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Summary. Let X1,..., X, be independentand identically distributed random vectors with a log-concave
(Lebesgue) density f. We first prove that, with probability one, there exists a unique maximum likelihood
estimator f,, of f. The use of this estimator is attractive because, unlike kernel density estimation, the
method is fully automatic, with no smoothing parameters to choose. Although the existence proof is non-
constructive, we are able to reformulate the issue of computing £, in terms of a non-differentiable convex
optimisation problem, and thus combine techniques of computational geometry with Shor’s r-algorithm
to produce a sequence that converges to f,,. For the moderate or large sample sizes in our simulations,
the maximum likelihood estimator is shown to provide an improvement in performance compared with
kernel-based methods, even when we allow the use of a theoretical, optimal fixed bandwidth for the
kernel estimator that would not be available in practice. We also present a real data clustering example,
which shows that our methodology can be used in conjunction with the Expectation—Maximisation (EM)
algorithm to fit finite mixtures of log-concave densities. An R version of the algorithm is available in the
package LogConcDEAD — Log-Concave Density Estimation in Arbitrary Dimensions.
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1. Introduction

Modern nonparametric density estimation began with the introduction of a kernel density estimator
in the pioneering work of [Fix_and Hodged (1951), later republished as [Fix_and Hodged (1989). For
independent and identically distributed real-valued observations, the appealing asymptotic theory of
the mean integrated squared error was provided by [Rosenblattl (1956) and [Parzen (1962). This theory
leads to an asymptotically optimal choice of the smoothing parameter, or bandwidth. Unfortunately,
however, it depends on the unknown density f through the integral of the square of the second
derivative of f. Considerable effort has therefore been focused on finding methods of automatic
bandwidth selection (cf. Wand and Jones, 1995, Chapter 3, and the references therein). Although
this has resulted in algorithms, e.g. IChiil (1992), that achieve the optimal rate of convergence of the
relative error, namely Op(n’l/ 2), where n is the sample size, good finite sample performance is by
no means guaranteed.

tAddress for correspondence: Richard Samworth, Statistical Laboratory, Centre for Mathematical Sci-
ences, Wilberforce Road, Cambridge, UK. CB3 OWB.
E-mail: r.j.samworth@statslab.cam.ac.uk.
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Fig. 1. Without any shape constraint on the class of

densities, the likelihood function is unbounded, be- Fig. 2. The ‘tent-like’ structure of the graph of the
cause we can take successively close approxima- logarithm of the maximum likelihood estimator for
tions to a mixture of n ‘spikes’ (one on each X;). bivariate data.

This problem is compounded when the observations take values in R?, where the general kernel
estimator (Dehenvels, [1977) requires the specification of a symmetric, positive definite d x d band-
width matrix. The difficulties involved in making the d(d + 1)/2 choices for its entries mean that
attention is often restricted either to bandwidth matrices that are diagonal, or even to those that are
scalar multiples of the identity matrix. Of course, practical issues of automatic bandwidth selection
remailn.

In this paper, we propose a fully automatic nonparametric estimator of f, with no tuning parameters
to be chosen, under the condition that f is log-concave — that is, log f is a concave function. The
class of log-concave densities has many attractive properties and has been well-studied, particularly
in the economics, sampling and reliability theory literature. See Section B for further discussion of
examples, applications and properties of log-concave densities.

In Section B we show that if Xy, ..., X,, are independent and identically distributed random vectors
with a log-concave density, then with probability one there exists a unique log-concave density f,
that maximises the likelihood function,

Before continuing, it is worth noting that without any shape constraints on the densities under
consideration, the likelihood function is unbounded. To see this, we could define a sequence (fy,) of
densities that represent successively close approximations to a mixture of n ‘spikes’ (one on each X}),
such as f,,(z) =n" '3 | dgn-17(z — X;), where ¢g 5, denotes the Ny(0,%) density. This sequence
satisfies L(f,) — 0o as n — oo (cf. Figure[ll). In fact, a modification of this argument may be used
to show that the likelihood function remains unbounded even if we restrict attention to unimodal
densities.
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(a) Density (b) Log-density

Fig. 3. Log-concave maximum likelihood estimates based on 1000 observations (plotted as dots) from a
standard bivariate normal distribution.

