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1 Introduction

The theory of empirical processes has been a central theme in Probability and Statis-
tics for over half a century. Often, a choice of metric is made to compare the empirical
distribution of a sample and its underlying population. One such choice is the Mal-
lows distance, also known as the L,-Wasserstein or Kantorovich distance. This metric
has found extensive applications to a wide variety of fields; see Rachev (1984) for a
review.

Definition 1. Let F and G be distribution functions with finite second moment. The
Mallows metric do(F, Q) is defined by

1/2

da(F,G) = inf {E(X - Y)*}'”*,

where Txy 1is the set of all pairs of random variables (X,Y) whose marginal distri-
bution functions are F' and G respectively.

Basic properties of the Mallows distance are given in Major (1978) and Bickel and
Freedman (1981). We recall from these works that we may write

do(F,G) = (/OI{F_I(p) -G7(p)Y’ dp) 1/2,

where, for example, F~!(p) = inf{z € R : F(z) > p}, and that convergence in the
Mallows distance is equivalent to convergence in distribution together with conver-
gence of the second moments.

Let Xi,...,X, be independent and identically distributed random variables with
distribution function F, and let Fn(x) =n"'3>" I{x,<s} denote the empirical dis-
tribution of the sample. In this paper, we are concerned with conditions under which
an appropriately normalised version of dg(ﬁ’n, F) converges in distribution to a non-
degenerate limit. This problem and others related to it have been previously studied
by several authors, notably Shorack and Wellner (1986), Csorgé and Horvath (1990),
Csorgd and Horvath (1993), del Barrio et al. (1999) and del Barrio et al. (2000). Nev-
ertheless, to the best of our knowledge, limiting results have only been given when F'
belongs to the normal or Weibull families, or is supported on a finite interval.

The Hungarian construction of Kolmés, Major and Tusnady (1975, 1976) and Csorgé
and Révész (1978) (see also Csorgé and Horvath (1993)) is a crucial tool in the
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analysis. In a certain sense, it allows the approximation of n'/2f(F~'(p)){F; " (p) —
F~(p)} by B,(p), where {B,(p) : 0 < p < 1} is a sequence of Brownian bridges, and
it may therefore be expected that
T ' B(p)
n [ A0 - R0V dp [ i b (11)
/0 o S(F(p)?
where {B(p) : 0 < p < 1} is another Brownian bridge. The results in Section 2 may
be summarised as follows:

1. In Section 2.1, we give simple sufficient conditions in terms of a two-sided haz-
ard function for (1.1) to hold. In fact, (1.1) requires surprisingly restrictive
conditions, which fail even when F'is the normal distribution function.

2. This problem can be overcome to a limited extent by permitting a centering
sequence of constants to be subtracted from the left-hand side of (1.1) and
modifying the right-hand side accordingly. In Section 2.2, simple sufficient
conditions are expressed in terms of the hazard function, and these are satisfied
by the normal distribution and a certain range of Weibull distributions.

3. A third limiting regime is found in Section 2.3 by scaling as well as centering
the both sides of (1.1). This allows the restrictions on the hazard function to
be relaxed substantially, and distributions which fall into this regime include a
large subclass of those whose extremes belong to the domains of attraction of
the Weibull or Gumbel laws.

4. An interesting feature of the scaling sequence employed in the third regime is
that it diverges to infinity slower than any positive power of n. In the fourth
class, however, the asymptotic behaviour of the Mallows distance is seen in
Section 2.4 to be dominated by the extremes, and we can have dy(F,, F) =
Op{n_“r%ﬂ(n)} for any a > 2, where / is a slowly varying function. This class
includes the family of Pareto distributions (for which ¢ = 1), and others whose
extremes are in the domain of attraction of a Fréchet distribution. Although
this result appears to have fewer statistical applications than those mentioned
earlier, it is interesting to see the rate of convergence, and the fact that the
limiting distribution is of a rather different form.

In Section 3 we discuss the application of these results to goodness-of-fit tests for
location-scale and scale families. We derive the asymptotic null distributions of test



statistics based on minimising the Mallows distance between the empirical distribu-
tion of the sample and the family in question. These tests may therefore be applied
to a very wide range of location-scale and scale families. Some concluding remarks
are presented in Section 4.

2 Asymptotic results for the empirical process

Suppose that the random variable X has distribution function F' and continuous
density f. Define F~!(p) = inf{z € R: F(x) > p} for p € (0,1], and let a = sup{x :
F(z) =0},b = F~'(1). Note that we allow a = —c0, b = 0o, and assume:

(A1): f is positive and continuously' differentiable on (a, b).

Thus, in particular, we suppose that the support of the underlying distribution is an
interval.

Definition 2. The two-sided hazard function h: (a,b) - R of X is given by

_ [ f@)/F(2) ifz>F'(1/2),
h(z) = { f(z)/F(z) ifz < F~'(1/2),

where F(z) = P(X > x).

