Chapter 4

Some asymptotic results for the
bootstrap distribution of the

sample mean

4.1 Introduction

In Chapter 1, we argued that Edgeworth expansions and saddlepoint approximations
have provided much of the theoretical underpinning for the bootstrap. They give a
mathematical basis for assessing its properties and comparing its performance with

other techniques.

Edgeworth expansions provide the order of magnitude (in probability) of the absolute
error between a bootstrap distribution and the true distribution it estimates. Results
are now known for many statistics of practical interest, such as smooth functions of

a multidimensional sample mean (Hall, 1992) and M-estimators (Lahiri, 1992, 1994),
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126 CHAPTER 4. THE BOOTSTRAP AND THE SAMPLE MEAN
and are often cited in support of the bootstrap.

Saddlepoint approximations offer a different form of evidence, namely the order of the
relative error in a bootstrap approximation. This information is particularly relevant
when the magnitude of the feature of the underlying population of interest, such as
a tail probability, may be very small. Statistics studied from this perspective include
sample means (Jing, Feuerverger and Robinson, 1994) and smooth functions of sample

means (Robinson and Skovgaard, 1998).

However, these are not the only aspects of bootstrap performance which merit con-
sideration. In this chapter, we take a different approach, as a first attempt to answer
the basic question, ‘What is the probability that the bootstrap performs badly?’.
A mathematical formulation of this problem involves appropriate choices both of a
statistic and of a distance between distributions. We work with the univariate sample
mean, and the Mallows distance (Mallows, 1972), whose properties were exploited ef-
fectively in a bootstrap context by Bickel and Freedman (1981). The main objective
is to study the rate of decay of the probability that the distance between the true
distribution of the normalised sample mean and its bootstrap approximation exceeds

a given threshold.

In Sections 4.2 and 4.3, we review the Mallows distance and show how to reduce our
bootstrap problem to one of studying the Mallows distance between a distribution and
the empirical distribution of a sample. The main essence of the results in Sections 4.4
and 4.5 is that rate of decay of the probability of poor bootstrap performance depends
on the tail of the underlying population. In Section 4.4, we give an explicit bound on
the probability of the Mallows distance exceeding a threshold, and show that, under
certain tail and smoothness conditions, this bound may decay exponentially in the
sample size; that is, the bound is no more than e ™, for some § > 0 and sufficiently

large sample sizes n. This may be interpreted as a mathematical statement that
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in such cases the probability of poor bootstrap performance decays satisfactorily.
However, by choosing a distribution with a sufficiently heavy tail, we can ensure the

bound decays no faster than exp(—n?), for any given 3 € (0, 1).

Section 4.5 provides further supporting evidence. For example, where the underlying
population is of bounded support, it is shown that a large deviations upper bound
exists on the probability of the Mallows distance exceeding a threshold. However, for
distributions with heavy (polynomial) tails, the empirical distributions fail to satisfy
a large deviations principle in the Mallows topology. This shows the delicacy of
Sanov’s theorem, which says that the empirical measures do satisfy a large deviations
principle in the (coarser) weak topology. Results are not known for populations with
infinite but light tails, such as the exponential and normal distributions, and these
remain interesting topics for further research. The proofs omitted in the main text

are given in Section 4.6.

4.2 The Mallows distance on the real line

Let F denote the set of all distribution functions on the real line and, for r > 1, let
Fo={F e F: [Z |z|"dF(z) < co}. For F,G € F,, the Mallows metric d,(F,G) is
defined by

1/r

d.(F,G) = 7i_nf {EX -Y|} ",
X, Y

where Tx y is the set of all joint distributions of pairs of random variables X and Y
whose marginal distributions are F' and G respectively. In a slight abuse of notation,
we also write d,.(X,Y) for d.(F, G), where this will cause no confusion. The following

results about d, are proved in Bickel and Freedman (1981) and Major (1978):

(a) If (F,) € F and F € F, then d,.(F,, F) — 0 as n — oo if and only if, for every
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(d)
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bounded, continuous function g : R — R, we have

| @ ir@ -~ [y ir@

as n — 0o, and also

/oo 2] dFy(z) — /Z 2 dP (z)

o0

as n — 00. Thus, convergence in the Mallows metric d, is equivalent to conver-

gence in distribution together with convergence of the rth absolute moments.
If a € R and X, Y are random variables with finite rth absolute moments, then

d,(aX,aY) = |ald.(X,Y).

