Chapter 1

Bootstrap Diagnostics and

Inconsistency

1.1 Introduction

Asymptotic analysis, usually as the sample size tends to infinity, has been an impor-
tant tool for developing and understanding many statistical procedures. The boot-
strap is no exception, and limit theorems have played a prominent role ever since

Efron (1979) introduced the idea and began the process of establishing its validity.

The potential of Efron’s idea was quickly seized upon, and Bickel and Freedman (1981)
gave general conditions under which the bootstrap could be expected to be consistent,
as well as studying many examples. Singh (1981) provided a more detailed asymptotic
treatment of the standardised sample mean, which revealed the second-order accuracy
of the bootstrap, and hence the possibility of improvement over traditional normal

approximation. The success of his analysis set a trend among many authors to use the
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powerful machinery of Edgeworth expansions in the study of the bootstrap, notably
Hall (1992), who built on earlier work in a non-bootstrap context by Bhattacharya
and Rao (1976). Beran (1982) argued that the bootstrap is asymptotically minimax.
More recently, saddlepoint approximations have been applied to examine the relative

error properties of the bootstrap (e.g. Jing, Feuerverger and Robinson, 1994).

It is consistency, though, which is seen as the sine qua non for the bootstrap. Many
authors refer to bootstrap ‘failure’ in cases of inconsistency, and ‘success’ otherwise.
This terminology may be inappropriate, however, for two reasons. Firstly, the sample
size may not be large enough for the asymptotics to accurately reflect the finite-
sample situation. More importantly, consistency is a fixed parameter property: there

is generally no guarantee that any convergence is uniform over the parameter space.

An important contribution to the study of bootstrap consistency was made by Beran
(1997), who considered locally asymptotically normal models, and characterised con-
sistency in terms of an asymptotic independence property. This result is the basis for
his graphical diagnostic, intended to give justification for the validity of the standard
bootstrap approach, or to warn of its possible unreliability. This idea was followed
and developed in a more practical setting by Canty, Davison, Hinkley and Ventura
(2000). Beran also proved that asymptotic superefficiency is a sufficient condition for
bootstrap inconsistency, and cited the Hodges and Stein estimators as examples of

this phenomenon.

Several issues arise in the implementation of Beran’s diagnostic; these are discussed
in Section 1.2. We are led to formalise the procedure with reference to the examples
above, in order to compare it with various alternatives. Our conclusion is that well-
known existing procedures may be more suitable for diagnosing inconsistency in these

instances.
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It is natural next to consider the best course of action if faced with the possibility
that the standard n out of n bootstrap may be inconsistent. It has been suggested
that one should reduce the bootstrap resample size, an idea which dates back to
Bretagnolle (1983). The use of this device has been shown to lead to consistent
estimators in wide generality, but typically there is an asymptotic loss of efficiency
in cases where the standard bootstrap is known to work successfully. Recent work,
such as Bickel, Gotze and van Zwet (1997) and Politis, Romano and Wolf (1999),
has focused on remedying these losses. If entirely successful, this would negate the
need for a diagnostic; but even then, further questions, especially the difficult choice
of the reduced bootstrap resample size, remain. We examine both theoretically and
empirically in the Hodges and Stein examples whether efficiency losses are manifested
in finite samples, whether an optimal choice of resample size can be suggested and
also investigate other alternatives which restore consistency. All proofs are given in

Section 1.5.

1.2 Local asymptotic normality and the bootstrap

In this section, we describe the locally asymptotically normal (LAN) model, which
was introduced into Statistics by Le Cam (1960) in his study of asymptotically similar
tests. In addition, we introduce the bootstrap and outline the concepts necessary to

understand the relevant version of Beran’s key theorem (Theorem 1.2.6).

Suppose Xi,...,X, are independent and identically distributed random vectors in
R™, and write Py for the distribution of X = (X1, ..., X,). The parameter 6 belongs
to a parameter space ©, which we assume is an open subset of R¥. Suppose that the
components of X have density py with respect to Lebesgue measure on R™, and for

h € R, let L,(h,0) denote the log-likelihood ratio of Py, 1/>, with respect to Pp.
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Thus,
Lu(h,0) = 1og<H %)

- P
Definition 1.2.1. The model {Py : 0 € ©} is LAN at 0y if there exist a random

vector Y, (0o, X) € R* and a non-singular k x k matriz 1(0y) such that under Py, we

have both Y;,(6y, X) 4 N, (O,I(HO)), and
Ly (hny00) = 'Y, (60, X) — 2h" 1(6)h + 0,(1)

as n — oo, for every h € R¥ and every sequence (h,) in R* converging to h.

Local asymptotic normality acquires its name from the fact that the log-likelihood
ratio in LAN models is asymptotically the same as that of N (h, I _1(00)) with re-
spect to N (0,1 (65)). Thus an LAN model {Py ,,-1/2, : h € R*} and the model
{N (h,I ’1(00)) ch e ]Rk} are similar in their statistical properties. Note here that
the original model {Py : § € O} has been reparametrised in terms of a local parameter

h=nl2(0 — 6,).

A Taylor expansion argument shows that in our case of independent and identically
distributed random variables, the LAN property is satisfied under mild regularity
conditions on the log-likelihood ¢, (0) = log py(x) (van der Vaart, 1998, pp. 93-95).
The sequence Y,,(f,z) and Fisher information matrix I(f) are then related to the

score function, Vy£,(6), through
1 n
Ya(0, X) = =5 > Volx,(0) and I(0) =Ey(Volx(0) Volx(6)T).
i=1

Let T, = T,(X) be an estimator of §. Of interest is the root n'/?(T, — 6), and
we denote its sampling distribution under Py by H,(f). Statistical considerations
such as the construction of confidence sets for § motivate the study of such roots. If

0, = 0,(X) is another estimator of @, then the (parametric) bootstrap distribution
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estimator of H,(#) is Hn(f,). As defined, the bootstrap distribution is a random
probability measure, although we usually study it as a conditional distribution, for

given X.

