse function $U(y)=\inf \{x \in \mathbb{R}: \psi(x) \geq y\}$, defined for all $y \in \mathbb{R}$, and since $\psi(a(s) x+b(s))-\log s=\psi(x)$, it follows that

$$
\begin{aligned}
U(y) & =\inf \{x: \psi(a(s) x+b(s))-\log s \geq y\} \\
& =\frac{1}{a(s)}\left\{\inf \left\{x^{\prime}: \psi\left(x^{\prime}\right) \geq y+\log s\right\}-b(s)\right\} \\
& =\frac{U(y+\log s)-b(s)}{a(s)}
\end{aligned}
$$

Subtracting this equation for $y=0$,

$$
\frac{U(y+\log s)-U(\log s)}{a(s)}=U(y)-U(0)
$$

and writing $z=\log s, \tilde{a}(z)=a\left(e^{z}\right)$ and $\tilde{U}(y)=U(y)-U(0)$,

$$
\begin{equation*}
\tilde{U}(y+z)-\tilde{U}(z)=\tilde{U}(y) \tilde{a}(z) \tag{1}
\end{equation*}
$$

for all $y, z \in \mathbb{R}$. Interchanging y and z and subtracting,

$$
\begin{equation*}
\tilde{U}(y)\{1-\tilde{a}(z)\}=\tilde{U}(z)\{1-\tilde{a}(y)\} . \tag{2}
\end{equation*}
$$

Two cases are possible:
i) $\tilde{a}\left(z_{0}\right) \neq 1$ for some $z_{0}>0$. Then $\tilde{a}(z) \neq 1$ for all $z>0$, because otherwise there exists $z>0$ such that $\tilde{U}(z)=0$. But this would mean that $\tilde{U}(y+z)=\tilde{U}(y)$ for all y, by (1), so $U(y+z)=U(y)$ for all $y \in \mathbb{R}$, a contradiction. Fixing $z>0$, writing $c=\tilde{U}(z) /\{1-\tilde{a}(z)\}$ and noting from (2) that this is constant, we have from (1) that

$$
c(1-\tilde{a}(y+z))-c(1-\tilde{a}(z))=c(1-\tilde{a}(y)) \tilde{a}(z)
$$

so that

$$
\tilde{a}(y+z)=\tilde{a}(y) \tilde{a}(z)
$$

for all $y \in \mathbb{R}$. But \tilde{a} is monotone, since $\tilde{U}(y)=c\{1-\tilde{a}(y)\}$ from (2), and the only non-zero solutions that are monotone and not identically equal to 1 are $\tilde{a}(y)=e^{\rho y}$ for some $\rho \neq 0$ (check). But then

$$
\psi^{-1}(y)=U(y)=\nu+c\left(1-e^{\rho y}\right)
$$

where $\nu=U(0)$. Since ψ^{-1} is non-decreasing, we must have $c<0$ if $\rho>0$ and $c>0$ if $\rho<0$, so in fact ψ^{-1} is continuous and strictly increasing. Hence

$$
x=\psi^{-1}(\psi(x))=\nu+c\left(1-e^{\rho \psi(x)}\right)=\nu+c\left[1-\{-\log G(x)\}^{-\rho}\right],
$$

so

$$
G(x)=\exp \left\{-\left(1-\frac{x-\nu}{c}\right)^{-1 / \rho}\right\}
$$

for $0<G(x)<1$. From the continuity of G at any finite endpoints, we see that G is of Type I, with $\alpha=1 / \rho$, if $\rho>0$, and of Type II, with $\alpha=-1 / \rho$, if $\rho<0$.
ii) $\tilde{a}(z)=1$ for all $z>0$. But then, from (1),

$$
\tilde{U}(y+z)=\tilde{U}(y)+\tilde{U}(z)
$$

for which the only non-constant non-decreasing solutions are $\tilde{U}(y)=\rho y$ for some $\rho>0$. Thus

$$
\psi^{-1}(y)=U(y)=\nu+\rho y,
$$

where $\nu=U(0)$, and since this is continuous and strictly increasing,

$$
x=\psi^{-1}(\psi(x))=\rho \psi(x)+\nu=-\rho \log \{-\log G(x)\}+\nu
$$

Hence $G(x)=\exp \left\{-e^{-(x-\nu) / \rho}\right\}$ for $0<G(x)<1$, and since G has no jump at any finite endpoint, G is of Type III.

