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‘Big Data’ is all the rage in the media these days. Few people seem to be able to define

exactly what they mean by it, but there is nevertheless consensus that in fields as diverse as

genetics, medical imaging, astronomy, social networks and commerce, to name but a few, modern

technology allows the collection and storage of data on scales unimaginable only a decade ago.

Such a data deluge creates a huge range of challenges and opportunities for statisticians, and the

subject is currently undergoing an exciting period of rapid growth and development. Hal Varian,

Chief Economist at Google, famously said in 2009, ‘I keep saying the sexy job in the next ten years

will be statisticians’. This might raise eyebrows among those more familiar with Mark Twain’s

‘lies, damned lies and statistics’, but there’s no doubt that recent high-profile success stories such

as Nate Silver’s predictions of the 2012 US presidential election have given statisticians a welcome

image makeover.

Let me begin by describing a simple, traditional statistical problem, in order to contrast it

with today’s situation. In the 1920s, an experiment was carried out to understand the relationship

between a car’s initial speed, x, and its stopping distance, y. The stopping distances of fifty cars,

having a range of different initial speeds, were measured and are plotted in Figure 1(a). Our

understanding of the physics of car braking suggests that y ought to depend on x in a quadratic

way, though from the figure we see that we can’t expect an exact fit to the data. We therefore

model the relationship as

y = ax+ bx2 + ǫ,

where ǫ represents the statistical error. Our aim is to estimate the unknown ‘parameters’ a and

b, which reflect the strength of the dependence of y on each of x and x2. Here we don’t need to

1



0

0

0

0 55 1010 1515

20

20

20

20 2525

4040
6060

8080
10
0

10
0

12
0

12
0

Initial speed (mph)

S
to
p
p
in
g
d
is
ta
n
ce

(f
t)

(a)

0

0 5 10 15

20

20 25

40
60

80
10
0

12
0

Initial speed (mph)

S
to
p
p
in
g
d
is
ta
n
ce

(f
t)

(b)

Figure 1: Panel (a) gives the stopping distances of 50 cars having a range of different initial speeds.

Panel (b) also shows the fitted curve, as well as a 95 per cent prediction interval for the stopping

distance of a car having an initial speed of 21mph.

include a constant term in the quadratic, because a car with zero initial speed doesn’t take long to

stop.

We would like to choose our estimates of a and b in such a way that the curve ax+ bx2 reflects

the trend seen in the data. For any such curve, we can imagine drawing vertical lines from each

data point to the curve, and a standard way to estimate a and b is to choose them to minimise the

sum of the squares of the lengths of these lines. For a statistician, this is a straightforward problem

to solve, yielding estimates â = 1.24 and b̂ = 0.09 of a and b respectively, and the fitted curve

displayed in Figure 1(b). From this, we can predict that a car with initial speed 21mph would take

65.8ft to stop. In fact, we can also quantify the uncertainty in this prediction: with 95 per cent

probability, a car with this initial speed would take between 34.9ft and 96.6ft to stop. (Incidentally,

a modern car would typically take around 43ft to stop at that initial speed.)

Of course, one can easily imagine that the stopping distance of a car would depend on many

factors that weren’t recorded in this experiment: the weather and tyre conditions, the state of the

road, the make of car, and so on. Such additional information should allow us to refine our model,

and make more accurate predictions, with less uncertainty.

My point is that, by contrast with the 1920s, in today’s world we can often record a whole

raft of variables whose values may influence the ‘response’ of interest. In genetics, for instance,
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Figure 2: The left panel shows a photograph of a typical microarray. The right panel shows the

complexity of the output from a typical microarray experiment.

microarrays (see Figure 2) are used in laboratories to measure simultaneously the expression levels

of many thousands of genes in order to study the effects of a treatment or disease. An initial

statistical model analogous to our car model, then, would require at least one variable for each gene.

Interestingly, for microarray data, there may still be only around fifty replications of the experiment,

though many other modern applications have vast numbers of replications too. Suddenly, estimating

the unknown parameters in the model is not so easy. The method of least squares we used with

our car data, for example, can’t be used when we have more variables than replications. What

saves us here is a belief in what is often called sparsity : most of the genes should be irrelevant for

the particular treatment or disease under study. The statistical challenge, then, is that of ‘variable

selection’ – which variables do I need in my model, and which can I safely discard?

Many methods for finding these few important needles among the huge haystack of variables

have been proposed over the last two decades. One could simply look for variables that are highly

correlated with the response, or use the exotically-named ‘Lasso’ (Tibshirani, 1996), which can be

regarded as a modification of the least squares estimate. In Shah and Samworth (2013), we gave

a very general method for improving the performance of any existing variable selection method:

instead of applying it once to the whole dataset, we showed that there are advantages to applying

it to several random subsamples of the data, each of half the original sample size, eventually

choosing the variables that are chosen on a high proportion of the subsamples. We were able to

prove bounds that allow the practitioner to choose the threshold for this proportion to control the

trade-off between ‘false negatives’ and ‘false positives’.
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Another problem I’ve worked on recently is ‘classification’. Imagine that a doctor wants to

diagnose diabetes. On a sample of diabetics, she makes measurements that she thinks are relevant

for determining whether or not someone has the disease. She also makes the same measurements

on a sample of non-diabetics. So when a new patient arrives for diagnosis, she again takes the same

measurements. On what basis should she classify (diagnose) the new individual as coming from

the diabetic or non-diabetic population? From a statistical point of view, the problem is the same

as that encountered by banks that have to decide whether or not to give someone a loan, or an

email filter that has to decide whether a message is genuine or spam.

One can imagine that an experienced doctor might have a notion of distance between any two

individuals’ sets of measurements. So one very simple method of classification would be to assign

the new patient to the group of his nearest neighbour (i.e. the person closest according to the

doctor’s distance) among all n people, say, in our clinical trial. But intuitively, we might feel there

was too much chance about whether or not the nearest neighbour happened to be diabetic, so a

slightly more sophisticated procedure would look at the patient’s k nearest neighbours, and would

assign him to the population having at least half of those k nearest neighbours. In Hall, Park and

Samworth (2008), we derived the optimal choice of k, in the sense of minimising the probability of

misclassifying the new individual. For those interested, it should be chosen proportional to n4/(d+4),

where d is the number of measurements made on each individual.

An obvious drawback of the k-nearest neighbour classifier is that it gives equal importance to the

group associated with the nearest neighbour as it does the kth nearest neighbour. This observation

prompts us to consider weighted nearest neighbours, with weights that decay as one moves further

from the individual to be classified. In Samworth (2012), I derived the optimal weighting scheme, as

well as a formula for the improvement attainable over the unweighted k nearest neighbour classifier.

It’s between a 5 per cent and 10 per cent improvement when d ≤ 15, which might not seem like

much, until it’s you that requires the diagnosis!

Five years ago, I set up the Statistics Clinic, where once a fortnight any member of the Uni-

versity can come and receive advice on their statistical problems from one of a team of helpers

(mainly my PhD students and post-docs). The sheer range of subjects covered and the diversity of

problems they present to us provide convincing evidence that statistics is finally being recognised

for its importance in making rational decisions in an uncertain world. The twenty-first century is

undoubtedly the information age – even Mark Twain would agree!

Professor Richard J. Samworth
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