The distribution function may be recovered from the hazard function and the median
by means of the equations

F(r)=1- %exp (— /z h(t) dt), x> F71(1/2), (2.1)

F-1(1/2)
F~1(1/2)
F(z) = %exp (—/ h(t) dt), < F71(1/2). (2.2)

As was mentioned in the introduction, the behaviour of the empirical process in the
Mallows distance will depend crucially on the tail behaviour of the hazard function.
We now describe each of the different regimes in turn.

"While it is not always strictly necessary to assume f is continuously differentiable, rather than
merely differentiable, this is assumed throughout for convenience.
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2.1 Hazard function rapidly diverging: no centering required
In this subsection, our assumptions on the hazard function are as follows:

(A2) SUPze a,b) ‘dz | < o0
(A3): h(z) — o0 as x — a and as  — b;

(A4): fh dz < 0.

Before describing the asymptotic behaviour of the empirical process, we pause briefly
to consider the strength of these conditions. Table 1 presents the hazard functions
of several common distributions, together with ticks or crosses according to whether
they satisfy each of the conditions above. We see that (A2) is very weak, and is
satisfied by almost all distributions encountered in applications. Assumptions (A3)
and (A4) are quite restrictive tail conditions, with (A4) failing even for the normal
distribution, although it holds for all Weibull distributions with parameter o > 2.

(A2) (A3) (Ad)
Distribution h(z) sup| 4 (1/h(z))| <00 h(z) 300  [1/h(z)dr < 0
Uniform 1/(b—x) vV Vv vV
Weibull az®™! Vv Viffa>1 Viffa>2
Normal (z)/®(z) V V X
Lognormal % vV X X
Pareto ajz V X X

Table 1: Hazard functions of common distributions, and whether they satisfy con-
ditions (A2)-(A4). For simplicity, each hazard function is only presented for
xz > F'(1/2), although no overall conclusions are altered by considering the left-
hand tail as well.

Theorem 1. Let Xy, ..., X, be independent and identically distributed with distribu-
tion function F and density f, and let F,, denote the empirical distribution function.
Assume that (A1)—-(A4) hold. Then

1
nd> Fn,F i)/
2( ) 0 (F
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as n — oo, where {B(p) : 0 < p < 1} is a Brownian bridge.

Proof. We apply a particular form of the Hungarian construction as follows. As-
sumption (A1) covers Conditions (i) and (ii) of Lemma 6.1.1 of Csérgé and Horvath
(1993), while (A2) is equivalent to Condition (iii) of the same lemma. These are used
in their Theorem 6.2.1(ii) to prove that for any v € (0, 1/2], there exists a probability
space on which may be defined a sequence of Brownian bridges {B,(p),0 < p < 1}
such that

(1/2)—v lpn(p) — Ba(p)| _
n sup = 0,(1), 2.4
L -y W 24

where p,(p) = nl/Qf(F’l(p)){Fgl(p) — Ffl(p)}. Now write

B2 ‘

pn (p) ‘
~(p))?

= |L] |+|L \+\L )l

say, where A = (0, n—il) U (537, 1). The result will follow if we can show that each of

these three terms converges in probability to zero.
1. Bound for the contribution of lel), using (A1),(A2) and (A3):

Proceeding as in the proof of Proposition 2 of del Barrio et al. (1999) using the
inequality |22 — 32| < (z — y)? + 2|z — y||y|, we find L B 0 as n — oo provided
that lim,_e AY = 0 and lim,_e A = 0, where

AW _ 2 /"_“ {p(1 —p)}* dp and A® —p¥ 3 /"_“ (1 —p)}*2 dp.
n o f(F () " 1 f(F(p))?

(2.5)

Now, for v € (0,1/2), we see that ALY clearly converges to 0 if the integral over (0, 1)

converges, and otherwise I’Hopital’s rule gives that the limit is zero provided that

h(z) — oo as x — a and as x — b, which is (A3). The same argument applies to

AP

2. Bound for the contribution of Lg), using (A1) and (A4):



The case p =2, q(-) = f(F7'(-)) of Lemma 5.3.2 of Csérg8 and Horvath (1993) may
be restated as

L B(p) NATED I [P1/h(z) dz < oo
IP]</o FE R ™~ ) { 0 if [*1/h(z) dz = oo,
2)

Thus, under condition (A4), we see that LY %% 0 as n — .

3. Bound for the contribution of LY, using (A1) and (A3):

It suffices to show that

/nn{ﬁil(p)—F_l(p)}dego and /11n{FJI(p)—F_l(p)}QdPAO,

0 =

which is Condition (3.16) of del Barrio et al. (2000). As the arguments used to prove
the two statements are very similar, here we prove only the second. Let X(,) =
max; X;, and observe that

-1

<2 X - F(=1)) 4 2n / IR O RIC D

If b < oo, then the first term of (2.6) clearly converges in probability to zero. On
the other hand, if b = oo, then Theorem 4.1.2 of Galambos (1978) gives that X, —
F1 (”T_l) converges in probability to zero if and only if

. F(t+a)

lim ———~ = 0. 2.7

) 27)
for each ¢ > 0. But using (2.1) we see that (A3) is sufficient to ensure that (2.7)
holds.