Figure B gives a diagram illustrating the structure of the maximum likelihood estimator on the
logarithmic scale. This structure is most easily visualised for two-dimensional data, where one can
imagine associating a ‘tent pole’ with each observation, extending vertically out of the plane. For
certain tent pole heights, the graph of the logarithm of the maximum likelihood estimator can be
thought of as the roof of a taut tent stretched over the tent poles. The fact that the logarithm of
the maximum likelihood estimator is of this ‘tent function’ form constitutes part of the proof of its
existence and uniqueness.

In Section Bl we discuss the computational problem of how to adjust the n tent pole heights so that
the corresponding tent functions converge to the logarithm of the maximum likelihood estimator.
One reason that this computational problem is so challenging in more than one dimension is the fact
that it is difficult to describe the set of tent pole heights that correspond to concave functions. The
key observation, discussed in Section B, is that it is possible to minimise a modified objective function
that it is convex (though non-differentiable). This allows us to apply the powerful non-differentiable
convex optimisation methodology of the subgradient method (Im, @) and a variant called Shor’s

r-algorithm, which has been implemented by [Kappel and Kuntsevich (2000).

As an illustration of the estimates obtained, Figure Bl presents plots of the maximum likelihood esti-
mator, and its logarithm, for 1000 observations from a standard bivariate normal distribution. These

plots were created using the LogConcDEAD package ((Cule et _all. 20084) in R (R Development Core

Team, 2008), which exploits the interactive surface-plotting software available in the rgl package

, 2007).

In Section B we present simulations to compare the finite-sample performance of the maximum
likelihood estimator with kernel-based methods. The results are striking: even when we use the
theoretical, optimal bandwidth for the kernel estimator (or an asymptotic approximation to this
when it is not available), we find that the maximum likelihood estimator has a rather smaller
mean integrated squared error for moderate or large sample sizes, despite the fact that this optimal
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bandwidth depends on properties of the density that would be unknown in practice. This suggests
that the maximum likelihood estimator is able to adapt to the local smoothness of the underlying
density automatically.

Nonparametric density estimation is a fundamental tool for the visualisation of structure in ex-
ploratory data analysis, and has an enormous literature that includes the monographs of Devroye
and Gyorfi (1985), Silverman (1986), Scotfl (1992) and Wand_and Jones (1993). Our proposed
method may certainly be used for this purpose; however, it may also be used as an intermediary
stage in more involved statistical procedures. For instance:

(a) In classification problems, we have p > 2 populations of interest, and assume in this discussion
that these have densities fi,..., f, on R%. We observe training data of the form {(X;,Y;) :
i=1,...,n}, where if ¥; = j, then X, has density f;. The aim is to classify a new observation
z € R% as coming from one of the populations. Problems of this type occur in a huge variety
of applications, including medical diagnosis, archaeology, ecology etc. — see @ M)
[Hand (1981) or Devroye et all (1996) for further details and examples A natural approach to
classification problems is to construct density estimates fl, cee fp, where fJ is based on the
n; observations, say, from the jth population, namely {X; : ¥; = j}. We may then assign
z to the jth population if njfj (2) = max{n1f1(2),...,npfp(z)}. In this context, the use of
kernel-based estimators in general requires the choice of p separate d x d bandwidth matrices,
while the corresponding procedure based on the log-concave maximum likelihood estimates is
again fully automatic.

(b) Clustering problems are closely related to the classification problems described above. The
difference is that, in the above notation, we do not observe Y7,...,Y,, and have to assign
each of X1,..., X, to one of the p populations. A common technique is based on fitting a
mixture density of the form f(z) = 25:1 7; f;(x), where the mixture proportions 71, ..., 7,
are positive and sum to one. Under the assumption that each of the component densities
fi,..., fp is log-concave, we show in Section [l that our methodology can be extended to fit
such a finite mixture density, which need not itself be log-concave — cf. Section We also
illustrate this clustering algorithm on a Wisconsin breast cancer data set in Section [, where
the aim is to separate observations into benign and malignant component populations.

