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Why is variable selection important?

Modern technology allows the collection and storage of
data on previously unimaginable scales.

Appropriate statistical models and methods are required
to extract useful information. When the model dimension
p is larger than the sample size n, variable selection is
essential for model interpretability.
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20th Century data sets

• 1 bit is the amount of information stored by a digital
device or other physical system that exists in one of
two possible distinct states

• 1 byte = 8 bits, the number required to encode a single
character of text

• 1 Megabyte = 220 bytes ≈ 106 bytes encodes:

* a 1024 × 1024 pixel bitmap image with 256 colours

* 6 seconds of uncompressed CD audio

* a typical English book volume in plain text format
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21st Century data sets

• 1 Terabyte = 240 bytes ≈ 1012 bytes encodes:

* the data collected in a single race from a Formula
One car

* 0.5% of the U.S. Library of Congress

* 2% of the data collected by the Hubble space
telescope in the last 20 years
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21st Century data sets

• 1 Terabyte = 240 bytes ≈ 1012 bytes encodes:

* the data collected in a single race from a Formula
One car

* 0.5% of the U.S. Library of Congress

* 2% of the data collected by the Hubble space
telescope in the last 20 years

• 1 Exabyte = 260 bytes ≈ 1018 bytes encodes:

* one day’s worth of data from the new SKA
telescope initiative

* the data from the hippocampi of 400 adult humans

* the data from 40 days of Google searches
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Fields in which huge data sets arise

• Biological sciences: genetics, genomics,
proteomics, . . .

• Text/document classification

• Neuroscience: fMRI, EEG, MEG, PET

• High energy physics: CERN Large Hadron Collider

• Astrophysics

• Communications networks: the internet
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A (very) brief history of variable selection

Stein (1956) first realised the power of shrinkage in
multi-dimensional problems.

Hoerl and Kennard (1970): Ridge regression
(ℓ2-penalisation)

Donoho and Johnstone (1994), Donoho et al. (1995):
Sparsity (in wavelet estimation)

Tibshirani (1996): The Lasso, for simultaneous variable
selection and parameter estimation
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The Lasso

Consider the linear model

Y
n×1

= β0 1n
n×1

+ X
n×p

β
p×1

+ ǫ
n×1

.

For λ > 0, the Lasso estimator is β̂λ, where (β̂0, β̂λ)

minimises

1

2n
‖Y − β01n −Xβ‖2 + λ

p
∑

j=1

|βj |

over (β0, β) ∈ R× R
p.
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Other penalties

More recent work has often focused on alternative
penalty functions, e.g.

1

2n
‖Y − β01n −Xβ‖2 +

p
∑

j=1

pλ(|βj |).

Examples include SCAD (Fan and Li, 2001), the elastic
net (Zou and Hastie, 2005), MCP (Zhang, 2010). Other
work assumes different structures, e.g.
pseudo-likelihood models (Fan, S. and Wu, 2009), Group
Lasso (Yuan and Lin, 2006).
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Stability Selection
Meinshausen and Bühlmann (2010)

Stability Selection is a very general technique designed
to improve the performance of a variable selection
algorithm.

It is based on aggregating the results of applying a
selection procedure to subsamples of the data.

A particularly attractive feature of Stability Selection i s
the error control provided by an upper bound on the
expected number of falsely selected variables.
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A general model for variable selection

Let Z1, . . . , Zn be i.i.d. random vectors. We think of the
indices S of some components of Zi as being ‘signal
variables’, and others N as being ‘noise variables’.

E.g. Zi = (Xi, Yi), with covariate Xi ∈ R
p, response Yi ∈ R

and log-likelihood of the form

n
∑

i=1

L(Yi,X
T
i β),

with β ∈ R
p. Then S = {k : βk 6= 0} and N = {k : βk = 0}.

Thus S ⊆ {1, . . . , p} and N = {1, . . . , p} \ S. A variable
selection procedure is a statistic Ŝn := Ŝn(Z1, . . . , Zn)

taking values in the set of all subsets of {1, . . . , p}.



R. J. Samworth Variable selection

How does Stability Selection work?