To deal with the second term in (2.6), we use arguments based on those which estab-
lish Poincaré inequalities in Sysoeva (1965). The simplest possible case of the main
theorem of Sysoeva (1965) gives a Hardy inequality; that is, if ¢ > F~'(%1) and
G : [t,b) — [0,00] is a differentiable function with G(¢) = 0 and E{G(X)?} < oo,
then

/t F(@)G @) dz < 4 /t Ff((?; o(2)? dz = 4 /t i((j)) o@)2de, (28
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where g(z) = G'(z).

[For the sake of completeness, note that (2.8) can be proved by integration by parts:

/t f(2)G(z)? dx = 2/ F(2)G(x)g(z) dz

<o [ oera) ([ Fihaera)”

by Cauchy-Schwarz.] Applying (2.8) with G(z) = z —t and ¢ = F'(%1), we find
that

b b 7
F
n/ {x—F‘l(”T_l)}Qf(x)dxgéln/ (z) dx
Foi(esh) ozt h(z)
°° 1

=4 dx. 2.9

], w9

This right-hand side converges to zero using I’Hopital’s rule and (A3), and this com-
pletes the proof. O

2.2 Hazard function diverging at moderate rate: centering
required

The integral in (2.3) is infinite almost surely when (A4) fails. Nevertheless, it is still
meaningful in an L,-sense under weaker conditions. This idea was first exploited by
del Barrio et al. (1999) in their study of a normal underlying population, and was used
to cover the case of a Weibull distribution with parameter o € (%, 2] by Csorg6 in his
discussion of the paper by del Barrio et al. (2000). In order to extend these results
to a more general context, we require a further condition on the hazard function:

(A5): liminf, , 3 (547) > —1/2 and limsup,_,, 42 (5557) < 1/2-

As we will also need to assume that the hazard function diverges in the tails, we must
have lim sup, ., %(%) > 0 and lim inf, %(ﬁ) < 0. Thus, condition (A5) rules
out large oscillations of the reciprocal of the hazard function in the tails, and holds

in particular if the hazard function is eventually monotone at both ends.
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In (2.10) below, the integral on the right-hand side is to be understood as the Ly-limit

of
=1 B%(p) — B{B2(p)}
N fEoe P

n+1
Theorem 2. Let X1,..., X, be independent and identically distributed with distri-
bution function F and density f. Assume that (A1), (A2), (A3) and (A5) hold.
Then

ndg(ﬁn,F)—/’lm i 1_ ~dp —>/ B E{B)Q( P} dp (2.10)

n+1

iof and only iof

b 1
d .
/a h((l))?’ T < o0

Before proving this theorem, we state and prove a lemma:

Lemma 3. Assume (A1).

(i) If fo fo G l{é/\t fs(t;z a7 ds dt < oo and (A2) holds, then fab nays T < 0o

(ii) Iffa nioys 4z < 0o and (A8) and (A5) hold, then fo fo 77 {SA)t fs(t}2 sdsdt <

Proof. To prove (i), we only show that f F-1(1/2) h 5 do < 00 because the arguments

for the two tails are very similar. Observe that

— 22 2
// 1 °) t _dsdt = / / F dxdy
e di fF 1(1/2) f
o)
> dy,
4/F—1(1/2 { /

since F(y)? > 1/4 for y > F~(1/2). Thus it suffices to show that the term in braces
in the final term above is bounded away from zero as y — b. Now integration by
parts yields

F(y)2:/y ;{((5))2 dHQ/y F(m)ﬁ(%x)),dx:/y ’{(%)2{1+2($)1}dm.
(2.11)




Hence, by rearranging,

f 1
lim 1nf 0
y—b ]_ +2 lim Supy_)b(m)’

and under (A2), this right-hand side is strictly positive. This proves (i).

To prove (ii), by symmetry it is enough to prove the double integral is finite when
the inner integral is taken over values of s lying between ¢t and 1. Now, by Fubini’s
theorem,

/ /I/J; 1_2;(21?;21@)) ds dt
- / /2fF 18))2f)( i) ds‘“”/ oy T 1((15 8)(} iy 2t
< [ e e o (A [ 1 i

The first term on the right-hand side is finite under (A3), while the second is finite
provided that the term in braces is bounded as y — b. But from (2.11),

1
lim sup / f($)2 < TEYE
y—b h(z) 1 + 2lim 1nfy_>b(@)’
so the result follows from (A5). O

Proof of Theorem 2.
By a virtually identical argument to that employed in the proof of Theorem 1, we see
that the stated convergence in distribution holds if Lo 20, where

o [ B0 ~E{B ()}
L ‘/A Ewr P

In turn, then, it is enough to show that the sequence of random variables (M,)
converges in Ly(0,1), where

BZ ~ELE )
Mx / e P
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=)~ [ [ e

and by Lemma 3, this is finite (and so M, converges in L) provided that 1/h(zx)3 i
integrable.

