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Big Data: a new era for statistics

Richard Samworth (1996) is a Professor of Statistics in the University’s Statistical
Laboratory, and has been a Fellow of St John’s since 2003. In 2012 he was
awarded a five-year Engineering and Physical Sciences Research Council Early
Career Fellowship – a grant worth £1.2 million – to study ‘New challenges in
high-dimensional statistical inference’. This year, he was elected a Fellow of the
Institute of Mathematical Statistics.

‘Big Data’ is all the rage in the media these days. Few people seem to be able to
define exactly what they mean by it, but there is nevertheless consensus that in
fields as diverse as genetics, medical imaging, astronomy, social networks and
commerce, to name but a few, modern technology allows the collection and
storage of data on scales unimaginable only a decade ago. Such a data deluge
creates a huge range of challenges and opportunities for statisticians, and the
subject is currently undergoing an exciting period of rapid growth and
development. Hal Varian, Chief Economist at Google, famously said in 2009, 
‘I keep saying the sexy job in the next ten years will be statisticians.’ This might
raise eyebrows among those more familiar with Mark Twain’s ‘lies, damned lies
and statistics’, but there’s no doubt that recent high-profile success stories such
as Nate Silver’s predictions of the 2012 US presidential election have given
statisticians a welcome image makeover.

Let me begin by describing a simple, traditional statistical problem, in order to
contrast it with today’s situation. In the 1920s an experiment was carried out to
understand the relationship between a car’s initial speed, x, and its stopping
distance, y. The stopping distances of fifty cars, having a range of different initial
speeds, were measured and are plotted in Figure 1(a). Our understanding of the
physics of car braking suggests that y ought to depend on x in a quadratic way,
though from the figure we see that we can’t expect an exact fit to the data. 
We therefore model the relationship as

y = ax + bx² + e

where e represents the statistical error. Our aim is to estimate the unknown
‘parameters’ a and b, which reflect the strength of the dependence of y on each
of x and x². Here we don’t need to include a constant term in the quadratic,
because a car with zero initial speed doesn’t take long to stop.

We would like to choose our estimates of a and b in such a way that the curve
ax + bx² reflects the trend seen in the data. For any such curve, we can imagine 
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Figure 1: Panel (a) gives the stopping distances of 50 cars having a range of different initial
speeds. Panel (b) also shows the fitted curve, as well as a 95 per cent prediction interval
for the stopping distance of a car having an initial speed of 21 mph.

drawing vertical lines from each data point to the curve, and a standard way to
estimate a and b is to choose them to minimise the sum of the squares of the
lengths of these lines. For a statistician, this is a straightforward problem to solve,
yielding estimates â = 1.24 and b̂ = 0.09 of a and b respectively, and the fitted
curve displayed in Figure 1(b). From this, we can predict that a car with an initial
speed of 21 mph would take 65.8 feet to stop. In fact, we can also quantify the
uncertainty in this prediction: with 95 per cent probability, a car with this initial
speed would take between 34.9 feet and 96.6 feet to stop. (Incidentally, a modern
car would typically take around 43 feet to stop at that initial speed.)

Of course, one can easily imagine that the stopping distance of a car would
depend on many factors that weren’t recorded in this experiment: the 
weather and tyre conditions, the state of the road, the make of car, and so on.
Such additional information should allow us to refine our model, and make more
accurate predictions, with less uncertainty.

My point is that, by contrast with the 1920s, in today’s world we can often record
a whole raft of variables whose values may influence the ‘response’ of interest.
In genetics, for instance, microarrays (see Figure 2) are used in laboratories to
measure simultaneously the expression levels of many thousands of genes in
order to study the effects of a treatment or disease. An initial statistical model
analogous to our car model, then, would require at least one variable for each
gene. Interestingly, for microarray data, there may still be only around fifty
replications of the experiment, though many other modern applications have
vast numbers of replications too. Suddenly, estimating the unknown parameters
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in the model is not so easy. The method of least squares we used with our car
data, for example, can’t be used when we have more variables than replications.
What saves us here is a belief in what is often called ‘sparsity’: most of the genes
should be irrelevant for the particular treatment or disease under study. 
The statistical challenge, then, is that of ‘variable selection’ – which variables do
I need in my model, and which can I safely discard? 

Figure 2: The left panel shows a photograph of a typical microarray. The right panel shows
the complexity of the output from a typical microarray experiment.

Many methods for finding these few important needles among the huge haystack
of variables have been proposed over the last two decades. One could simply
look for variables that are highly correlated with the response, or use the
exotically named ‘Lasso’ (Tibshirani, 1996), which can be regarded as a
modification of the least squares estimate. In Shah and Samworth (2013), we
gave a very general method for improving the performance of any existing
variable selection method: instead of applying it once to the whole data set, we
showed that there are advantages to applying it to several random subsamples of
the data, each of half the original sample size, eventually choosing the variables
that are chosen on a high proportion of the subsamples. We were able to prove
bounds that allow the practitioner to choose the threshold for this proportion in
order to control the trade-off between ‘false negatives’ and ‘false positives’.

Another problem I’ve worked on recently is ‘classification’. Imagine that a doctor
wants to diagnose diabetes. On a sample of diabetics, she makes measurements
that she thinks are relevant for determining whether or not someone has the
disease. She also makes the same measurements on a sample of non-diabetics.
So, when a new patient arrives for diagnosis, she again takes the same
measurements. On what basis should she classify (diagnose) the new individual
as coming from the diabetic or non-diabetic population? From a statistical point
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of view, the problem is the same as that encountered by banks that have to decide
whether or not to give someone a loan, or an email filter that has to decide
whether a message is genuine or spam.

One can imagine that an experienced doctor might have a notion of distance
between any two individuals’ sets of measurements. So, one very simple method
of classification would be to assign the new patient to the group of his nearest
neighbour (i.e. the person closest according to the doctor’s distance) among all n
people, say, in our clinical trial. Intuitively, however, we might feel there was too
much chance about whether or not the nearest neighbour happened to be diabetic,
so a slightly more sophisticated procedure would look at the patient’s k nearest
neighbours, and would assign him to the population having at least half of those k
nearest neighbours. In Hall, Park and Samworth (2008), we derived the optimal
choice of k, in the sense of minimising the probability of misclassifying the new
individual. For those interested, it should be chosen proportional to n4/(d+4), where
d is the number of measurements made on each individual.

An obvious drawback of the k-nearest neighbour classifier is that it gives equal
importance to the group associated with the nearest neighbour as it does the kth
nearest neighbour. This observation prompts us to consider weighted nearest
neighbours, with weights that decay as one moves further from the individual to
be classified. In Samworth (2012), I derived the optimal weighting scheme, as
well as a formula for the improvement attainable over the unweighted k nearest
neighbour classifier. It is between a 5 and 10 per cent improvement when d ≤ 15,
which might not seem like much, until it’s you that requires the diagnosis!

Five years ago, I set up the Statistics Clinic, where once a fortnight any member
of the University can come and receive advice on their statistical problems from
one of a team of helpers (mainly my PhD students and postdocs). The sheer range
of subjects covered and the diversity of problems they present to us provide
convincing evidence that statistics is finally being recognised for its importance
in making rational decisions in an uncertain world. The twenty-first century
is undoubtedly the information age – even Mark Twain would agree!

Professor Richard J. Samworth
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