The infimum in the definition of the Mallows metric is attained by the following
construction: let U ~ U(0,1), and define X = F~}(U), Y = G~1(U). Here,
F~! and G~! are the left-continuous versions of the respective inverse functions,

so that, for example, F~'(p) = inf{z € R : F(z) > p}. Thus
1 1/r
ar.6) = ([ 1w - wra)
0
It is therefore more convenient in much of what follows to work with the set
1
Gr = {G :(0,1) = R : G is left-continuous, increasing and / |G(p)|"dp < oo}
0
equipped with the L,.-norm restricted to this set:

it = ([ 16 a) "

The map from (F,,d,) to (G, || - ||;) which sends a distribution function to its

left-continuous inverse is a distance-preserving bijection.
Suppose X and Y have distributions in F,. Then

dy(X,Y)? = do(X —E(X), Y —E(Y))? + (E(X) — B(V))”.
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(e) Suppose Xi,...,X, are independent, Y7,...,Y, are independent, that all the
distributions are in F;, and that E(X;) = E(Y;) for i = 1,...,n. Then

n n 2 n
ds (ZXZ-, Zn) <Y do(XG, V)R
=1 i=1 =1

Equality is attained if X;, ..., X,, are independent N(u,0%) random variables
and Y, ...,Y, are independent N(u,o%) random variables, for some y € R and

2 2
o%x,0y > 0.

We add two further properties in Proposition 4.2.1 below. The completeness of the
Mallows metric on a separable metric space is already known (Dobrushin, 1970), but

we can give a much simpler argument for the case of distributions on the real line.

Proposition 4.2.1. The metric space (F,,d,) is separable and complete.

Proof. To show separability, consider the set
H,={He€G :H(p)€Qforallpe Qn(0,1)}.

Note that any function in G, is determined by its values at the rational points in
(0,1), and that #, is countable. Moreover, given ¢ > 0 and any G € G,, we can

choose values H(p) for p € QN (0, 1) such that

H(p) —G(p)| <€

and H(p,) < H(p,) whenever p; < py. Extending H to a left-continuous function on

(0,1) (which is necessarily increasing), we have |H(p) — G(p)| < e for all p € (0, 1), so
I1H = Gll: <,

and moreover,

1H]» < Gl +1H = Gl <Gl + ¢,
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so H € H,. Hence H, is dense in G,, for each r. Consequently, the distribution

functions corresponding to the functions in H, are dense in F,.

Now suppose (F,) is a Cauchy sequence in (F,,d,). Let U ~ U(0,1), and for each
n € N, let X, = F;'(U). Then X, has distribution function F,, and for each

n

m,n € N, we have

dy(Fo, Fo) = (B[ X, — X))

Thus (X,) is a Cauchy sequence in L,. But L, is complete (Billingsley, 1995, p. 243),

so there exists a random variable X € L, such that
EX,-X|"—0
as n — 0o. Hence if F' is the distribution function of X, then
d,(Fp, F) < (B[ X, — X|)'" 50

as n — oo. ]

4.3 The Mallows distance and the bootstrap

Suppose X1, ..., X, are independent random variables, each having distribution func-
tion F with mean y and finite variance. Let X, = n 'Y | X, denote the sample
mean. If we are interested in making inference about pu, a natural root to consider
is n'/2(X,, — p), whose sampling distribution under F' we denote by H,(F). Con-
ditional on Xi,...,X,, let X},..., X* be independent and identically distributed
random variables drawn from the empirical distribution of the sample, whose distri-

bution function, Fn, is given by

. 1 —
Fa(@) == Tixi<a)
=1
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for x € R. The non-parametric bootstrap approximates the sampling distribution of
n'/2(X, — p) by that of n'/2(X? — X,,), where X} = n~'Y""  X7. In other words,
conditional on X7, ..., X, we approximate H, (F) by H, (ﬁ’n) The calculation below,
which follows Shao and Tu (1995), shows how the properties of the Mallows distance d
outlined in Section 4.2 make it suitable for studying the performance of the bootstrap

approximation in this context:

n

d2 (Hn(ﬁn)a Hn(F)) = d2 (# Z(Xz* - Xn) ) # Z(Xz - :u))

=1 =1
1 n _ 1/2
< 12 (Z do(X] — Xpn, Xi — M)2>
=1

= d2(*Xik _Xna X1 — :U')
< do(XT, X1)

= dy(F,,, F).