Conversely, if f i w)g, dr = oo, then Lemma 3 shows that A, does not converge in Lo,
so the right-hand side of (2.10) does not make sense as an Lo-limit.

g

Theorem 2 applies in particular when the underlying distribution is normal or a
Weibull distribution with parameter o € (%, 2}, which were the cases studied in del
Barrio et al. (2000). In each case it is straightforward using Table 1 to verify the
integrability of 1/h(z)®. Nevertheless, this remains quite a restrictive condition on
the hazard function — it fails, for example, with the exponential distribution — and
further work is required in the next section to broaden the scope of our results.

2.3 Intermediate hazard function behaviour: centering and
scaling required

We follow the idea of Csorgé in his stimulating discussion of the Weibull scale family in
del Barrio et al. (2000), and seek conditions under which a centered and scaled version
of nd%(ﬁn, F) may be expressed asymptotically as a sequence of random variables of
precise order 1 in probability, defined in terms of the sequence of Brownian bridges
from the Hungarian construction (2.4). We will require the following strengthening
of (A5):

(A6): lim, ,, %(ﬁ) =0 and lim,_,, %(ﬁ) =0.

Theorem 4. Assume (A1) and (A2). Suppose that at least one of the following
statements holds:

(a) h(xz) — oo as x — b and the part of (AS5) concerning the right-hand tail holds;

(b) the part of (A6) concerning the right-hand tail holds.
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Suppose further that at least one of the corresponding versions of (a) and (b) holds
for the left-hand tail. Then

L e o [T pop) Y1 [ B BB,
s RETNy / = e e )

n+1

(2.12)
with

Proof. As the argument involves treating the two tails separately, here we prove only
that if (a) or (b) holds for the right-hand tail, then

([ _ [ op(-p) N 1 [F Bip) —E{BI()}
Cn </1/2 ey /1/2 fFE(p))? dp) o /1/2 [Tl (p(l))
2.13

PR
= / dz
F-1(1/2) h(x)?
Notice that the first terms on the right-hand sides of (2.13) and (2.12) are of precise
order 1 in probability, by Lemma 3.

with

First, suppose that (a) holds for the right-hand tail. Since E{B?(p)} = p(1 — p), we
have as in the proof of Theorem 1 that

[ ep) (7B E(Bm)
/1/2”"(1”)‘“’ /1/2 f(F—1<p>>2dp‘/1/2 0T AT

so the result follows from the fact that (c,) is bounded away from zero for large n.

Now suppose that (b) holds for the right-hand tail. Combining the error (2.5) from
the Hungarian construction for v € (0,1/2) with the two terms in (2.6) from the tail
of the empirical process, it suffices to show that the three terms

w1 [ {p(l— p)}* _p =% a0d m *° 1 .
" //2 S o= PCmY w0 [ g
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are o(cy), 0p(¢,) and o(c,) respectively as n — co. As a preliminary, we observe that
the function £(y) = 1/ h(F‘l(yy;l)) is slowly varying. This follows by the argument
on p. 15 of Bingham, Goldie and Teugels (1987), because

yl'(y) d( 1 )

fy) ~ dz\h(z)

_1\—0 (2.15)
g1yt
z=F ( y )
as y — oo using (A6), and because the function in (2.15) is continuous. It follows

that

o [F AP e [T !
G I | nF DR
1
(1= 20)h(F ()

n+1

~J

by Karamata’s theorem (Theorem 1.5.11(i) of Bingham, Goldie and Teugels (1987)).
Similarly, for any constant C,

([ ) i RGP

Y

for sufficiently large n. Thus the first term in (2.14) is o(c,) as n — oo.

For the second term, Theorem 2.7.2 of Galambos (1978) shows that the part of (A6)
concerning the right-hand tail is sufficient to ensure that

Xy — F1 (22
P( Dk (*%)

< x) — exp(—e™%), z€R,

with b, = nflg_l(n__l) F(z)dz. But

*° 1 1
= | g ) (210

n

by the second part of Karamata’s theorem (Theorem 1.5.11(ii) of Bingham, Goldie
and Teugels (1987)). Therefore {X(,) — F‘l("T’l)}2 = 0,(02) = oy(cy). A very
similar argument applies shows that the third term in (2.14) is o(c,) asn — oco. O
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While it is disappointing not to be able to give a more explicit expression for the
limiting distribution in Theorem 4, there are two important points to note. Firstly,
the contributions of all of the order statistics to fol{ﬁn_l(p) — F~'(p)}? dp are of the
same order (it is not the case, for instance, that the contributions from the extreme
order statistics dominate those from the central ones). Secondly, our asymptotically
equivalent sequence on the right-hand side of (2.12) is constructed from a Gaussian
process. Neither of these results will remain true when the hazard function decays at
a faster rate, as in the next section.

Theorem 4 is applicable to many distributions of interest.