(¢) A functional of the true underlying density may be estimated by the corresponding functional of
a density estimator, such as the log-concave maximum likelihood estimator. Examples of func-
tionals of interest include probabilities, such as fHIH>1 f(z) dz, moments, e.g. [ |z|f(x)dz,

and the differential entropy, — [ f(z)log f(x) dz. It may be possible to compute the plug-in es-
timator based on the log-concave maximum likelihood estimator analytically, but in Section [1,
we show that even if this is not possible, in many cases of interest we can sample from the
log-concave maximum likelihood estimator fn, and hence obtain a Monte Carlo estimate of
the functional. This nice feature also means that the log-concave maximum likelihood estima-
tor can be used in a Monte Carlo bootstrap procedure for assessing uncertainty in functional
estimates — see Section [ for further details.

(d) The fitting of a nonparametric density estimate may give an indication of the validity of a
particular smaller model (often parametric). Thus, a contour plot of the log-concave maximum
likelihood estimator may provide evidence that the underlying density has elliptical contours,
and thus suggest that a model that exploits this elliptical symmetry.

(e) In the univariate case, [Walther M) describes methodology based on log-concave density
estimation for addressing the problem of detecting the presence of mixing in a distribution.
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As an application, he cites the Pickering/Platt debate (Im, w) on the issue of whether
high blood pressure is a disease (in which case observed blood pressure measurements should
follow a mixture distribution), or simply a label attached to people in the right tail of the
blood pressure distribution. As a result of our algorithm for computing the multidimensional
log-concave maximum likelihood estimator, this methodology extends immediately to more
than one dimension.

There has been considerable recent interest in shape-restricted nonparametric density estimation, but
most of it has been confined to the case of univariate densities, where the computational algorithms
are more straightforward. Nevertheless, as was discussed above, it is in multivariate situations that
the automatic nature of the maximum likelihood estimator is particularly valuable. [Walthei (@)

[Diimbgen and Rufibach (2007) and [Pal et all (2007) have proved the existence and uniqueness of the

log-concave maximum likelihood estimator in one dimension and Pal
et al. (Im and Balabdaoui et _all M) have studied its theoretical properties. Rufibach ) has

compared different algorithms for computing the univariate estimator, including the iterative convex

minorant algorithm and three others. Diimbgen

et al. (Im also present an Active Set algorithm, which has similarities with the vertex direction and
vertex reduction algorithms described in [Groeneboom et all (2008). For univariate data, it is also
well-known that there exist maximum likelihood estimators of a non-increasing density supported

on [0,00) (Grenander, 1956) and of a convex, decreasing density (Groeneboom et all, 2001)

In Section B we give a brief concluding discussion, and suggest some directions for future research.
Finally, we present in Appendix [Al a glossary of terms and results from convex analysis and com-
putational geometry that appear in italics at their first occurrence in the main body of the paper;
the references are Rockafella (1997) and [Led (IE) Proofs are deferred to Appendix [B, except
that the beginning of the proof of Theorem P is given in the main text, as the ideas and notation
introduced are needed in the remainder of the paper.

2. Log-concave densities: examples, applications and properties

Many of the most commonly-encountered parametric families of univariate distributions have log-
concave densities, including the family of normal distributions, gamma distributions with shape
parameter at least one, Beta(q, ) distributions with «, 8 > 1, Weibull distributions with shape
parameter at least one, Gumbel, logistic and Laplace densities; see Bagnoli and Bergstrom (1989)
for other examples. Univariate log-concave densities are unimodal and have fairly light tails — it may
help to think of the exponential distribution (where the logarithm of the density is a linear function
on the positive half-axis) as a borderline case. Thus Cauchy, Pareto and lognormal densities, for
instance, are not log-concave. Mixtures of log-concave densities may be log-concave, but in general
they are not; for instance, for p € (0, 1), the location mixture of standard univariate normal densities

f(@) =pp(x) + (1 — p)o(x — p) is log-concave if and only if ||y < 2.

The assumption of log-concavity is a popular one in economics; ICaplin_and Naelbufl (1991H) show

that in the theory of elections and under a log-concavity assumption, the proposal most preferred
by the mean voter is unbeatable under a 64% majority rule. As another example, in the theory of

imperfect competition, [Caplin_and Naelbufl (19914) use log-concavity of the density of consumers’
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utility parameters as a sufficient condition in their proof of the existence of a pure-strategy price
equilibrium for any number of firms producing any set of products. See IBagnoli and Bergstrom
(1989) for many other applications of log-concavity to economics. [Brooks (11998) and Mengersen and
Tweedie (1996) have exploited the properties of log-concave densities in studying the convergence
of Markov chain Monte Carlo sampling procedures.