Thus, in particular, the distance between the distribution of the root of interest,

H, (F), and its bootstrap approximation, H,(F},), is stochastically dominated by the

distance between the true and empirical distributions.

It follows immediately by property (a) in Section 4.2 and the strong law of large
numbers that dy(F,, F) — 0 almost surely as n — oo. In straightforward cases,
we can give a limiting distribution for n'/2dy(F,, F), as in Theorem 4.3.2 below.
Let D = DJ0, 1] denote the space of left-continuous, real-valued functions on [0, 1]
possessing right limits at each point. We may equip D with the uniform norm, so
that for x,y € D, we define

|z = yllo = sup |z(p) — y(p)|.
pE[O,l]

A technical complication in Theorem 4.3.2 arises from the fact that the normed space

(D, ]| - ||so) is non-separable, and the o-algebra, D, generated by the open balls is
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strictly smaller than the Borel o-algebra, Dge, generated by the open sets. This
creates measurability problems, as explained in Chibisov (1965), which lead us to
work with the space (D, D, |- ||c). A consequence of using the ball o-algebra is that
we must make a slight modification to the notion of weak convergence, in line with

Billingsley (1999), p. 67:

Definition 4.3.1. If (Y,)n>0 is a sequence of random elements of (D, D, || - ||e0), we

) @ )
write Y, — Yy as n — oo if

E(f(Ya)) = E(f(Y0))

as n — 00, for all bounded, continuous functions f : D — R which are D-measurable.

Recall that a Brownian bridge B = (B (p)) is a zero mean (Gaussian process with

0<p<1
Cov(B(p), B(q)) =p(1 —q)
for p < q. For p € (0,1), let §, = inf{z € R: F(z) > p}.

Theorem 4.3.2. Suppose that the limits § = limy,\0 &, and & = limy, ~ &, exist in R,
and that F' has a density f such that f(&,) is positive and continuous for p € [0, 1].

Let B = (B(p)) denote a Brownian bridge. Then

1 2 1/2
1/24 FnF d ( B(p)d>
AV A T

0<p<1

as n — oQ.

Proof. Theorem 1 on pp. 640641 of Shorack and Wellner (1986), together with Corol-
lary 1 on p. 48 of the same book, give that

A

F&)n?(F N (p) — &) S B(p)
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on (D,D,| - |le), as n — oco. Now, with probability one, B belongs to the space
(C[0,1],]|-|lco) of continuous real-valued functions on [0, 1] equipped with the uniform
norm, and moreover this space is separable. We can therefore apply the version of
the continuous mapping theorem for “ convergence (Billingsley, 1999, pp. 67-68) to
a composition map h(p) = hs(hi(p)) from (D, D, || - [ls) to R. The individual maps
hi:(D,D, | |l) = (D,D, ]| - ||c) and hy : (D, D, || - ||c) — R are defined by

2 1 1/2
hl(G)(p):?;(Z)) and hQ(G)z( /0 G(p)dp> .

Observe that the continuity of h; follows from the fact that f(&,) attains its (positive)
infimum for some p € [0, 1]. We conclude that

as n — oo. The result follows on noting that any bounded, continuous function from

R to R is (Borel) measurable. O

4.4 An exponential bound?

The following inequality, which is derived in Serfling (1980) from a lemma of Hoeffding

(1963), is crucial for obtaining the main bound of this section in Theorem 4.4.3.

Lemma 4.4.1. Let F € F, and suppose p € (0,1) is such that there ezists a unique
z € R such that F(z_) < p < F(x), where F(x_) = limy ~, F'(y). Then, for any
e>0,

P(|E,  (p) — &| > ) < 272,

where §e = min{F({, +¢) —p,p—F(&§ —€)}.

Let B = {p € (0,1) : there exist zy < z; satisfying F(zy) = F(z1) = p}. If p € B,

then F' is constant in a right-neighbourhood of &,, so B is countable.
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Figure 4.1: A plot of a distribution function F' and the construction used in the proof

of Theorem 4.4.2.