Definition 1.2.2. Suppose d is a metric on the space of probability measures on RF.

A

We say that H,(0,) is d-consistent at 6y if for all € > 0,
Py, {d(H,(0,), Ha(00)) > €} — 0 (1.1)

as n — Q.

We shall be primarily interested in the topology of weak convergence. If (1.1) holds for

a metric which metrises weak convergence, we will simply say H,(6,) is consistent at
fp. If, in addition, there exists a limit distribution H(6y) such that H,(fy) converges
in distribution to H (), we write H,(6,) 4 H (6) in Py,-probability as n — oco.

Often, consistency is proved by verifying the conditions of the following proposition,

which is a version of Theorem 1 of Beran (1984).
Proposition 1.2.3. Let 0y € O, and suppose that the following conditions hold:
(i) There exists a limit distribution H(0y) such that H,(6,) KN H(6y) as n — oo
for every sequence (0,) in © converging to 6,
(ii) There exists a sequence of estimators (0,) such that 0, — 6y in Py, -probability
as n — 00.

Then H,(6,) KN H(6y) in Py, -probability as n — oo.

Beran (1997) shows the importance of local asymptotic equivariance in determining

bootstrap consistency:
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Definition 1.2.4. Suppose that H,(6) KN H(6y) as n — oo. The sequence of esti-
mators (T,,) of 0 is locally asymptotically equivariant at 6y if for every h € R* and

every sequence (hy,) in R* converging to h, we have
H, (0o +n~2h,) % H(6,)

as n — Q.

Local asymptotic equivariance is a slightly stronger property than that of reqularity
(Héjek, 1970), which only requires the above convergence to hold with h, = h for all

n.

Before we can state the main theorem, we need to define one final property of esti-
mators, typically satisfied by maximum likelihood estimators in exponential families
and, more generally, by one-step maximum likelihood estimators (van der Vaart, 1998,

pp. 71-75) in LAN models.

Definition 1.2.5. A sequence of estimators (T, g) is asymptotically efficient at 0y if,
under Py,

Tn,E - 00 + n_1/21_1(00)Yn(90, X) + op(n_l/Z)

as n — oQ.

We suppose the existence of such a sequence of estimators, and write K, (6) for the

joint distribution of (nl/Q(Tn —Tog), Ya(0, X)) under Py.

Theorem 1.2.6 (Beran). Suppose that the model {Pp : 6 € O} is LAN at 0y and
that H,,(6y) KN H () as n — co. Suppose that the estimator 0, used to construct the
bootstrap distribution satisfies the condition that n'/? (én—HO) converges in distribution,
under Py,, to a limit distribution which has full support in R¥. Then the following

are equivalent:
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(a) H,(6,) KN H (6y) in Py, -probability as n — oo

(b) K.(6,) % D(6,) x N(0,I71(6o)) in Py, -probability as n — oo, for some dis-
tribution D(0y) such that H(60y) can be written as the convolution of D(6y) and
N(0,17(6y))

(c) The sequence of estimators (T,,) are locally asymptotically equivariant at 6y with

limit distribution H (6y).

Thus, in LAN models, part (c) of the theorem gives a means of verifying the bootstrap
consistency in part (a). Beran’s diagnostic is based on the asymptotic independence

in part (b) of the theorem:

(1) Given Xj,...,X,, compute 9n, and then generate B independent bootstrap
samples X} = {X{,,..., Xy} fori=1,..., B from Py

(2) Compute Ty, = T,,(X}), and Ty ; = T, (X]) fori=1,...,B
(3) Compute af = n'/?(T;;; — Tyt ;) and df = Y, (0, X7) fori=1,...,B

(4) Choose real-valued, continuous functions f and g on R* and plot the pairs
{(f(a;i‘), g(d;*)) :i=1,..., B} to assess whether the approximate independence

breaks down. If so, mistrust the bootstrap distribution from this data set.

In this author’s experience, this procedure can be ambiguous. On what basis do
we decide what does and what does not look independent? How large does n need
to be before we should expect to see independence at points of local asymptotic
equivariance? How should we choose the scalar summaries f and ¢ in the multi-
dimensional case? Figure 1.1 shows the result of applying the algorithm above to the

Stein estimator (defined in Section 1.3.2) with the functions f and g both chosen to
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Figure 1.1: Beran’s diagnostic applied to the Stein estimator. On the left-hand
plot, # = (0,0,0,0,0); on the right, § = (—0.1,0.1,0,0,0). The choice of # on the
right ensures that the likelihood ratio test of size 0.05 of Hy : 61 = ... = 6, versus
H, : Hy is not true, rejects Hy with probability approximately 0.95 (see Section 1.3.2).
Parameter values: n = 1000, B = 100, k£ = 5.

be the Euclidean norm on R¥. According to Theorem 1.2.6, we would like to be able

to diagnose dependence on the left and independence on the right.