An (199f) lists many useful properties of log-concave densities. For instance, if f and g are (possibly
multidimensional) log-concave densities, then their convolution f * g is log-concave. In other words,
if X and Y are independent and have log-concave densities, then their sum X + Y has a log-concave
density. The class of log-concave densities is also closed under the taking of pointwise limits. One-
dimensional log-concave densities have increasing hazard functions, which is why they are of interest
in reliability theory. Moreover, [bragimoy (1956) proved the following characterisation: a univariate
density f is log-concave if and only if the convolution f x g is unimodal for every unimodal density
g. There is no natural generalisation of this result to higher dimensions.

As was mentioned in Section[I] this paper concerns multidimensional log-concave densities, for which
fewer properties are known. It is therefore of interest to understand how the property of log-concavity
in more than one dimension relates to the univariate notion. Our first proposition below is intended
to give some insight into this issue. It is not formally required for the subsequent development of our
methodology in Sections Bl and Bl although we did apply the result when designing our simulation
study in Section Bl We assume throughout that log-concave densities are with respect to Lebesgue
measure on the affine hull of their support, and ‘X has a log-concave density’ means ‘there exists a
version of the density of X that is log-concave’.

PRrROPOSITION 1. Let X be a d-variate random vector having density f with respect to Lebesgue
measure on R, For a subspace V' of R%, let Py (z) denote the orthogonal projection of x onto V.
Then in order that f be log-concave, it is:

(a) necessary that for any subspace V', the marginal density of Py(X) is log-concave and the
conditional density fx|p, x)(-[t) of X given Py (X) =t is log-concave for each t

(b) sufficient that for every (d — 1)-dimensional subspace V, the conditional density fx|p, x)(-|t)
of X given Py(X) =t is log-concave for each t.

The part of Proposition[la) concerning marginal densities is an immediate consequence of Theorem 6
of [Prékopa (1973). One can regard Proposition [[(b) as saying that a multidimensional density is
log-concave if the restriction of the density to any line is a (univariate) log-concave function.

It is interesting to compare the properties of log-concave densities presented in Proposition [ with
the corresponding properties of Gaussian densities. In fact, Proposition [llremains true if we replace
‘log-concave’ with ‘Gaussian’ throughout (at least, provided that in part (b) we also assume there is a
point at which f is twice differentiable). These shared properties suggest that the class of log-concave
densities is a natural, infinite-dimensional generalisation of the class of Gaussian densities.
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3. Existence, uniqueness and structure of the maximum likelihood estimator

Let Fy denote the class of log-concave densities on R? with d-dimensional support, and let fo € Fo.
The degenerate case where the support is of dimension smaller than d can also be handled, but for
simplicity of exposition we concentrate on the non-degenerate case. Suppose that Xq,..., X, are
a random sample from fo. We say that f, = fn(X1,...,Xn) € Fo is a (nonparametric) mazimum
likelihood estimator of fy if it maximises ¢(f) =Y ., log f(X;) over f € Fy.

THEOREM 2. Suppose that n > d + 1. Then, with probability one, a nonparametric mazimum
likelihood estimator f, of fo exists and is unique.

FirRsT PART OF PROOF. We may assume that Xi,..., X, are distinct and their convex hull,
Cp, = conv(Xy,...,X,), is a d-dimensional polytope (an event of probability one when n > d + 1).
By a standard argument in convex analysis (Rockafellai, 1997, p. 37), for each y = (y1,...,yn) € R”
there exists a function h, : R? — R with the property that h, is the least concave function satisfying
hy(X;) > y; for alli = 1,...,n. Informally, h, is a ‘tent function’, and a typical example is depicted
in Figure @l Let H = {h, : y € R"} denote ‘the class of tent functions’. Let F denote the set of all

log-concave functions on R%, and for f € F, define
1 n
vulh) = = S t0e f(X) = [ fla)da,
i=1

Suppose that f maximises 1, (-) over F. The main part of the proof, which is completed in the
Appendix, consists of showing that

) f(x)>0forxz e,
) f(&)=0forz ¢ C,
(iii) log f e H
)
)

Although step (iii) above gives us a finite-dimensional class of functions to which log fn belongs, the
proof of Theorem B gives no indication of how to find the member of this class that maximises the
likelihood function. We therefore seek an iterative algorithm to compute the estimator, but first we
describe the structure we see in Figure Blin Section [[l more precisely. From now on, we assume:

(A1): n>d+1, and every subset of {X1,...,X,} of size d+ 1 is affinely independent.