Theorem 4.4.2. Let ' € F5, 0 > 0 and n € N. Suppose p1,...,p, are such that
pi€ ((i—1)/n,i/n] and p; ¢ B fori=1,...,n. Let

D1 n-1 1 9
€= /0 (§p1 +0— 5;0)2 dp+ Z(fpiﬂ —&p, + 20)2(pi+1 — i) +/ (gp - (é-pn - ‘7)) dp.

=1 Pn
Then
P(dQ(Fna F)2 > 6) S 226_27160(1)7")2,

=1

where §,(p) = min{F(&, +0) = p, p— F(& — 0)}.

Proof. See Figure 4.1. We write
1

P PP = [ (B 0) - &) dp
0

- /Opl (F ) = &) dp+ ) / p+ (£ (1) — &) dp+ / (B ) = &) dp.
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Observe that F*(p) is constant for p € (0,p;), so that if £,, —o < ., 1(p1) < &, +0,
then

/ (B ) - &) dp < / (e + 0 — &) dp.
0 0

A similar argument applies for the interval (p,, 1), and since E,isa increasing func-

tion, it follows that for i =1,...,n — 1,

[ ) - 6) o < (G — 6+ 20011 — ),

Pi

whenever

fpi —o< An_l(pi) < fpi +o0 and §p¢+1 —0< An_l(pi-kl) < £Pi+1 +o.

Fori=1,...,n,let
B; = {gpi —0< An_l(pi) < & +0}'

Then by Lemma 4.4.1,

n

P(dy(Fn, )’ > €) < P(U By) < 3 B(BY) <2 $ e

i=1 i=1 i=1
where 0,(p) is as stated in the theorem. O
We are particularly interested in values of py, ..., p, satisfying

(a) p1 € (1/(2n),1/n], p, € (1 —1/n,1 —1/(2n)] and p; € (i/n, (i + 1)/n] for

1=2,...,n—1
(b) pp¢ Bfori=1,...,n.

Theorem 4.4.3. Given any € > 0, there exists o > 0 such that for sufficiently large

n, and all py, ..., pn satisfying conditions (a) and (b) above, we have

P(do(F, F)? > €) <2 e i), (4.1)

=1
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Proof. The proof is a matter of showing that the positive ¢ in Theorem 4.4.2 can
be made arbitrarily small by choosing ¢ > 0 suitably small and n sufficiently large.

Observe that for z > 0,

P-F@) = [ dr@) < [ Pdr),

and since F' € F,, we may apply the dominated convergence theorem to conclude
that 1 — F(z) = o(z~2) as z — oo, and similarly F(z) = o(z~?) as £ — —oo. Thus
(I1-p)é; = 0asp—1and p§ — 0 as p— 0. Hence, given € > 0, we may choose

ng large enough such that

0 en ) en
Syen) < 7 ad Sayen) < 76
as well as
1/n ) € 1 ) €
| @n-era<g amd [ (G-eomrdr< g
0 8 1-1/n 8
for n > ng. For such n, and for py,. .., p, satisfying conditions (a) and (b),
n—1
> G = &) (i1 —p) < max (pins — pi) (&, — &)’

=1
2
< 5(5171/(211) - fl/(2n))2
< (& 1/m) T Eemy)

<

TR NS

Finally, choose ¢ > 0 small enough such that, for all n > ny,

1

1/n
[ enro-ara<s [ (G- wsg,

—1/n

and
n—1

Z(gpi+l - é-pi + 20’)2(pi+1 — pz) S %

i=1

Theorem 4.4.2 now completes the proof. U
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Remark: Since do(F}, F) is stochastically dominated by dy(H,(Fp), Ha(F)), the
same bound (4.1) holds for P{d,(H, (F), Hn(F))2 > ¢} under the conditions of the

theorem.

Although the bound (4.1) appears at first sight to give a very satisfactory math-
ematical answer to the original question posed in the introduction concerning the
probability of poor bootstrap performance for the sample mean, it is in fact not al-
ways the case that (4.1) is a genuine exponential bound in n. For instance, if for

x > 1 and some m > 3,

1
am—1 ’

F(r)=1-

so that F has density f(z) = (m —1)/z™ for x > 1, and &, = (1 — p)~ /(™= then

26_2”5"(1’”2 > =20 [*(€1-1/m) = exp(—2(m — 1)202n(m_3)/(m_1)).
i—1

Note that the power of n may be made arbitrarily close to zero by choosing m suffi-
ciently close to 3. The problems here are caused by the heavy tails in the underlying
distribution. The following result, however, gives simple conditions under which the

bound (4.1) decays exponentially in n.