1. Recall that the Weibull distributions with parameter o € (0, 3] were not covered
by Theorems 1 and 2. However, for the right-hand tail, statement (a) holds for
a € (1,3] and (b) holds for all & € (0, 5], while the version of (a) for the left-

hand tail holds for all . It is straightforward to verify (as Csorgd found by a

different method) that we may take c2 = loglogn for @ = 4/3 and ¢2 = logff?’ n

for o < 4/3.

2. For the inverse Gaussian distribution, with f(z) = (2723)~%/2 exp{—%} for
x>0 and h(z) — 1/2 as x — oo, we may take c2 = logn.

3. The lognormal is another interesting case, as its hazard function decays to zero
in the right-hand tail faster than any of the Weibull distributions. Nevertheless,
the right-hand tail still satisfies condition (b) of Theorem 4, while the left-hand

tail satisfies (a). We may take c2 = exp{4y/2logn}/ log% n.

2.4 Hazard function decaying rapidly: non-Gaussian limit

Of the distributions in Table 1, the only family not covered so far is the class of Pareto
distributions. This class satisfies the following condition:

(AT): b= o0 and zh(z) —» o as z — oo, for some « € (0, 00).

By Theorems 8.13.2 and 1.5.12 of Bingham, Goldie and Teugels (1987), a distribu-
tion function F' belongs to the domain of attraction of the Fréchet distribution with
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parameter «, i.e.

Xn) exp(—z~®) ifz >0
I A ’
IF)<F—1("T_1) - x) - { 0 otherwise,

if and only if we may write F~'(p) = (1 — p)~"/*/(s%;), where £ is slowly varying.
If (A1) is satisfied, then (AT) is equivalent to the stronger condition that ¢ is nor-
malised slowly varying, as defined in (1.3.4) of Bingham, Goldie and Teugels (1987).

Theorem 5. Assume that (A1) and (A2) hold, and that (A7) holds for some o > 2.
Let (Y,) denote a sequence of independent exponential random variables with mean
1, and write S(u) = 31 <; py Yi, for u > 1. Then

{E7 (p) — F~'(p)}*dp

a 1 2a o © 1 S(u)y 1/ 2
- — | — —1; d 217
- Yv12/a (Ck N 1)Y11/a + a—2 + [ u2/e {( U ) u ( )

as n — Q.

The proof of Theorem 5 is deferred to the Appendix. For clarity of exposition, the
result is stated for the right-hand tail. Under corresponding conditions, an analogous
theorem may be proved for the left-hand tail. Moreover, if the right-hand tail satisfies
the hypotheses of Theorem 5, and the left-hand tail also satisfies the hypotheses of
any of the earlier theorems, then the results for the two tails may be combined to
yield a limit theorem for dg(ﬁn, F), as we now demonstrate by example.

For the Pareto distribution with parameter o > 2, Theor(zam 5 implies in particular
that fll/Q{F,; Y(p) — F1(p)}?dp is of precise order n~'T= in probability. On the
other hand, the left-hand tail satisfies the hypotheses of Theorem 1. It follows that

fol/Q{ﬁﬁl(p) — F'(p)}?dp = O,(n '), and hence that

2 2 1 2 | S (u)\~1/a 2
R e Rt P2 (G R
1

}/12/a (a _ 1)}/11/& o — 2 u2/a U

Another family of distributions covered by Theorem 5 is the log-logistic, with hazard
function h(z) = ‘if; in the right-hand tail, provided that o > 2. We also mention

here the situation where (A1) and (A2) hold, a = —o0, b = oo and |z|h(z) — « as
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x — Foo, for some o > 2. In this case, the contributions from both tails are of the
same stochastic order, and

nd2(E,, F) 4 20 o * 1 S(u)\-1/e 2
A ) —1
F(m2)? _>Y2/" ( —1)Y1/"+a—2+/1 W“{( u ) }du

1 2 o * 1 T(u)\ 1/ 2
+ 2/a 1/a + + 2/a ( ) —1 du’

where (Z,) is a sequence of independent exponential random variables with mean
1, independent of the (V},), and T(u) = > r<icutr Zis for u > 1. This follows from
Theorem 5 and Rossberg’s lemma on the asymptotic independence of functions of
order statistics (cf. Lemma 5.1.4 of Csérgé and Horvath (1993)).

Finally, Theorem 5 may be adapted to cover the situation where a = 2, but F' still

has finite variance, as in the example in Proposition 3.4 of del Barrio et al. (2000).

The centering sequence fli F~1(p)?dp is required, and the a/(a — 2) term should
n+1

be removed from the right-hand side of (2.17).

3 Application to goodness-of-fit tests

In this section, we consider goodness-of-fit tests of location-scale and scale families
based on minimising the Mallows distance between the empirical distribution of the
sample and the set of distributions specified by the null hypothesis. Let G denote a
distribution function with mean m and finite variance 72 > 0. Further, let G, () =
G(_T“) and G,(-) = G(;), so that Gis = {Gs : p € R0 > 0} and Gy = {G, : 0 > 0}
are respectively the location-scale and scale families associated with G. As in the
previous section, we assume Xi,..., X, are independent and identically distributed
with distribution function F, and let F}, denote the empirical distribution function.
We wish to test the null hypothesis Hy : F € Gi; or Hy : F € G.

