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The basic binary classification problem

Let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. pairs in
R

d × {1, 2}, with P(Y = 1) = π = 1 − P(Y = 2) and
(X|Y = r) ∼ Pr, for r = 1, 2.

A classifier is a function C : R
d → {1, 2}.

We aim to minimise the misclassification error rate or
risk over a (measurable) set R ⊆ R

d:

RR(C) = P
{

(C(X) 6= Y )1{X∈R}

}

.



R. J. Samworth Nonparametric classification

Bayes classifier

Let P̄ = πP1 + (1 − π)P2 denote the marginal distribution
of X, and η(x) = P(Y = 1|X = x) denote the regression
function. The Bayes classifier is

CBayes(x) =







1 if η(x) ≥ 1/2

2 otherwise.

Its risk is optimal, and is given by

RR(CBayes) =

∫

R
min{η(x), 1 − η(x)} dP̄ (x)

. . .
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Bayes classifier

Let P̄ = πP1 + (1 − π)P2 denote the marginal distribution
of X, and η(x) = P(Y = 1|X = x) denote the regression
function. The Bayes classifier is

CBayes(x) =







1 if η(x) ≥ 1/2

2 otherwise.

Its risk is optimal, and is given by

RR(CBayes) =

∫

R
min{η(x), 1 − η(x)} dP̄ (x)

. . . but it can’t be used in practice !
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Nearest neighbour classifiers
Fix and Hodges (1951), Cover and Hart (1967)

Fix x ∈ R and let (X(1), Y(1)), . . . , (X(n), Y(n)) be such that
‖X(1) − x‖ ≤ . . . ≤ ‖X(n) − x‖. The k-nn classifier is

Ĉknn
n (x) =







1 if k−1
∑k

i=1 1{Y(i)=1} ≥ 1/2

2 otherwise.
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Nearest neighbour classifiers
Fix and Hodges (1951), Cover and Hart (1967)

Fix x ∈ R and let (X(1), Y(1)), . . . , (X(n), Y(n)) be such that
‖X(1) − x‖ ≤ . . . ≤ ‖X(n) − x‖. The k-nn classifier is

Ĉknn
n (x) =







1 if k−1
∑k

i=1 1{Y(i)=1} ≥ 1/2

2 otherwise.

Let wn = (wni)
n
i=1 denote a set of weights normalised so

that
∑n

i=1 wni = 1. The weighted nearest neighbour
classifier (Royall, 1966) is

Ĉwnn
n (x) =







1 if
∑n

i=1 wni1{Y(i)=1} ≥ 1/2

2 otherwise.
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Assumptions

(A.1) The set R ⊆ R
d is a compact d-dimensional

manifold with boundary ∂R.

(A.2) The set S = {x ∈ R : η(x) = 1/2} is non-empty.
There is an open subset U0 of R

d containing S s.t.: (i)
|η(x) − 1/2| is bounded away from zero for x ∈ U \ U0,
where U ⊇ R is open; (ii) the restrictions of P1 and P2

to U0 are absolutely continuous w.r.t. Lebesgue
measure, with twice continuously differentiable
Radon–Nikodym derivatives f1 and f2.
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Assumptions

(A.3) There exists ρ > 0 such that
∫

Rd ‖x‖
ρ dP̄ (x) < ∞. For

small δ > 0, the ratio P̄ (Bδ(x))/(adδ
d) is bounded

away from zero, uniformly for x ∈ R.

(A.4) For all x ∈ S, we have η̇(x) 6= 0, and for all
x ∈ S ∩ ∂R, we have ∂̇η(x) 6= 0, where ∂η denotes the
restriction of η to ∂R.
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Allowable weight vectors

Let s2
n =

∑n
i=1 w2

ni and tn = n−2/d
∑n

i=1 αiwni, where
αi = i1+2/d − (i − 1)1+2/d. For β > 0, let Wn,β denote the
set of sequences of non-negative weight vectors with

❑ s2
n ≤ n−β;

❑ t2n ≤ n−β ;

❑
∑n

i=k2+1 wni/tn ≤ 1/ log n, where k2 = ⌊n1−β⌋;

❑
∑n

i=k2+1 w2
ni/s

2
n ≤ 1/ log n;

❑
∑n

i=1 w3
ni/s

3
n ≤ 1/ log n.