Corollary 4.4.4. Suppose that the limits §o = limy\ o &, and § = limy, ~ &, exist in R,
and that F' has a density f such that f(&,) is positive and continuous for p € [0, 1].
Then given any € > 0, there exists § = d(e) > 0 such that, for all sufficiently large

n €N,
P(dg(ﬁ’n, F)? > 6) <e™™,
Proof. Let
— inf
a=f f (&),

so that & > 0. Then by the mean value theorem, J,(p) > ao for each p € [0,1].

By Theorem 4.4.3 therefore, given € > 0, there exists 0 = o(e) > 0 such that, for
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sufficiently large n,

P(do(Fp, F)? > €) < 2ne 2ne%7",

Hence the result holds for any § € (0, 2a0?). O

4.5 A Large Deviations Principle?

In the light of Section 4.4, it is natural to ask whether the sequence of empirical
distribution functions (Fn) satisfies a large deviations principle (LDP) in the topology
generated by the Mallows metric. The answer is in general negative, though it is true
under certain conditions which are described in this section. First, we recall some

standard definitions and results on large deviations, which may be found in Dembo

and Zeitouni (1995).

Definition 4.5.1. Let X be a topological space. A function I : X — [0, 00] is called
a rate function if it is lower semi-continuous; that is, if for each a € [0, 00), the level
set {x € X : I(z) < a} is closed. A good rate function is a rate function for which

the level sets are compact subsets of X.

Let A and A° denote the closure and interior, respectively, of a set A, and let B
denote the Borel o-algebra of X'. Write M (X) for the space of probability measures
on X.

Definition 4.5.2. A sequence of probability measures (u,) on (X,B) satisfies an
LDP with rate function I if, for all A C B,

1 1
— inf I(z) < liminf —log u,(A) < limsup — log u,(A) < — inf I(x).

T€EA° n—oc M n—soo N T€A

Remark: If X = R, and (p,) satisfies an LDP, we may also say that (F,) satisfies

an LDP, where F}, is the distribution function corresponding to p,. Similarly, if (X,,)
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is a sequence of random elements of X such that X, is distributed according to u,,

we may also say (X,,) satisfies an LDP in X.

If 4 and v are probability measures, we write v < p if v is absolutely continuous with
respect to u. In this case, we also write dv/du for the Radon-Nikodym derivative of
v with respect to u. If ¢ : X — R is a bounded, continuous function, x € R and

d > 0, define an open set in M (X) by

Usg = {1/ e M(X): ‘/Xqﬁ(y) dv(y) — :1:‘ < 5}.

The collection {Uy ; 5} generates the weak topology, and the Borel o-algebra in M (X'),
equipped with the weak topology, is the o-algebra generated by the open sets in the
weak topology.

Theorem 4.5.3 (Sanov’s Theorem). Let X' be a complete, separable metric space,
and let i be a probability measure on X. If X4, ..., X, are independent and identically
distributed according to i, and fi, denotes their empirical measure, then the sequence
(fin) satisfies an LDP in M(X), equipped with the weak topology, with good rate
function

[ G (@) log(§2(2)) du(x) if v < p

o0 otherwise.

I(v) =

Proposition 4.5.4 (Contraction Principle). Let X and Y be Hausdorff spaces,
and let f : X — Y be a continuous function. If (X,,) satisfies an LDP in X with good
rate function I, then (f(Xn)) satisfies an LDP in Y with good rate function

J(y) = inf{I(z) : f(z) =y}

Proposition 4.5.5 (Inverse Contraction Principle). Let X and Y be Hausdorff
spaces, and let f : X — Y be a continuous bijection. Suppose (X,) is a sequence of

random elements of X such that the following two conditions hold:
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(a) (f(Xn)) satisfies an LDP in Y with rate function J(y)
(b) for all a € [0,00) there exists a compact set K, in X such that

1
limsup —log P(X,, ¢ K,) < —a.

n—oo T

Then (X,) satisfies an LDP in X with good rate function I(z) = J(f(z)).

Remark: Condition (b) is usually known as exponential tightness. Since (Fa,d2) is
complete and separable, it follows from Lemma 2.6 of Lynch and Sethuraman (1987),
that exponential tightness is a necessary condition for the sequence of empirical dis-

A

tribution functions (F},) to satisfy an LDP with a good rate function.