1.3 The Beran diagnostic and alternatives

1.3.1 The Hodges estimator

Let Xy,...,X,, be independent and identically distributed random variables, each
distributed according to N(6,1), and let X,, = n *>_7 | X;. The Hodges estimator
is defined by

bX, if |X,| <n i/t

X, otherwise,
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where b € (0, 1). It is possibly the simplest example of an asymptotically superefficient
estimator. The risk of the Hodges estimator, given by [, (nl/ 2(Tom — 0)), converges
to b? when # = 0 and to 1 otherwise (Lehmann, 1998, p. 442); the Cramér-Rao lower
bound is 1. Though it is possible to modify the definition of the Hodges estimator to
extend the set of asymptotic superefficiency to an arbitrary closed countable set (Le
Cam, 1953), this is of limited practical benefit. The reason is that in one dimension,
it is a feature of asymptotically superefficient estimators that at fixed n they should
behave poorly in terms of risk near a point of asymptotic superefficiency (Le Cam,
1953; Héjek, 1972). Nevertheless, similar superefficient truncation estimators have
been studied, for instance, in wavelet regression, where estimates of wavelet coeffi-
cients are discarded if smaller in modulus than some threshold value. Further details

can be found in Canty, Davison, Hinkley and Ventura (2000).

We are interested in estimating the distribution H,, () of n*/?(T,, y — ), and consider

the bootstrap approximation H,(X,). We will see in Section 1.4.1 that H,(X,) is
consistent if and only if § # 0. We may take T, = X,,, so part (b) of Theorem 1.2.6
states that if § # 0, then a* = n'/*(T}; ; — X) and d* = n!/?(X;; — X,,) are asymp-
totically independent in Py-probability, with marginal distributions a point mass at

the origin and N(0, 1), respectively. Here, conditional on X7,..., X, we have that
X},..., X7 are independent and identically distributed N(X,, 1) random variables,

vk _ .—1 n _
Xa=n"" 2 X7 and T2y = T, u(X7).

In the remainder of this subsection, we assess the formal properties of the procedure
described in the last paragraph of Section 1.2 when applied to this example. Expressed
in the language of hypothesis testing, the clear implication of Beran’s diagnostic is
that we should take as our null hypothesis that the standard bootstrap works — in
other words # # 0. This runs counter to the general philosophy of hypothesis tests,

in which Hj is the conservative hypothesis, to be rejected only if there is evidence
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against it. More conventional, then, would be the null hypothesis that the standard
bootstrap is inconsistent, i.e. # = 0. For this reason, we choose to swap over the null

and alternative hypotheses.

With the new # = 0 null hypothesis, the theory of classical tests in exponential fami-
lies gives that a uniformly most powerful unbiased (UMPU) test of size « is to reject
H, if n'/?|X,,| > ®~'(1 — /2), where ® is the standard normal distribution function.
Formalising Beran’s method in this context requires the choice of a test statistic. Be-
ran notes (albeit in the non-parametric bootstrap setting) that the sample correlation
(or equivalently 7 = Y27 | a’d?) is unreliable due to the presence of outliers. For,

either af = 0 or the points (a},d}) lie on a line with gradient —1/(1 — b). Instead,

17

he argues that a large proportion of points with a = 0 is evidence of independence,

implicitly suggesting that we should take

1 B
=45 X_; L{a;~0}

as our test statistic. We can compute the critical value, ¢, for the test as follows:

(1) Choose a test size, « € (0,1), and an integer R such that (R+1)(1 — «) is also

an integer
(2) For each j =1,..., R, repeat steps (3) to (5)
(3) Generate Y, ; ~ N(0,1/n)
(4) Generate Y;*; ~ N(Y, ;,1/n) independently for i =1,..., B

(5) Compute a} = n**(T, z(Y,;;) —Y,;;) for each i = 1,..., B, and then evaluate

% — B
Tj =B Zz’:l ]l{aZ=0}

(6) Let c=T7

(R+1)(1—a))> 1-€- the ((R+1)(1 — @))th order statistic of 77, ..., Tk.
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Figure 1.2: A comparison of the power functions of the UMPU test (solid) and the
one derived from Beran’s diagnostic (dashed). Parameter values: o = 0.05, b = 0.5,

B =100, R =999, n = 1000 (left), n = 4000 (right).

Our test function is
1 ifT>c
P(T)=1< ~ ifT=c ,
0 ifT<c

where 7 € [0, 1] is chosen so that

R R

1 Z Y Z

E I]-{T;>c} + E ]l{T;:C} = .
J=1 J=1

Figure 1.2 shows the power functions of the UMPU test and the one derived from
Beran’s diagnostic. In the latter case, 10,000 Monte-Carlo replications of each test
were performed, ensuring a simulation standard error of no more than 0.005 at each

point.

We find that Beran’s test performs acceptably for small n, but very poorly as n in-

creases. To explain this behaviour, note that if P, denotes the conditional probability
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of X* = (X7,..., X)), given Xy,...,X,, then

P,(a* =0)
=P.(T; 5 = X;) = P(IX;] > 07/
=P, (n'*(X; - X,,) < —n'/* —=n'?X,) + P, (n'*(X; — X,,) > n'/* —n'/2X,,)

O(—n'/t —nt2X,) +1 - d(n'/* —n'/2X,),
It follows that conditional on X,..., X,,, we have
BT ~ Bin(B,®(—n'* — n'?X,)) + 1 — ®(n'/* — n'/2X,)).

Writing n'/2X,, = n'/20 + Z, where Z ~ N(0,1), we see that the (unconditional)

1/4

power function for the Beran test varies over scale n=*/*, in the sense that its value

at £n~/* converges to a constant. On the other hand, the UMPU test has power

function

w(f) = Py (n1/2|Xn\ > & (1-a/2))
=®(® H(a/2) — n*?0) +1— (D (1 — a/2) — n'/?0),

and so varies over scale n~1/2.

