
The Extremal types theorem

Lemma 1. If G is max-stable, then there exist real-valued functions a(s) > 0 and
b(s), defined for s > 0, such that

Gn(a(s)x+ b(s)) = G(x).

Proof. Since G is max-stable, there exist an > 0 and bn such that

Gs(anx + bn) = G(x)
d
→ G(x).

Thus Gbnsc(abnscx+ bbnsc) = G(x), and we deduce that

Gn(abnscx + bbnsc) = exp
{ n

bnsc
bnsc logG(abnscx + bbnsc)

}

d
→ G1/s(x).

Since G1/s is non-degenerate, the lemma from lectures gives that there exist a(s) > 0
and b(s) such that G(a(s)x+ b(s)) = G1/s(x), so Gs(a(s)x+ b(s)) = G(x).

Theorem 2 (Extremal types theorem). Let (Xn) be independent with distribution
function F and let X(n) = max1≤i≤nX(i). If there exist constants an > 0 and bn and
a non-degenerate distribution function G such that

P

(X(n) − bn
an

≤ x
)

d
→ G(x),

then G must be of the same type as one of the three extreme value classes below:

Type I (Fréchet): G1,α(x) =

{

0 if x ≤ 0
exp(−x−α) if x > 0

for some α > 0

Type II (Negative Weibull): G2,α(x) =

{

exp{−(−x)α} if x < 0
1 if x ≥ 0

for some α > 0

Type III (Gumbel): G3(x) = exp(−e−x) for x ∈ R.

Conversely, any distribution function of the same type as one of these extreme value
classes can appear as such a limit.

Proof. It suffices to show that the class of max-stable distribution functions coincides
with the set of distribution functions of the same type as the three given extreme value
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classes. To check that the given distribution functions are max-stable, it suffices to
observe that if an = n1/α, bn = 0, then

Gn
1,α(anx+ bn) =

{

0 if x ≤ 0
exp{−n(anx+ bn)

−α} if x > 0
= G1,α(x).

Similarly, if an = n−1/α, bn = 0, then

Gn
2,α(anx+ bn) =

{

exp{−n(−anx− bn)
α} if x < 0

1 if x ≥ 0
= G2,α(x).

Finally, if an = 1, bn = logn, then

G3(anx+ bn) = exp{−ne−(anx+bn)} = exp(−e−x).

Conversely, suppose G is max-stable, so by Lemma 1 we can write Gs(a(s)x+ b(s)) =
G(x). It follows that for 0 < G(x) < 1,

− log{− logG(a(s)x + b(s))} − log s = log{− logG(x)}.

The max-stability property with n = 2 gives that G2(ax + b) = G(x) for some
a > 0 and b ∈ R, which means G cannot have a jump at x− = sup{x : G(x) = 0}
or x+ = inf{x : G(x) = 1} if these are finite. Thus the non-decreasing function
ψ(x) = − log{− logG(x)} is such that

lim
x→x

−

ψ(x) = −∞, lim
x→x+

ψ(x) = ∞.

Therefore ψ has an inverse function U(y) = inf{x ∈ R : ψ(x) ≥ y}, defined for all
y ∈ R, and since ψ(a(s)x + b(s)) − log s = ψ(x), it follows that

U(y) = inf{x : ψ(a(s)x+ b(s)) − log s ≥ y}

=
1

a(s)
{inf{x′ : ψ(x′) ≥ y + log s} − b(s)}

=
U(y + log s) − b(s)

a(s)
.

Subtracting this equation for y = 0,

U(y + log s) − U(log s)

a(s)
= U(y) − U(0),

and writing z = log s, ã(z) = a(ez) and Ũ(y) = U(y) − U(0),

Ũ(y + z) − Ũ(z) = Ũ(y)ã(z) (1)

2



for all y, z ∈ R. Interchanging y and z and subtracting,

Ũ(y){1 − ã(z)} = Ũ(z){1 − ã(y)}. (2)

Two cases are possible:

i) ã(z0) 6= 1 for some z0 > 0. Then ã(z) 6= 1 for all z > 0, because otherwise there
exists z > 0 such that Ũ(z) = 0. But this would mean that Ũ(y + z) = Ũ(y) for all
y, by (1), so U(y + z) = U(y) for all y ∈ R, a contradiction. Fixing z > 0, writing
c = Ũ(z)/{1− ã(z)} and noting from (2) that this is constant, we have from (1) that

c(1 − ã(y + z)) − c(1 − ã(z)) = c(1 − ã(y))ã(z),

so that
ã(y + z) = ã(y)ã(z)

for all y ∈ R. But ã is monotone, since Ũ(y) = c{1 − ã(y)} from (2), and the only
non-zero solutions that are monotone and not identically equal to 1 are ã(y) = eρy

for some ρ 6= 0 (check). But then

ψ−1(y) = U(y) = ν + c(1 − eρy)

where ν = U(0). Since ψ−1 is non-decreasing, we must have c < 0 if ρ > 0 and c > 0
if ρ < 0, so in fact ψ−1 is continuous and strictly increasing. Hence

x = ψ−1(ψ(x)) = ν + c(1 − eρψ(x)) = ν + c[1 − {− logG(x)}−ρ],

so

G(x) = exp
{

−
(

1 −
x− ν

c

)−1/ρ}

for 0 < G(x) < 1. From the continuity of G at any finite endpoints, we see that G is
of Type I, with α = 1/ρ, if ρ > 0, and of Type II, with α = −1/ρ, if ρ < 0.

ii) ã(z) = 1 for all z > 0. But then, from (1),

Ũ(y + z) = Ũ(y) + Ũ(z),

for which the only non-constant non-decreasing solutions are Ũ(y) = ρy for some
ρ > 0. Thus

ψ−1(y) = U(y) = ν + ρy,

where ν = U(0), and since this is continuous and strictly increasing,

x = ψ−1(ψ(x)) = ρψ(x) + ν = −ρ log{− logG(x)} + ν.

Hence G(x) = exp{−e−(x−ν)/ρ} for 0 < G(x) < 1, and since G has no jump at any
finite endpoint, G is of Type III.
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