In the location-scale case, we seek to compute dg(ﬁ’n, Gis) = inf, , dz(Fn,Gu,g), and
a calculation based on that in del Barrio et al. (2000) shows that this infimum is
attained at

(1,0) = (X ——/{F — X, )G (p)dp, = /{F — X, )G dp)
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where X,, = n71 " X;. It follows that

. 1 o 2
0

where S? = n=! Y (X; — X,,)? is the sample variance. Considerations of location and
scale invariance then suggest the test statistic

1 ! = >
Rn_1—T2—&%(/O {F, (p) — X }G( dp> : (3.1)

with large values leading to the rejection of the null hypothesis.

For scale famlhes we erte dg( ', Gs) = inf, dy(F},, G,), and the infimum is attained

at 6 = (G fo p) dp, and as in Csorgé’s discussion of del Barrio et al.
(2000), scale invariance leads to the test statistic
1 ! 2
f=1- e ([ G ) dp) (3:2)
12(G)pz(Fn) \Jo

where yi5(F) = [ 22 dF(z), so that us(F,) =n '3 X2,

That in each case we have explicit expressions for the values of the parameter(s)
which minimise the Mallows distance between F), and the class of null hypothesis
distributions is an attractive feature of the tests. Location and scale invariance means
that the distribution of R,, under any member of G, is the same, so we may choose
G = F and moreover assume F' has mean zero and unit variance when deriving the
asymptotic null distribution. The importance of the results of the previous section in
this context stems from the fact that we may study the asymptotic null distributions
of R, and T}, through the modified statistics R* = 72S2R,, and T = pio(G) po(F},) T
Recalling that now m = 0, 72 = 1, us(G) = 1, we may express these as

Ry =d3(Fy, F) — :/Ol{ﬁn_l(p) - F'(p)} dp] _ [/Ol{ﬁgl(p) () }F~'(p)dp| , 2

(3.3)

Ty = dy(Fn, F) — :/Ol{ﬁnl(p) ) }F dpr-

The notation in the corollary below is as in Section 2. We sketch the details of the
proof in the Appendix.
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Corollary 6. (i) Assume the conditions of Theorem 1. Then, under Hy,

it [ = { [ } U St <}%4)

(i) Assume the conditions of Theorem 2. Then, under Hy,
[ p(l=p) . a ['Bp)-E{B(p)} , [ [' B ’
i /_ o e UL e )
[ ['B®F ')
U S )

(3.5)

where the first integral on the right-hand side is understood in the Lo-sense.

(i1i) Assume the conditions of Theorem 4, and that fab 1/h(z)® dx = co. Then, under
H,y, there exists a probability space such that

g _ [FTp0=p) Y1 (7B —EB®},
Cn{ fon /n1+ f(F_l(P))de} Cn/l f(F-1(p))? dp =+ 05(1)-

1 n+1

(3.6)

(iv) Assume the conditions of Theorem 5 for the right-hand tail, and that the left-
hand tail either satisfies the conditions of Theorem 4, or a = —oo and —zh(z) —
o as x — —oo, for some o' > . Then, under Hy,

nR, d 1 2 L@ +/°° 1 (S'(u))_l/a . 2d
—— | — - u.
F—l(n—l)Q Yv12/a ( _ 1)Y1/a a—2 1 u2/a U

(3.7)

In each part of the Corollary 6, we may replace R, with T,,, provided that we remove
the second integral from the right-hand sides of (3.4) and (3.5). A direct consequence
of the version of Corollary 6(iv) when adapted to T, is that for the Pareto distribution
function F(z) =1 — 2 * for z > 1 and a > 2, we have

o0 A 2
-2, d 1 2a o 1 ( u))l/a_
T, = e [T (B0
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where po(F) = af(a — 2), which proves the conjecture made by Csorgé on p. 69
of del Barrio et al. (2000), as well as giving the form of the limiting distribution.
We should, however, point out that tests based on part (iv) of Corollary 6 do not
distinguish distributions which are different from F' but have the same tails. Such tests
would also suffer from a poor rate of convergence to the asymptotic null distribution
by comparison with that experienced for tests based on parts (i), (ii) and (iii) of
Corollary 6. Finally, we mention that it is equally straightforward to obtain critical
values for tests based on Corollary 6(iii) as for the other cases, despite the limiting
distribution having a less explicit form.