1.3.2 The Stein estimator

Now suppose that X;,..., X, are independent and identically distributed random
vectors in R¥ where £ > 4, and let X = (X1,...,X,). Each component of X has a k-

variate normal distribution Ny (6, I), with mean vector § € R* and identity covariance

. . o 1N
matrix. Write X,, = n Zi:l X;, define ;1 : R — R by p(z) = k! Zle z;, and let

e denote a k-vector of ones. The Stein estimator is defined by

Tn,S(Xn) = M(Xn)e + (1 — TLHXn i/_‘(}n)dP) (Xn - ,U(Xn)e)
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Thus each component of X,, is ‘shrunk’ towards the mean of the nk observations.
By contrast with the one-dimensional setting of Section 1.3.1, when k£ > 4, the Stein
estimator is superefficient for every value of n; its risk less than the Cramér-Rao lower
bound, namely &, for all # € R*. The asymptotic risk is 3 when the components of
6 are all equal, and k otherwise (Brandwein and Strawderman, 1990). That the set
of points of asymptotic superefficiency is of Lebesgue measure zero does not detract
from its practical importance due to its good finite-sample properties. In fact, the
behaviour of the Stein estimator in this regular parametric setting is symptomatic of
that of superefficient shrinkage estimators employed in more general problems such
as kernel density estimation and non-parametric regression. There, the complexity of
the parameter space allows far more severe forms of superefficiency (Brown, Low and

Zhao, 1997).

We consider estimating the sampling distribution, H, (), of n'/?(T, s — 6), by the
bootstrap approximation, H,(X,). We will see in Section 1.4.2 that H, (X,,) is consis-
tent if and only if the components of # are not all equal. As in the Hodges example,
we may take T,z = X,, so part (b) of Theorem 1.2.6 states that if the compo-
nents of 6 are not all equal then a* = n'/*(T 4 — X;) and d* = n'/?(X; — X,,)
are asymptotically independent in Py-probability with marginal distributions a point

mass at the origin and Ni(0,I) respectively. Again, conditional on X7,..., X, we

have that X7,..., X are independent and identically distributed Ny(X,,I) random

Tr -1\ _
vectors, X, =n Zz’:l X} and T; ¢ = T;, 5(X;). Note that in applying the diagnos-
tic algorithm to this example, we are forced to choose scalar summaries of the data

(c.f. Figure 1.1).

As argued in the Hodges example, for the purposes of formal inference we should
really be testing Hy : 6, = ... = 0 against H; : Hy is not true. Considered as a

classical hypothesis testing problem, this is very similar to a situation in which one
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would use a one-way analysis of variance (ANOVA) test, except that the covariance
matrix of each component of X is I rather than o021, for some unknown scalar factor
o?. With 02 covariance matrix, the ANOVA test is uniformly most powerful amongst
the class of all tests invariant under location, scale and orthogonal transformations,
and uniformly most powerful among those tests whose power functions depend on
6 only through ||@ — u(f)e||?/o® (Lehmann, 1986, Chapters 6 and 7). However, in
our situation the test is not invariant under scale transformations, so justification
in terms of optimality criteria is lacking. It nevertheless remains a possibility to be
considered. In such a test, we would reject Hy if

ol Xn — p(Xo)el?

S~ —— o pl-LE-D) ()
k(n—1) Zi:l n|| X — X2 ()

F =

where F(:=1k(=1)(q) is the upper a-point of the F(:=1:k(»=1) distribution. Note that

the distribution of F' under Py is the same as that of

Y/ (k(n — 1))’

where Y] has a non-central chi-squared distribution with £ —1 degrees of freedom and

non-centrality parameter A = n[|¢) — p(0)el|?, and is independent of Y5 ~ x(,_y)-

A natural alternative to the ANOVA test is a generalised likelihood ratio test. The
maximum likelihood estimator of 6 is 1(X,,)e under the null hypothesis and X,, under
the alternative hypothesis. Thus the generalised likelihood ratio is given by

suppers XP(—5 22" 1x, _ g)2)
supg,—.—5, P(—3 X7 |1x, —g|])

exp(=3 2 X~ X,P)
B PN S AT

= exp(n[| X, — p(Xn)el?/2),

LX(-HO’ Hl) =

so we would reject Hy if n|| X, — u(X,)el|> > x2_,(a), where x?_,(c) is the upper

a-point of the x%_, distribution. Justification for using this test can be expressed
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in terms of the shortcoming of the test and its Bahadur deficiency. If we write
O, =R\ {#:6, =... =0}, the shortcoming of a test is defined, for each 6 € O,
as the difference in power between the test in question and the most powerful test of
the same size. Theorem 3.6.1 of Kallenberg (1978) states that the shortcoming of the
likelihood ratio test based on sample of size n tends to zero, uniformly for 8 € ©4, as

n — o0.

To describe Bahadur deficiency, let N(«, 3,60) denote the number of observations
needed for the likelihood ratio test of size « to achieve power S at § € ©; and
let N*(«,3,0) denote the minimum of N(a,3,6) of over all size « tests. Then
Corollary 5.3.6 of Kallenberg (1978) gives that, for each g € (0,1) and 6 € ©,, there
exists A = A(f3,0) such that

: N(a,ﬁ,&)—N+(a,ﬁ,0)
1 < A.
Yol logNt(a,B,6)

In this sense, the likelihood ratio test is Bahadur deficient of order O(log N*(a, B, 0))

as o — 0.

We implement Beran’s ideas as follows: given Xi,..., X, construct the statistic
T =37 |lat|lld:] after following steps (1)~(3) of the algorithm given at the end of
Section 1.2. This can be compared with independently generated values of 77, ..., T,
where each T}, for j = 1,..., R, is the value of T" when the original data are drawn
from Ng(0,7). Under the alternative hypothesis, we expect the value of the test
statistic to be reduced. There is no need to consider randomised tests in this case.
The proposition below validates the plotting of the power function of this test as a

function of A\ = nl|@ — u(f)el|?.