For a subset A = {i1, . . . , i|A|} ⊆ {1, . . . , n}, write

Ŝ(A) := Ŝ|A|(Zi1 , . . . , Zi|A|
).

Meinshausen and Bühlmann defined

Π̂(k) =

(

n

⌊n/2⌋

)−1
∑

A⊆{1,...,n}
|A|=⌊n/2⌋

1{k∈Ŝ(A)}.

Stability Selection fixes τ ∈ [0, 1] and selects
ŜSS
n,τ = {k : Π̂(k) ≥ τ}.
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Error control
Meinshausen and Bühlmann (2010)

Assume that {1{k∈Ŝ⌊n/2⌋}
: k ∈ N} is exchangeable, and

that Ŝ⌊n/2⌋ is not worse than random guessing:

E(|Ŝ⌊n/2⌋ ∩ S|)
E(|Ŝ⌊n/2⌋ ∩N |)

≥ |S|
|N | .

Then, for τ ∈ (12 , 1],

E(|ŜSS
n,τ ∩N |) ≤ 1

2τ − 1

(E|Ŝ⌊n/2⌋|)2
p

.
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Error control discussion

In principle, this theorem helps the practitioner choose
the tuning parameter τ . However:

• The theorem requires two conditions, and the
exchangeability assumption is very strong

• There are too many subsets to evaluate ŜSS
n,τ when

n ≥ 20

• The bound tends to be rather weak.
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Complementary Pairs Stability Selection
Shah and S. (2012)

Let {(A2j−1, A2j) : j = 1, . . . , B} be randomly chosen
independent pairs of subsets of {1, . . . , n} of size ⌊n/2⌋
such that A2j−1 ∩A2j = ∅.

Define

Π̂B(k) :=
1

2B

2B
∑

j=1
1{k∈Ŝ(Aj)}

,

and select ŜCPSS
n,τ = {k : Π̂B(k) ≥ τ}.
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Worst case error control bounds

Let pk,n = P(k ∈ Ŝn). For θ ∈ [0, 1], let Lθ = {k : pk,⌊n/2⌋ ≤ θ}
and Hθ = {k : pk,⌊n/2⌋ > θ}.

If τ ∈ (12 , 1], then

E|ŜCPSS
n,τ ∩ Lθ| ≤

θ

2τ − 1
E|Ŝ⌊n/2⌋ ∩ Lθ|.

Moreover, if τ ∈ [0, 12), then

E|N̂CPSS
n,τ ∩Hθ| ≤

1− θ

1− 2τ
E|N̂⌊n/2⌋ ∩Hθ|.
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Illustration and discussion

Suppose p = 1000, and q := E|Ŝ⌊n/2⌋| = 50. Then on
average, CPSS with τ = 0.6 selects no more than a
quarter of the variables that have below average
selection probability under Ŝ⌊n/2⌋.

• The theorem requires no exchangeability or random
guessing conditions

• It holds even when B = 1

• If exchangeability and random guessing conditions do
hold, then we recover

E|ŜCPSS
n,τ ∩N | ≤ 1

2τ − 1

(q

p

)

E|Ŝ⌊n/2⌋∩Lq/p| ≤
1

2τ − 1

(q2

p

)

.
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Proof

Let

Π̃B(k) :=
1

B

B
∑

j=1

1{k∈Ŝ(A2j−1)}

1{k∈Ŝ(A2j)}
,

and note that E{Π̃B(k)} = p2k,⌊n/2⌋. Now

0 ≤ 1

B

B
∑

j=1

{

1−1{k∈Ŝ(A2j−1)}

}{

1−1{k∈Ŝ(A2j)}

}

= 1−2Π̂B(k)+Π̃B(k).

Thus

P{Π̂B(k) ≥ τ} ≤ P
{

1
2(1 + Π̃B(k)) ≥ τ

}

= P{Π̃B(k) ≥ 2τ − 1}

≤ 1

2τ − 1
p2k,⌊n/2⌋.
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Proof 2

Note that

E|Ŝ⌊n/2⌋ ∩ Lθ| = E

(

∑

k:pk,⌊n/2⌋≤θ

1{k∈Ŝ⌊n/2⌋}

)

=
∑

k:pk,⌊n/2⌋≤θ

pk,⌊n/2⌋.