4 Concluding remarks

In certain circumstances, the tests in Section 3 may be extended to situations where
other parameters are unknown. For example, let G,(z) = 1 — exp(—z®) for x > 0
denote the distribution function of the Weibull distribution with parameter «, and
let Go(-) = {Ga(z) : 0 > 0} denote the corresponding scale family. Suppose we
are interested in testing the null hypothesis Hy : F' € Ujc<a<a/31Ga for some € > 0.
Suppose further that we are given an estimator &, such as the maximum likelihood
estimator, which under H, satisfies & = ap + Op(n~/2) uniformly for oy € [e,4/3],
where «q is the true value of a.. If we estimate the scale by 64, where

1 L
6o = E Y (p)G,  (p) dp,
5 | e w

then under H, it may be shown that 64 = 64, +0,(n~'/2), uniformly for oy € [€,4/3].
It follows that under Hy,

1 L1 1 )\?
d2(Ga, Ga :/ (&dlo a — 6, logao ) d

2 1 1 2
~2 ~ A ~2 -1
_ J&F(l + 5) - 2a&aa0r(1 +o+ a—o) + oaor(l + a—o) =0,(n™),
uniformly for ag € [¢,4/3]. Thus d3(F},Gs) = d3(Fy, Gay) + Op(n™"), uniformly in
ap. We conclude that the modified test statistic 7}, obtained by first estimating ay
by & and then substituting this expression into (3.2) has the same asymptotic null

distribution as the test statistic 7,, which would be used if oy were known.
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Finally, we briefly mention a further application of the results of Section 2, to boot-
strap performance. If Xi,..., X, are independent and identically distributed with
mean g and finite variance o2 (which for simplicity we assume to be known), then
for the purposes of constructing confidence intervals for y it is natural to consider
the root n'/2(X,, — i). We denote the sampling distribution of this root by H,(F).
Conditional on X1, ..., X, let Hn(ﬁ’n) denote distribution of the bootstrap estimator
of H,(F), so that H,(F}) is the distribution of n!/2(X* — X,,), where X7,..., X* are
conditionally independent from Fj,, and X} = n~*3_ X7. Then a calculation on p. 74
of Shao and Tu (1995) shows that

dy(H(Fy), Ha(F)) < do(F, F), (4.1)

so that the results of Section 2 give bounds on the rate of convergence of the bootstrap
distribution. It would be interesting to know when both sides of (4.1) are of the same
stochastic order.

A Appendix

Proof of Theorem 5.

In this proof, we assume X; = F~'(U)),..., X, = F~'(U,), where Uy,...,U, are
independent uniform random variables on (0,1). We write G,(z) for the empiri-
cal distribution function of Uy, ..., U, and observe that F.'(p) = F 1(G, (p)). In

turn, by Lemma 3.0.1 of Csérgd and Horvéth (1993), we may assume that the order

foti — 5(n) — 5(1)
statistics Uy, - - .,U(?) are generated as Uy = 1 — S’(nj—l)’ oy Uy =1 = St 5°
that G, '(p) = 1 — % almost everywhere. Let (a,) be a sequence satisfying

a, < n~tlogn and na, — 0o as n — co. We divide the integral in the left-hand side
of (2.17) into three pieces, and treat each separately.

1. The range 1 —a, < p <n/(n+1).

We write F~'(p) = (1 — p)_l/aﬂ(ﬁ) where £ is a slowly varying function. Then,
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following the proof of Theorem 6.4.5 of Csérgé and Horvath (1993), we have

iy | ) - 0

—an

2 n a 1
o [ (e ) VA,
g(n)2 -, 1— G;l(p) f( 1 ) (1 _p)2/a )

1-p

say. We write A4, = (4, — B,) + (B, — C,,) + C,,, with

17% ﬁ _ 1/04 2 ELQ
o= [ (at) ) e
£n)? Jie, L\1 =Gzl (p) (1 —p)*e

and . y \
1 1 — @ 1
o [T (A YY1,
1-a, L\1=G;(p) (1 —p)*e
Now #{{(m = 0,(1), so by Theorem 1.2.1 of Bingham, Goldie and Teugels (1987),

we may write

g(l—é‘i‘l(p))
U5)

where €, = 0,(1). Thus from the inequality |z? — y?| < (z — y)? + 2|z — y||y|, we see
that

sup
_logn _n_
1- 18R <p< o

—1‘ = €,,

2 n
a

A, - B,| <& oGV
| n ﬂ|—6n€(n)2 1—an{ Gﬂ (p)} (lfp) P
_2 Y _ 1/a g( 1 )2
n a + A —l/a 1 P 1—
vtk [T gy (e Y
o o, U O e (=pye ™

(A.1)

Now a weak form of Corollary A.3.1 of Csorgé and Horvath (1993) gives that for p
in the range of the integral, £(:25)?/£(n)> < 1+{n(1 - p)}/* for sufficiently large n,
so the first term in (A.1) is bounded above by
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But S(n+1)/n %3 1 by the strong law of large numbers, and a change of variable to
u =n(1 — p) and the law of the iterated logarithm gives that the first term in (A.1)

is Op{e2(na,) "= }.