Proposition 1.3.1. When X has distribution Py and X* has distribution P,, the
sampling distribution of T depends on 0 only through A\ = nl|0 — 1u(6)el|.

Figure 1.3 suggests that the power function of the Beran test is uniformly smaller
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Figure 1.3: The power functions of the likelihood ratio test (solid), the ANOVA test
(dotted), and Beran’s method test (dashed) of Hy: A = 0 and H; : A > 0. Parameter
values: n = 10 (left), n = 1000 (right), o = 0.05, k = 5, B = 100, R = 999; 10,000
Monte-Carlo repetitions at each value of A\. The dots are almost indistinguishable

from the solid line on the right-hand plot.

than both the generalised likelihood ratio test and the ANOVA test for both small
and large n. The ANOVA test is a little worse than the generalised likelihood ratio
test for small n and as good for large n. This is unsurprising as the ANOVA test is
analogous to using a t-test for a normal mean when the population standard deviation

is known, while the likelihood ratio test is akin to the more standard z-test.

1.4 Restoring consistency to the bootstrap

1.4.1 The Hodges estimator

It was mentioned in Section 1.3.1 that when estimating the distribution H,(6) of

n/2(T,, i —0), the parametric bootstrap distribution H,(X,,) is consistent when 6 # 0
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but inconsistent when # = 0. The bootstrap fails despite the fact that H,(#) converges
pointwise for all § € R, with a limiting distribution H (6) which is N(0,1) when 6 # 0
and N(0,b?) when § = 0. To explain this behaviour, note that provided b # 0,
we can compute the cumulative distribution function, H,(x,#) corresponding to the

distribution H,(6) as follows:

H,(z,0)
=Py (n"*(Tpu — 0) < x) =Pg(Tpw < n~ %2 +0)
=Py(X, <n Vx40, X, >n V) £ Py(bX, < n Vx4 6,[X,| <n ')
=Pp{X, < (-n Y A (n 2 +0))}
+ ]P’g{—n_l/4 <X, < (n_1/4 Ab (™ 2z + 0))}
+Py(n Yt < X, <n7V21 4-0)
=Py (n'/*(X, — 0) < (—=n** = n'/20) A 2)
+Po{—n'* —n'20 < n'2(X, — 0) < (n'/* —n!2O) AL (z + (1 — b)OR?)}

+]P9(n1/4 —n'?9 < nl/Q(X'n —-0) < x)

Thus
)
O(x) if v < —n'/* —nl/29
®(—nl/t — nl/29) if —n'/* —nl/20 <z < —bn'/* — n'/29
H,(z,0) =« @{b_l(x + (1 - b)0n1/2)} if —bnl/t — nl/20 <z < bn/*t — nt/20
®d(n'/* — n'/%9) if bnt/* —n'/20 <z < n'/* —n'/20
| ©(2) if x > n'/* —n'/2g.

(1.2)

Under Py,, we have that n'/2(X,, — 6,) has a standard normal distribution for every n
(so in particular the limit distribution has full support). It follows from Theorem 1.2.6
that H,(X,) will be a consistent estimator of H,(6p) if and only if the sequence (T}, x)
is locally asymptotically equivariant at #,. The proof of the following proposition is

similar to an argument in Putter and van Zwet (1996), and is given in Section 1.5:
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Proposition 1.4.1. The sequence (T,,,i) is locally asymptotically equivariant at 0y if

and only if 0y # 0.

Remark: When 6, = 0, Theorem 2.3 of Beran (1997) shows that H, (X,) converges
in distribution, as a random element of the space of probability measures on the real
line metrised by weak convergence, to the random probability measure N ((b—l)Z , b2) ,

where Z ~ N(0,1).

The inconsistency of the standard n out of n bootstrap at the origin leads us to
consider an m out of n parametric bootstrap, H,,(X,), where m — oo as n — oo,
but m = o(n). The rationale is as follows: since H,(6) < H(f) as n — oo for all
6 € R, consistent estimation of H(#) and H, (), or indeed H,,(#), amount to the same
thing. Thus the m out of n bootstrap may be thought of as an attempt to estimate
H,,(#) with the advantage that the parameter of the resampling distribution, X,,, is
likely to be closer to the true parameter # than is X,,. Indeed, as a consequence
of Corollary 2.1(b) of Beran (1997), H,,(X,) is consistent for all # € R provided m
tends to infinity slowly enough that m = o(n).

In Figure 1.4, we present a comparison of the errors in the bootstrap approximations
H,,(X,) as estimators of H,(#) for m = n'/2, m = n%* and m = n. These values
of m are understood to be rounded to the nearest integer. We compare H,,(X,) and
H, () using the supremum metric, d, on the corresponding distribution functions,

Hp(z,X,) and H,(z,0), so that

d(Hm(Xn), Hn(0)) = sup |Hp (7, Xy) — Hy(z,0)]. (1.3)

zeR

This distance metrises convergence in distribution, by Polya’s theorem (van der Vaart,
1998, p. 12), and has the advantage of being considerably easier to compute in practice

than other equivalent distances, such as the Lévy metric (Billingsley, 1995, p. 198).
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Figure 1.4: The distances d(H,,(X,), H,(0)), averaged over 1000 realisations of X,,
with m = n'/?2 (dotted), m = n3* (dashed), m = n (solid). Parameter values:

b= 0.5, (a) n =100, (b) n = 10, 000.
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It is particularly interesting to note that, although smaller choices of m do improve
the bootstrap performance in a very small neighbourhood of # = 0, the improvements
come at the expense of considerably worse performance outside this neighbourhood.
Treated as a problem in decision theory, the minimax rule appears to be to choose
m = n, and this would agree with the Bayes rule unless most of the mass of the prior

were concentrated in a very small neighbourhood of 6§ = 0.