In trying to strengthen the topology in which we hope an LDP will hold, we therefore
first need to characterise the compact sets in (F,dy). This task is complicated by

the following lemma, whose proof is given in Section 4.6.
Lemma 4.5.6. For each r > 1, each F' € F, and every ¢ > 0, the closed ball

B(F,e) ={G € F, : d,(F,G) < €} is not compact.

Nevertheless, the next two lemmas, whose proofs are also deferred to Section 4.6,
provide enough compact sets to study exponential tightness in (F;,dy). In fact, we
work with compact sets in (Ga, || - ||2) for convenience. We let H denote the set of
pairs (Hy, Hs) of functions H; : (0,1) — [0,00) and Hj : (0,1) — [0, 00) such that

Hi(e) > 0ase—0,and Hy(1 —€¢) - 0as e — 0.

Lemma 4.5.7. For (Hy, Hy) € H, let
€ 1

K, m, = {G € Gy :/ G*(p) dp < H?(€) and / G*(p)dp < HZ(1 —€) Ve € (0, 1)}
0 1—¢

Then Ky, g, is compact in (Ga, || - ||2)-
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Lemma 4.5.8. If K is a compact subset of (Go,| - ||2), then there exists a pair
(Hi, Hy) € H such that K C Ky, g, .

A

Theorem 4.5.9. If F' has bounded support, then the sequence (Fy) of empirical dis-

tribution functions is exponentially tight in (Fa, ds).

Proof. Tt suffices to find a pair (Hy, Hy) € H such that P(F' ¢ Ky, g,) = 0 for all
n € N. If F' has bounded support, then § = limy\ o &, and & = lim, ~ &, exist in R.
For € € (0,1), let

Hi(€) = € max(|&), |€1]) and  Ha(e) = Hi(1 —e).
Then (Hy, Hs) € H, and
[ w) b < emax(é e = i),

and similarly fllfe(ﬁ’gl(p))zdp < HZ(1 —€). Hence P(E;' ¢ Ky, p,) = 0 for all
n e N O

Corollary 4.5.10. If F' has bounded support, then ds (Hn(ﬁ’n),Hn(F)) satisfies the
large deviations upper bound for semi-infinite intervals with a good rate function. In

other words, there exists a good rate function I such that, for every e > 0,

limsup%logP{dg(Hn(ﬁ’n),Hn(F)) > e} < —infI(x).

n—00 T>€

Proof. By Sanov’s theorem, Theorem 4.5.9 and the Inverse Contraction Principle, the

sequence (F,) satisfies an LDP in (F,, ds) with good rate function

7% ) o (i () AF (@) i e < i

o0 otherwise,

L(F) =

where pp and pp are the probability measures corresponding to the distribution

functions F' and F' respectively. Since the function ¢ : (F,d2) — R defined by
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Y(F") = do(F', F) is continuous, the Contraction Principle implies that dy(F},, F)

satisfies an LDP in R with good rate function
I(z) = inf{[,(F') : F' € Fy, do(F', F) = z}.

Since ds (Hn(ﬁn),Hn(F)) is stochastically dominated by dy(F), F), the result for
dy(H,(F},), Hy(F)) follows. O

We say that F' € F, has a polynomial tail if there exists an m > 2 such that
2™ (1 — F(z)) — 00 as £ — 00, or |z|™F(z) — oo as £ — —oc.

A~

Theorem 4.5.11. If F' € F, has a polynomial tail, then the sequence (F,,) of empir-

ical distribution functions is not exponentially tight in (Fz, ds).

Proof. Tt suffices to show that for any (H;, Hy) € H, we have
P ¢ Ky, m,) > e

for sufficiently large n € N. Now, we may assume without loss of generality that

xm(l — F(x)) — 00 as & — 0o, for some m > 2. Let X,y = maxi<j<n X;. Then
P(F ¢ Kuym,) > P(Xmy > n'?Ho(1—1/n)) =1 — F(n'/2Ho(1 - 1/n))".