It follows that

E|ŜCPSS
n,τ ∩ Lθ| = E

(

∑

k:pk,⌊n/2⌋≤θ

1{k∈ŜCPSS
n,τ }

)

=
∑

k:pk,⌊n/2⌋≤θ

P(k ∈ ŜCPSS
n,τ )

≤ 1

2τ − 1

∑

k:pk,⌊n/2⌋≤θ

p2k,⌊n/2⌋ ≤
θ

2τ − 1
E|Ŝ⌊n/2⌋ ∩ Lθ|.
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Bounds with no assumptions whatsoever

If Z1, . . . , Zn are not identically distributed, the same
bound holds, provided in Lθ we redefine

pk,⌊n/2⌋ =

(

n

⌊n/2⌋

)−1
∑

|A|=n/2

P{k ∈ Ŝ⌊n/2⌋(A)}.

Similarly, if Z1, . . . , Zn are not independent, the same
bound holds, with p2k,⌊n/2⌋ as the average of

P{k ∈ Ŝ⌊n/2⌋(A1) ∩ Ŝ⌊n/2⌋(A2)}

over all complementary pairs A1, A2.



R. J. Samworth Variable selection

Can we improve on Markov’s inequality?
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Improved bound under unimodality

Suppose that the distribution of Π̃B(k) is unimodal for
each k ∈ Lθ. If τ ∈ {1

2 + 1
B , 12 + 3

2B , 12 +
2
B , . . . , 1}, then

E|ŜCPSS
n,τ ∩ Lθ| ≤ C(τ,B) θ E|Ŝ⌊n/2⌋ ∩ Lθ|,

where, when θ ≤ 1/
√
3,

C(τ,B)=



















1

2(2τ − 1− 1/2B)
if τ ∈ (min(12 + θ2, 12 + 1

2B + 3
4θ

2), 34 ]

4(1− τ + 1/2B)

1 + 1/B
if τ ∈ (34 , 1].
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Extremal distribution under unimodality
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The r-concavity constraint

r-concavity provides a continuum of constraints that
interpolate between unimodality and log-concavity.

A non-negative function f on an interval I ⊂ R is
r-concave with r < 0 if for every x, y ∈ I and λ ∈ (0, 1),

f(λx+ (1− λ)y) ≥ {λf(x)r + (1− λ)f(y)r}1/r;

equivalently iff f r is convex. A pmf f on {0, 1/B, . . . , 1} is
r-concave if the linear interpolant to
{(i, f(i/B)) : i = 0, 1, . . . , B} is r-concave. The constraint
becomes weaker as r increases to 0.
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Further improvements under r-concavity

Suppose Π̃B(k) is r-concave for all k ∈ Lθ. Then for
τ ∈ (12 , 1],

E|ŜCPSS
n,τ ∩ Lθ| ≤ D(θ2, 2τ − 1, B, r)|Lθ |,

where D can be evaluated numerically.

Our simulations suggest r = −1/2 is a safe and sensible
choice.
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Extremal distribution under r-concavity
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r = −1/2 is sensible
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Reducing the threshold τ

Suppose Π̃B(k) is r-concave for all k ∈ Lθ, and that Π̂B(k)

is −1/4-concave for all k ∈ Lθ. Then

E|ŜCPSS
n,τ ∩Lθ| ≤ min{D(θ2, 2τ−1, B,−1/2),D(θ, τ, 2B,−1/4)}|Lθ |,

for all τ ∈ (θ, 1]. (We take D(·, t, ·, ·) = 1 for t ≤ 0.)
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Improved bounds
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Summary

• Variable selection is one of the most important
problems in modern, high-dimensional statistics

• CPSS can be used in conjunction with any variable
selection procedure to improve its performance.

• We can bound the average number of low selection
probability variables chosen by CPSS under no
conditions on the model or base selection procedure

• Under mild conditions, e.g. r-concavity, the bounds
can be strengthened, yielding tight error control.

• This allows the practitioner to choose the threshold τ

in an effective way.
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