We give here a heuristic explanation for the results observed. Write
m'2X, = m'/%0 + m'/?n 127,

where Z ~ N(0,1). From (1.2), we see that the magnitude of the error in the
bootstrap approximation depends on the absolute value of the difference between
n'/?20 and m'/20 + m/?n"12Z. If |§| < n~'/2, then the random term in the error,
m*?n 127, dominates. The variance in this term increases as m increases relative
to n, although it always has zero expectation. However, for larger values of |0| the
difference between the two non-random terms, m'/26 and n'/?6, is crucial. This is
large in absolute value for small m relative to n, and decreases to zero as m increases

to n.

We now investigate whether or not it is possible to retain the desirable characteristics
of both methods by means of an empirical, data-driven choice of m. That is, if we let
m = f,(|Xn|), where f, : [0,00) — {1,...,n} is some suitably chosen non-decreasing
function, can we achieve improved performance in a neighbourhood of § = 0 without

loss elsewhere in the parameter space?

A simple class of possible choices of m is given by
{ An® if | X,| < Cn™?
m = _
n if | X,| > Cn7?,

where A,C >0, a € (0,1) and § € (0,1/2). Let M denote this class.
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Proposition 1.4.2. For any m € M and any 0 € R, we have that H,,(X,) is a

consistent estimator of H,(0).

Numerical studies suggest, however, that while improved performance in a small
neighbourhood of # = 0 can be achieved, again this comes at the expense of worse
performance outside this neighbourhood. Although the ‘bad’ neighbourhoods vanish
in the limit as n tends to infinity, which ensures consistency, they remain a problem
in finite samples. The problem occurs in the region, in this case where |§| ~ Cn~?, in
which the event {|X,| < Cn~?} has moderate probability. Considered as an attempt
to estimate the optimal value mgp; = Mept(6), the rule in (1.4) is analogous to using
the Hodges estimator as an estimator of 6, and suffers the same drawbacks. Of
course, other more complicated empirical choices of m are possible, but the scope for

improvement over the naive n out of n bootstrap appears small.

A further suggestion for restoring consistency, proposed by Putter and van Zwet
(1996), involves a refined choice of parameter estimate in the bootstrap approxima-
tion: we replace H,(X,) by Hn(én) where 6, is chosen so that

A~

(i) Py—o(6, =0) > 1 asn — c©

(i) Ppso(6n #0) — 1 as n — oo.

~

The consistency of H,(6,) then follows from Corollary 1.1 of Putter and van Zwet

(1996). The authors themselves suggest an estimator from the following class:

i { 0 if |[X,|<Cn?
X, if | X,| > Cn7?,
where C' > 0 and 3 € (0,1/2). Note that, when C = 1 and 8 = 1/4, this is the Hodges

estimator with b = 0. Once again, however, the improvements in the immediate
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vicinity of & = 0 are offset by severe losses elsewhere in the parameter space. For large
n, comparing the expression for H,(z,6) in (1.2) with the corresponding expression
for H,(x,0,), we see that, when 6 € (n=1/2, Cn=*), it is likely that n'/26, will be zero,
whereas n/20 may be large. Thus H,(x,60,) will be a poor estimator of H,(z,6) in

this region of the parameter space.

1.4.2 The Stein estimator

Corollary 2.1(b) of Beran (1997) also applies to the Stein estimator, and gives that
H,,(X,) is consistent for H, () for all § € R¥, provided that m = o(n), as before.
By Polya’s theorem, we may still compare bootstrap approximations to H,(6) using
the supremum distance on the corresponding distribution functions, and we continue
to denote this metric by d. As explicit distribution functions are not available in
this instance, comparisons must be based on the respective empirical distribution

functions. The algorithm is as follows:

(i) Choose B € N and repeat steps (ii) to (iv) fori =1,..., B

(ii) Generate independent X,,1,..., X, r ~ Nig(0,n 'I) to compute I:In,R(H), the
empirical distribution of n!/? (Tn,S(Xn,l) — 0), ...,nt/? (Tn,S(XmR) — 0)

(ili) Generate independent X7 ,,..

X;w' ~ Ng(Xnj,m™I) for j = 1,...,R. Compute IA{m,R(X'n), the empirical
distribution of m'/?(T,, (X}, 1) — Xn1), ..., m!/? (T,s (X ) — XnR)

-y Xm.r, Where, conditional on X, ;, we have

(iv) Compute
di = d(ﬁm,R(Xn)a ﬁIn,R(e))

(v) Compute d = B~' 327 d,.
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In Figure 1.5, we plot d as a function of A\ = n||@ — u(A)el|?, for m = n'/2, m = n¥/*

and m = n. Numerical studies show no qualitative change for different -directions.

As in the Hodges example, we find that improvements in a small neighbourhood of
A = 0 as possible, but that there is still a price to be paid in terms of poor performance
for larger values of \. A minimax approach to selecting m would suggest choosing
m = o(n) (perhaps m = n**), whereas adopting a Bayesian decision principle would
lead to the choice m = n unless most of the mass of the prior distribution were
concentrated on a small neighbourhood of A = 0. The n out of n bootstrap performs
better relative to the alternatives as n increases. Incidentally, when two samples of
size R = 500 were drawn independently from Ni(0,1), the average over B = 200
realisations of the supremum distance between the empirical distribution functions
was 0.059. Figure 1.5 therefore suggests that H,(X,) is a very good approximation
to H,(0) for A > 10.

