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The basic binary classification problem

Let (X,Y),(X1,Y1),...,(X,,Y,) beiid. pairsin
R x {1,2}, with P(Y =1)=7=1—-P(Y = 2) and
(XY =r)~ P, for r=1,2.

A classifier is afunction C:RY — {1,2}.

We aim to minimise the misclassification error rate  or
risk over a (measurable) set R C RY:

=P{(C(X) #Y)lixery }-
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Bayes classifier

Let P = 7P, + (1 — 7)P, denote the marginal distribution
of X, and n(x) =P(Y = 1|X = z) denote the regression
function. The Bayes classifier is

/

1 ifn(z) >1/2

2 otherwise.

\

CBayes (x) — ¢

Its risk Is optimal, and is given by

Ry (CPves) = / min{n(z), 1 - n(z)} dP(z)
R
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Bayes classifier

Let P = 7P + (1 — 7)P, denote the marginal distribution
of X, and n(x) =P(Y = 1|X = z) denote the regression
function. The Bayes classifier is

(

1 ifn(z)>1/2

2 otherwise.

\

CBayes (x) — ¢

Its risk Is optimal, and is given by
Re(CP) = [ min{n(z).1 - n(z)} dP(a)
R

... butit can’t be used in practice !
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Nearest neighbour classifiers

Fix and Hodges (1951), Cover and Hart (1967)

Fix z € R and let (X1, Y1)),. .., (X, Yn)) be such that
[ Xy — =[] < ... < || X(n) — z|. The k-nn classifier is

/

Lif kY Ty, 1y = 1/2

C™(z) = <
2 otherwise.

\
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Nearest neighbour classifiers

Fix and Hodges (1951), Cover and Hart (1967)
Fix x € Rand let (X(),Y1)),-..,(X(n), Y(»n)) be such that
[ Xqy —z|| < ... < || X(n) — z||. The k-nn classifier is

/

1 if eI Ly, =1y = 1/2

CR™ (z) = 4
2 otherwise.

\

Let w,, = (wy;)i_, denote a set of weights normalised so
that > " , wy; = 1. The weighted nearest neighbour
classifier (royar, 1966) 1S

y

1 if Z?:l wniﬂ{Y(i)zl} Z 1/2

() = |
2 otherwise.
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Assumptions

(A.1) The set R C R%is a compact d-dimensional
manifold with boundary oR.

(A.2) Theset S ={z € R:n(x)=1/2}is non-empty.
There is an open subset U, of R? containing S s.t.: (i)
In(x) — 1/2| is bounded away from zero for x € U \ Uy,
where U D 'R is open; (ii) the restrictions of P, and P,
to Uy are absolutely continuous w.r.t. Lebesgue
measure, with twice continuously differentiable
Radon—Nikodym derivatives  f; and fs.
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Assumptions

(A.3) There exists p > 0 such that [, |lz||” dP(z) < co. For
small § > 0, the ratio P(Bs(x))/(aq0?) is bounded
away from zero, uniformly for x € R.

(A.4) Forall z € S, we have 7n(z) # 0, and for all
r € SNIR, we have dn(z) # 0, where dn denotes the
restriction of 7 to OR.
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Allowable weight vectors

Let s2 =57 w2, and t, = n=2/43"" . aw,;, where
a; = i'T2/d — (i — 1)1+2/4 For 3 > 0, let W,, 5 denote the
set of sequences of non-negative weight vectors with

0 s2 <n b,

0 2 <n™#;

O > k1 Wni/tn < 1/1ogn, where ky = [n'~7];
L Zi:k2+1 wm/sn < 1/logn;

O Yo wyi/s, < 1/logn.