Choose ny € N large enough such that Hy(1 —1/n) < 1 and 1 — F(n'/?) > n=™/2 for

all n > ng. Then, for n > ny,

1
nm/2

]P’(Fn_l ¢ Kyymy) > 1— F(nl/Q)n >1-— (1 _ )" >1- eXp(—n_(m/Q_l))-
But, for sufficiently large n,

1
ey (—p—(m/2=1) n
1 —exp(—n ) > ST 2 €
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Remark: In view of the remark following the statement of the Inverse Contraction
principle (Proposition 4.5.5), Theorem 4.5.11 shows that the sequence (F},) does not
satisfy an LDP in (F3, ds).

4.6 Appendix

Proof of Lemma 4.5.6.
We prove that the closed ball is not sequentially compact. Fix ¢ > 0, F' € F,, and,
for p € (0,1), let §, = inf{z € R : F(z) > p}. Consider the sequence of distribution

functions (F,) given by

F(x) if £ <&—1/n
Fuz)=4¢ 1-1/n if E1o1/n <@ < &ioijn +ent/m
F(z —ent/") ifz > Ei-1/n + ent/".
Thus
€p ifp<1-1/n
&+ent/m ifp>1—1/n.

It follows that

1/r 1 1/r
d.(F,, F) = (/ \Ep) — & dp) = (/ erndp) =€
1-1/n

On the other hand, we have |F,,(z) — F(z)| <1/nfor allz € Rand n € N, so if a
subsequence (F),,) satisfied d,(F,,,G) — 0 as k — oo, then we would have to have

G = F. Since d,(F,,, F) = € for all k € N, no convergent subsequence can exist. [J

Proof of Lemma 4.5.7.
Take a sequence (G,) € Kp, g,. For each m € N, choose €, € (0,1/2) such that
Hi(e) < 1/m and Hy(1 —¢€) < 1/m for each € € (0,¢,]. We claim that there exists
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an infinite subset N; of N such that

[ Gt - Gu) ap <

€1

for all ny, ny € Ny. To see why this is the case, observe first that G(e;) > —H; (61)/61/2
and G(1 —¢;) < Hy(1 — 61)/6}/2 for each G € Ky, g,. Now we may partition the
interval [¢;, 1 — €] into d equally spaced divisions and note that given any § > 0, there
exist —Hl(ﬁl)/e}/Q <zp<m <...<z4< Hy(l— 61)/61/2 and an infinite subset N;
of N such that

‘Gn (61 + 2(1 — 261)) —x;
foralli=0,1,...,dand n € N;. Fori=0,1,...,d, let p; = €; +i(1 — 2¢;)/d. Then,

<94

for ny,ny € Ny,

N

/ (G (0) =G () dp

€1

d
=1
1 H2(1—61) H1(€1) 2 H2(1—€1) H1(€1) 2
S&{( a7 an ) +49( o7 7 ) 40}
<1

for sufficiently small § > 0, and sufficiently large d € N.

In a similar manner, we may find a sequence of infinite subsets (V,) of N with
N1 D Ny D ..., such that for each m € N,

1

m

/lcm (Gnl (p) - an (p))2 dp <

for all ny,ny € N,,. Now construct the diagonal subsequence (ny), by taking ny to be

the kth smallest element of Ny, for each k£ € N. The sequence (G, ) is a subsequence
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of the original sequence (G,), and is a Cauchy sequence in (G, || - ||2) because, for

k<l

[ -G

1
< A(HP(er) + Hy (1 =€) + 4
— 0
as k — oo. But (G, || - ||2) is complete, so (Gy, ) converges in (G, || - ||2), s0 K, u, is
sequentially compact. O

Proof of Lemma 4.5.8.
Suppose the lemma is false. Then without loss of generality, we may assume there

exist € > 0 and a sequence (G,) € K such that

1/n
/ G (p)dp > c.
0

Since K is compact, there exist a strictly increasing sequence (n;) € N, G € K and

ko € N such that

IS e

A(&MM—G®f@§

for all £ > ky. By restricting attention to a further subsequence if necessary, we may

assume

l/nk 9 €
>
| emdrz g

/le+1
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for each k£ € N. But then, by Minkowski’s inequality,

(f @) i) > fj / // &*(p) dp

(/ll/nfc Gr, (p) dp — /”"k (G, (p) — G(p))zdp>

[Nkt1 1/ng41

(-3

2

WE

k

ko

M2

=~
Il
>

[=}

I
8

which contradicts the fact that G € (G, || - ||2)- O