To explain these observations, let Z, Z' denote independent standard k-variate normal

random variables, and let T ¢ = Tp, s(X ;). Now, under Py,

(k= 3) n'/?(X, — p(Xy)e)
In'/2(X, — ( n)e)|l”
=92z = 20— ®))}
|Z — u(Z)e + n72(0 — u(d)e) || '

nl/Z(Tn,S _ 0) 1/2( _ 9)

~Z7—

and, under P,,

m'/? (T':z,S - Xn)

(k — 3) m!? (X}, — n(X7)e)
lm/2(X5, — ( mell?

(k=3){Z' — w(Z"e+m'?(Z — u(Z)e) /n*? + m*2(6 — pu(0)e) }
2" — w(Z"e+m'2(Z — u(Z)e) /n'/2 + m/2 (0 — p(0)e) H2

(1.6)

= ml/Q(X:n - Xn) -

!
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Figure 1.5: The average distances d(H,, r(X,), Hor(0)), with m = n!/? (circles),
m = n3/* (grey squares), m = n (black triangles). Parameter values: R = 500,

B =200, k =5, n'/20 = (A/2)'/%(~1,1,0,0,0), (a) n = 100, (b) n = 10, 000.
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Comparing (1.5) and (1.6), we see that H,,(X,) will be a good approximation to
H,(0) when m'/?(Z — u(Z)e)/n'? + m'/2(6 — pu(@)e) is close to n'/2(0 — pu(f)e).
When A is small, and in particular when A = 0, the main error is likely to come
from the random term, m'/2(Z — pu(Z)e)/n'/%. Since we can choose m to tend to
infinity as slowly as we like, we can make this error as small as we like, in probability.
However, when A is large, it is the difference between the two non-random terms,
m*2(0 — pu(0)e), and n'/?(@ — p(f)e) which dominates. This decreases to zero as m

increases towards n.

Note from (1.5) and (1.6) that when the components of 6 are not all equal, H, () con-

verges weakly to N, (0, 1) and H,(X,) converges weakly in Pyg-probability to Ny (0, I)
also. This explains the fact that the bootstrap distribution is consistent in this in-
stance. However, when the components of 6 are equal, H,(f) converges to the the

probability measure 7(0), where for any h € R¥ | we define (k) to be the distribution

of
(k—3)(Z — w(Z)e+ h — p(h)e)
1Z = w(Z)e+h— p(hlel* -
with Z ~ Ni(0,I). On the other hand, Theorem 2.3 of Beran (1997) shows that

H, (X,) converges weakly, as a random element of the space of probability distribu-
tions on R¥ metrised by weak convergence, to the random probability measure 7 (Z’),

where Z' ~ Ni(0,7) and is independent of Z.

Analogues of the empirical rules for choosing m and the Putter and van Zwet method
of restoring consistency also exist for this problem. For instance, the latter may be

implemented with

5 — { p(Xn)e if || X, — p(Xn)e|| < Cn™?

Xn if || X, — u(Xn)el| > Cn~?,
where C > 0 and § € (0,1/2), in which case the resulting bootstrap approximation
H,(f,) is a consistent estimator of H,(0) for all # € R*, again by Corollary 1.1 of
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0 1 2 5 10 20
n=100 H,(X,) | 0214 0.193 0.176 0.115 0.074 0.063
H,(T,s) | 0.141 0.160 0.153 0.108 0.071 0.061

n=10000 H,(X,) |0.214 0.171 0.167 0.118 0.071 0.062
H,(T,s) | 0.141 0.164 0.157 0.109 0.071 0.062

Table 1.1: The distances d(H,(X,), Ha(0)) and d(H,(Tn,s), H,(0)). Parameter val-
ues: R =500, B =200, k = 5.

Putter and van Zwet (1996). Although numerical studies suggest it is possible to
achieve minor improvements for a fixed n with a suitable choice of C, any choice of C
will eventually be poor for sufficiently large n, because n||X,, — u(X,)e||? has a non-
central chi-squared distribution with (k — 1) degrees of freedom and non-centrality
parameter ), so the event {|| X, — (X, )e|]| < Cn=?} has moderate probability when
A~ C?n' 28, Thus the event {6, = u(X,)e} is eventually probable, even for large ),

and H,,(6,) will then perform poorly. Similar remarks apply to empirical choices of

m in the m out of n bootstrap.

In fact, it is another inconsistent alternative bootstrap distribution, H, (7}, s), which
seems to come closest to improving the poor performance of H,(X,,) near A = 0 while
retaining the good performance elsewhere in the parameter space (c.f. Table 1.1).
Applying Theorem 2.3 of Beran (1997) again, the random limiting distribution of
H,(T,,s) when the components of 6 are all equal is 7(V'), where V ~ 7(0). Since we
can construct V' by shrinking Z ~ N, (0, I) towards u(Z)e, we expect that 7(V') will
be closer to 7(0) = 7 (u(Z)e) than is w(Z). This argument breaks down if || Z — p(Z)e|

is so small that the shrinkage factor is negative and large in modulus. However, this

is a rare event, which has overall little effect.
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1.5 Appendix

Proof of Proposition 1.3.1.
Recall that 7 = S°7  ||az||||d}|| is a sum of B independent and identically distributed
random variables, so it suffices to show the result for ||a*||||d*||. Observe that
(k —3)|In"2(X5 — Xl
Int2(X5 — n(X3)e)l
N (k= 3)l1 "]l
12" = w(Z")e + Z — p(Z)e + n'/2(0 — p(@)e)||

la[[[1d*]] =

(1.7)

where Z, Z' are independent standard normal random variables on R*. The idea of
the proof is to find the set of transformations of # € RF which preserve || — u(0)el,
and show that the distribution of the random variable above is invariant under such

transformations.