The unweighted k-nearest neighbour classifier weights
belong to Wn,β for small β > 0 provided that
max(nβ , log2 n) ≤ k ≤ min(n(1−βd/4), n1−β).
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Excess risk expansion (S., 2012)

Assume (A.1)–(A.4). For each β > 0,

RR(Ĉwnn
n ) − RR(CBayes) = γn(wn){1 + o(1)}

as n → ∞, uniformly for wn ∈ Wn,β, where

γn(wn) = B1s
2
n + B2t

2
n.
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Defining the constants

Let f̄ = πf1 + (1 − π)f2, let ad be the volume of the unit
ball in the norm ‖ · ‖ in R

d and let

a(x) =

∑d
j=1 cj,d{ηj(x)f̄j(x) + 1

2ηjj(x)f̄(x)}

a
1+2/d
d f̄(x)1+2/d

,

where cj,d =
∫

v:‖v‖≤1 v2
j dv. Define

B1 =

∫

S

f̄(x0)

4‖η̇(x0)‖
dx0 and B2 =

∫

S

f̄(x0)

‖η̇(x0)‖
a(x0)

2 dx0,

where dx0 denotes the natural volume element of S. Note
that B1 > 0, and B2 ≥ 0, with equality if and only if a is
identically zero on S.
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Optimal weights

Let

k∗ =

⌊{

d(d + 4)

2(d + 2)

}d/(d+4)
(B1

B2

)d/(d+4)
n4/(d+4)

⌋

,

and set

w∗
ni =







1
k∗

(

1 + d
2 − dαi

2(k∗)2/d

)

for i = 1, . . . , k∗

0 for i = k∗ + 1, . . . , n.
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Diagram of optimal weights
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Optimality statement

For any β > 0 and any wn = (wni)
n
i=1 ∈ Wn,β, we have

lim inf
n→∞

RR(Ĉwnn
n,wn

) − RR(CBayes)

RR(Ĉwnn
n,w∗

n
) − RR(CBayes)

≥ 1.

Moreover, the ratio converges to 1 if and only if both
∑n

i=1 w2
ni/

∑n
i=1(w

∗
ni)

2 → 1 and
∑n

i=1 αiwni/
∑n

i=1 αiw
∗
ni → 1.
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Asymptotic improvement over k-nn

Let Ĉknn
n,k denote the unweighted k-nearest neighbour

classifier with optimal k (Hall, Park and S., 2008) . Then

k∗ =

(

2(d + 4)

d + 2

)d/(d+4)

k,

and

RR(Ĉwnn
n,w∗

n
) − RR(CBayes)

RR(Ĉknn
n,k ) − RR(CBayes)

→
1

22d/(d+4)

(

2d + 4

d + 4

)(2d+4)/(d+4)

.
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Comparison between asymptotic regrets
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The bagged nearest neighbour classifier
(Hall and S.,2005, Biau, C érou and Guyader, 2010)

The bagged nearest neighbour classifier applies a
majority vote to the classifications of a 1-nearest
neighbour classifier applied to resamples of the data.

In the infinite-simulation case, for a resample size m,

wb,with
ni =

(

1 −
i − 1

n

)m

−

(

1 −
i

n

)m

, i = 1, . . . , n

and

w
b,w/o
ni =







(

n−i
m−1

)

/
(

n
m

)

for i = 1, . . . , n − m + 1

0 for i = n − m + 2, . . . , n.
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Intuition for the bnn classifier

Let q = m/n denote the sampling fraction. For large n,
both types of bnn classifier are similar to the classifier
that places a geometric distribution on the observations:

wGeo
ni =

q(1 − q)i−1

1 − (1 − q)n
, i = 1, . . . , n.

Write Ĉbnn
n,q for any of these three classifiers.



R. J. Samworth Nonparametric classification

Bagged nearest-neighbour classifier risk

Assume (A.1)–(A.4). If n−(1−ǫ) ≤ q ≤ n−ǫ, then

RR(Ĉbnn
n,q ) − RR(CBayes) = γ̃n(q){1 + o(1)},

uniformly in q, where

γ̃n(q) =
B1

2
q +

B2 Γ
(

2 + 2
d

)2

n4/dq4/d
.

If nβ ≤ k ≤ n1−β and Ĉbnn
n,q denotes the bnn classifier with

q =
Γ(2+ 2

d
)2

2d/(d+4)
1
k , then

RR(Ĉbnn
n,q ) − RR(CBayes)

RR(Ĉknn
n,k ) − RR(CBayes)

→
Γ
(

2 + 2
d

)2d/(d+4)

24/(d+4)
.
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Further regret comparisons

0 10 20 30 40 50

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

d

R
eg

re
tr

at
io



R. J. Samworth Nonparametric classification

Summary

• The optimal (non-negative) weights have a relatively
simple form

• The improvement over the unweighted k-nearest
neighbour classifier can be quantified

• The bagged nearest neighbour classifer is somewhat
suboptimal for small d, but close to optimal when d is
large

• Improvements in the rate of convergence are possible
under stronger smoothness assumptions, provided
we allow negative weights.
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