The unweighted k-nearest neighbour classifier weights
belongto W, g for small 3 > 0 provided that
max(n?,log? n) < k < min(n(!=84/4) pl=F),
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EXxcess risk expansion . 2o

Assume (A.1)-(A.4). Foreach (> 0,
Rr(C)™) = Rr(CPY) = 4 (wn){1 + o(1)}
as n — oo, uniformly for w,, € W, g, where

Y (Wy) = Blsi + Bgt%.
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Defining the constants

Let f = 7f1 + (1 — @) fo, let ay be the volume of the unit

ball in the norm || - || in R¢ and let
oy = St il (1) + by ()7 @)
ay ! Fla) 12/ |

R 2 '

_ f (o) . _ /(o) alz)2 do
Bi= | fiaep o @d Bi= [ ettt dn,

where dxy denotes the natural volume element of S. Note
that B; > 0, and By > 0, with equality ifand only if  a Is
iIdentically zeroon S.
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Optimal weights

Let
d/(d+4
o = | { A DV By s
2(d + 2) Bo ’
and set
( d do; - «
0 fori=k"+1,...,n.
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Diagram of optimal weights

0.010
l

0.008
l

0.006
l

Wny;

0.004

0.002
l

0.000
l




R. J. Samworth Nonparametric classification

Optimality statement

Forany g > 0andany w, = (wp;)l, € W, g, we have

RR(éwnn ) — Rp (CBayes)

lim inf bW > 1.
n—aoo RR(CXZ&%) — RR<CBa’yeS)

Moreover, the ratio converges to 1 if and only if both

D iy Wiy iy (i) — Land Y7 agwni/ Y0 cqwy, — 1.
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Asymptotic improvement over  k-nn

Let Cku denote the unweighted  k-nearest neighbour
classifier with optimal & (Han, parkand s., 2008) . Then

d/(d+4)
o (2(d+4)> .

d+ 2
and
R (Cym.) — Rp (CBes) 1 2d + 4 24T/ (d+)
Ry (Ckmn) — Ry (CBaves)  22d/(d+4) ( d+4 ) |
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Comparison between asymptotic regrets

Regret ratio

0.90 0.92 0.94 0.96 0.98 1.00 1.02
|
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The bagged nearest neighbour classifier

(Hall and S.,2005, Biau, C érou and Guyader, 2010)

The bagged nearest neighbour classifier applies a
majority vote to the classifications of a 1-nearest
neighbour classifier applied to resamples of the data.

In the infinite-simulation case, for a resample size m,
. m . m
w, = — — — — , 1= 1,...,mn
n n

y

and

(n??b:a)/(:f;,) for 1=1,....n—m+1

0 foro=n—m+42,...,n.

b,w/o
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Intuition for the bnn classifier

Let ¢ = m/n denote the sampling fraction. For large  n,
both types of bnn classifier are similar to the classifier
that places a geometric distribution on the observations:

Geo __ q(l o q)i_l . 1

ni —1_<1_q)n, 1 = .. N

w

Write é?‘?bf;]n for any of these three classifiers.
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Bagged nearest-neighbour classifier risk

Assume (A.1)—(A.4). If n=(179 < ¢ < n~¢ then
Rr(Cy) — Rr(CP¥%) = Fu(@){1 + o(1)},

uniformly in ¢, where

2
B  ByI'(2+2)
wle) = Srat — G

If n? <k <n'=#and CE" denotes the bnn classifier with

L(2+2)% 1
= sarta g then

RR(CA’,B’%H) - RR<CBayes) | F(Q 4 %)2d/(d—|—4)
RR(CY};nkn) _ RR(CBayes) 24/(d+4)
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Further regret comparisons

1.00 1.05 1.10 1.15 1.20
| | | |

Regret ratio

0.95

0.90
|
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Summary

e The optimal (non-negative) weights have a relatively
simple form

e The improvement over the unweighted  k-nearest
neighbour classifier can be quantified

e The bagged nearest neighbour classifer is somewhat
suboptimal for small d, but close to optimal when dis
large

e Improvements in the rate of convergence are possible
under stronger smoothness assumptions, provided
we allow negative weights.
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