For d > 0, we seek to characterise the set By = {6 € R* : ||§ — u(f)e|| = d}.
Geometrically, we can consider § — p(f)e as the orthogonal projection of § onto the
(k — 1)-dimensional subspace S = {z € R* : (z,€) = 0}. (Here, and throughout, (-, -)
denotes the Euclidean inner product.) Since § € S is in By if and only if ||0]| = d, it
follows that By is a hyper-cylinder in R¥, with axis along e (c.f.Figure 1.6). Thus if

0,0" € By, we can write

0" = P(0 — pu(0)e) + p()e,
where P is a k x k orthogonal matrix mapping S into itself.

Note that if e is an eigenvector of P with eigenvalue 1, and 6 € S, then
(PB,e) = (0, P"e) = (#,e) =0,

so P maps S into itself. Now suppose 6,6 € B;NS. We show that there exists an or-

thogonal matrix with eigenvalue 1 and corresponding eigenvector e which maps 6 to 6'.
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Figure 1.6: Diagram showing the set S and the hyper-cylinder By, which has axis

along e.

Choose an orthogonal change of basis matrix A such that Ae/kY? = (0,0,...,0,1)T.
Then
(AB, Ae) = (0, AT Ae) = (0,e) = 0,

and similarly (A#', Ae) = 0, so we can find a (k — 1) x (k — 1) orthogonal matrix B
such that

Af = AF'.
0

0o --- 0 1
Hence, if C' denotes the k x k matrix obtained by extending B as above, then ATCA is

orthogonal and ATCAf = §'. Moreover, e is an eigenvector of ATC A with eigenvalue

1.

We see from (1.7) that adding ¢ e to 6, for some ¢ € R, does not change the distribution
of ||a*|||[d*||. Thus it suffices to show that, for § € B4N.S, the distribution of ||a*||||d*||

is the same when X has distribution Py as when X has distribution Ppy, provided
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that P is orthogonal and Pe = e. Noting that () =0 for # € S, we have

12 _ I1PTZ| ‘
1Z' — W(Z)e+ Z — (Z)e +n'2PO||  ||PT (2" — u(Z")e + Z — p(Z)e) + nt/?0)|

Now Z' — pu(Z")e ~ Ni(0,%), where ¥ = I — ee’ /k, and it therefore follows that
PT(Z' — u(Z')e) ~ Ni(0, P'SP). But

1 1 1
Tvwp_pr(r_ L, T\p_ pr'p_ L/ pT TNT _ 7 LT
P'YP=P (I ee )P PP k(P e)(Pe) =1 e
Similarly, PT(Z — u(Z)e) ~ Ni(0,%), and the result follows. O

Proof of Proposition 1.4.1.

Suppose 6y # 0, and let (6,) be any sequence converging to #y. We assume that
6o > 0, as the other case is very similar. From (1.2) we see that H,(z,6y) — ®(x) as
n — oo for all x € R, so the result will follow if we show that H,(z,6,) — ®(z) as

n— oo forall z € R.

Given € > 0 with € < 6y, there exists ng € N such that |6, — 6y| < € for all n > ny.

Moreover, there exists n; € N such that
CD(nl/4 —n'’2(f, — €)) <e¢/2

for all n > n;. Observe from (1.2) that for n > ng, H,(z,0,) and ®(x) agree on the

interval [n'/* — n/2(fy — €), 00). Thus, for n > max(ng, n1),

|Hy(z,0,) — @(2)| < sup |Hy(x,0,) — @(z)]
z<nl/4—n1/2(0y—e)

<23 (nt* — 20y — ¢))

<e

Conversely, if 8, = 0, then H,(z,6;) — ®(b~'z) as n — oo for all z € R. Suppose
that (6,) is a sequence such that for some non-zero h € R and some sequence (h;,)

converging to h, we can write 8, = n~'/2h,,. Again from (1.2), we see that H,(z,6,)
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and ®{b ! (z + (1 — b)0,n'/?) } agree on the interval (—bn'/* — h,,bn'/* — h,). Since
both are distribution functions, it follows that given § > 0, there exists ng € N such

that

sup|H z,0,) —®{b (z+ (1 - b)Hnnl/Q)H <0

TER

for all n > ny. Moreover, since ®(-) is uniformly continuous, there exists n; € N such

that

sup|®{b ' (z + (1 = 0)0,n'?)} —@{b ' (z+ (1 —b)h)}| <4

z€R

for n > ny. But then, for all n > max(ng,n;),

sup |H,(z,80,) — ®(b'z)| > sgﬂg‘@{b_l (z+ (1 —0b)h)} —®(b 'z)| — 26

(U528 - o (Z02) - s

since the supremum is attained at x = —(1 — b)h/2. Since § > 0 was arbitrary, we

see that the sequence (7}, i) is not locally asymptotically equivariant at p = 0. O

Proof of Proposition 1.4.2.
Recall the definition of the metric d in (1.3). We deal separately with the cases § = 0
and 0 # 0. Let m € M, and m~ = An®. Given € > 0, we have

Pop—o{d(Hm(Xy), Hy(0)) > €} = Po_o{d(H,, 0)) > € |X,| < Cn P}
+ Po- o{d( m(Xn), Ha(0)) > € | Xa| > Cn™7}
< Py_o{d(Hm- (X)), Ha(0)) > €} +2®(—Cn'/?7P)

—0
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as n — 0o, by Corollary 2.1(b) of Beran (1997). On the other hand,

Pozo{d(Hm(Xn), Ha(0)) > €} = Poso{d(Hmn(Xs), Ha(0)) > €, | X,| < Cn™F}
+ ]Pg?so{d(Hm(Xn),Hn(e)) > e, | X,| > Cn_’g}
< ®(Cnt? P — pll20) — &(—Cn/? P — nl/2g)

+ Poso{d(Hn(Xn), Ha(0)) > €}

as n — 0o, by Theorem 1.2.6. 4