For the second term in (A.1), we may apply the Cauchy-Schwarz inequality to see
that it may be written as Op{ﬁn(nan)%_i&%ﬂ}. But

Cn =l /1_+{ ((15;(7;()2(_npi)1) ) - I}QW o

- /100 u—?/a{ (@)”a - 1}2 du + 0,(1) (A.2)

u

by a very similar argument to that used above (cf. also (6.4.18) and (6.4.19) in Csorg6
and Horvéath (1993)). Since the right-hand side of (A.2) is almost surely finite by

1

the law of the iterated logarithm, it follows that |A, — B,| = Op{en(nan)%_% +
€2(na,)'~= }. Therefore, if we choose

1
Y —a/(a-1)
U = min{logn, €, },

then A, — B, = 0,(1).
To show that B, — C,, = 0,(1), we use a stronger form of Corollary A.3.1 in Cs6rgé
and Horvath (1993), namely that for p in the range of the integral and for any § > 0,
we have PRy
(=)
{(n)?

for sufficiently large n. This fact, together with a virtually identical argument to that
just given for the distributional limit of C,,, gives that B, — C,, = 0,(1). It therefore

follows that - )

o0 —1/a

A, = / u_2/°‘{ (@) — 1} du + 0,(1). (A.3)
1 U

- 1\ < 6{n(1 - p)}'/o

2. The rangen/(n+1) <p < 1.
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We have

)t
nFl(1-g85)" 2P (1 g0k) /1 i) n [l F7(p)dp
= —1(n—1 - —1(n—=1 p p+ —1(n—=1
(n+1)F=H(55)? F(222)? . FH(22)?
S(1) y—2/ap(S(n+1)y2 S(1) \-1/a
_ (S(n+1)) E( S(1) ) . 2a(5(”+1)) o {1 +o (1)}
n2/ef(n)? (o — 1)nt/e a—2 P
~ 200 ~
= 5(1)7% 1)~ 1). A.
Sy Sy 0, (1) (A1)
3. The range 1/2 <p <1 — ay,.
Finally, we show that
1—an
n - _
i [ ) = PG dp o (A5)
Fo1(22)2 Jiye

By the Hungarian construction (2.4) with v = 1/2,

l_ann =100\ _ -1 2 g e Ba(p)
P //2 )= //2 T

;D ) 1—an 1—p ( ) 1—an |Bn(p)|(1 _ p)1/2
Sty . TR T ), : dp.>
A6

To show that the left-hand side of (A.6) is O,(1), it is enough to prove that the non-
random part of the first term on the right-hand side of (A.6) converges to zero, since
E|B,(p)| < (1 —p)"/% But, recalling that F~'(p) = (1 — p)"/*4(= =), by (A7) we

may write f(F~!(p)) = (1 —p)'*ta Z( =), where { is another slowly varying function
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which satisfies £(z)¢(z) — o as & — oco. Thus

1 1—an 1 _1-p n-2/a
F(® =) //2 F(F(p))? n)? /1/2 p)ita E( p)2 %
o o )2/a
20(n)l(1/a,)?  n*e
0(1/an)? (1/an)*

0

24(n) n?/

as n — co. We deduce (A.5) on noticing that
l—an (
p)
E / —= dp) —0
( 1/2 (F 1(10))
by the same argument as above.
4.Conclusion of the proof.
Adding together (A.3), (A.4) and (A.5), we find that
1
n A _ a 1 2ce o
1 | {En ()= F 7 (p)}dp = +
FH("2)? 1/2{ ®) (v} le/a (o — 1)Y1/°‘ a—2
© 1 NONRE 2
+/1 u2/a{<—u ) —1} du,

as required.
O

Proof of Corollary 6.

We begin by studying the limiting behaviour of R’. For (i) and (ii), the Hungarian
construction (2.4) allows a simultaneous approximation of the three terms in (3.3),
on applying the elementary inequalities

[/{F 1(p)}dp]:</B{Fnl(p)—Fl(p)}de, (A7)
[/B{Fn (p) = F~'(p) }F~( } < /B{F,;l(p) _F—l(p)}2 dp (A.8)

24



to the set B = |1, -2-]. The argument from the proof of Theorem 1 deals with the
n+1?’ n+1

regions p € (0, n%rl) and p € (;;45,1) , and the fact that the second and third integrals

in (3.4) and (3.5) are finite almost surely gives that (3.4) and (3.5) hold when R,
is replaced with R:. Similarly, for (iii), we have that (3.6) holds for R}, with the

condition that fab 1/h(z)® dr = oo ensuring that the second and third terms on the
right-hand side of (3.5) are asymptotically negligible when divided by ¢,. Finally,
for (iv),

/0 (B, (0) — F 1)} dp = X, = () = (%)

and
2 [{70) = )P ) dp = | Y = 1) - i ) = o)

using Rosenthal’s inequality and Theorem 5. Thus again, (3.7) holds when R, is
replaced with R;.

To transfer the limit theorems to R,, in the case of (i) we write nR, — nR} =
nR; (g — 1) = 0,(1). The calculations for (ii), (iii) and (iv) are very similar, as are
the computations which allow the results for 77 to be transfered to 7,.

g
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