Note that when n > d + 1, the event in (A1) has probability one. From step (iii) in the proof of
Theorem B above, there exists y € R™ such that log fn = h,. As illustrated in Figure B and justified
formally by Corollary 17.1.3 and Corollary 19.1.2 of [Rockafella (1997), the convex hull of the data,
C,, may be triangulated in such a way that log fn coincides with an affine function on each simplex
in the triangulation. In other words, if j = (j1,...,ja+1) is a (d + 1)-tuple of distinct indices in
{1,...,n}, and Cy; = conv(Xj,,...,Xj,,,), then there exists a finite set J consisting of m such

(d + 1)-tuples, with the following three properties:
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(i) UjesCn,j =Cn

(ii) the relative interiors of the sets {Cy, ; : j € J} are pairwise disjoint
(iii)
5 | A(z,bj) = pB; ifz e C,; for some j e J
1ng"(m)_{ —00 ifx ¢ C,
for some by, ...,b, € R?and B, ..., Bn € R. Here and below, (-, -) denotes the usual Euclidean
inner product in R<.

In the iterative algorithm that we propose in Section H for computing the maximum likelihood
estimator, we need to find convex hulls and triangulations at each iteration. Fortunately, these can
be computed efficiently using the Quickhull algorithm of Barber et all (1996).

4. Computation of the maximum likelihood estimator

4.1. Reformulation

As a first attempt to find an algorithm which produces a sequence that converges to the maximum
likelihood estimator in Theorem B it is natural to try to minimise numerically the function

1 no B
T(Y1, -y Yn) = - ;hy(Xi) + /Cn exp{hy(z)} dz.

Although this approach might work in principle, one difficulty is that 7 is not convex, so this approach
is extremely computationally intensive, even with relatively few observations. Another reason for
the numerical difficulties stems from the fact that the set of y-values on which 7 attains its minimum
is rather large: in general it may be possible to alter particular components y; without changing h,.
Of course, we could have defined 7 as a function of By rather than as a function of the vector of tent
pole heights y = (y1,...,yn). Our choice, however, motivates the following definition of a modified
objective function:

oY1, Yn) = —%Zy +/c exp{hy(z)} dz. (4.1)

n

The great advantages of minimising o rather than 7 are seen by the following theorem.

THEOREM 3. Assume (A1). The function o is a convex function satisfying o > 7. It has a unique
minimum at y* € R", say, and log fn, = hy-.

Thus Theorem Bl shows that the unique minimum y* = (y7,...,¥;) of o belongs to the minimum
set of 7. In fact, it corresponds to the element of the minimum set for which h,(X;) = y; for

i =1,...,n. Informally, then, hy~ is ‘a tent function with all of the tent poles touching the tent’.

In order to compute the function o at a generic point y = (y1,...,yn) € R™, we need to be able to
evaluate the integral in (EEI]). In the notation of Section Bl we may write

[ et =3 [ expleb) )

JjeJ
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For each j = (j1,...,ja+1) € J, let A; be the d x d matrix whose /th column is X, , — X; for
l=1,...,d,and let a;j = X,. Then the affine transformation w — Aj;w+ o  takes the unit simplex
Ty = {w = (wy,...,wq) : w; > 0, 27:1 w; < 1} to Cy ;. Letting z;; = yj,,, — ¥;, we can then
establish by a simple change of variables and induction on d that if z;1,..., 24 are non-zero and
distinct, then

d .

- _ e — 1 1
Chp jeJ r=1 7,7 1<s<d 7,7 7,8
SFET

Further details of this calculation can be found in a longer version of this paper (Cnle_et _all, [20081).
The singularities that occur when some of 2j1,..., 24 may be zero or equal are removable. Thus,
although [2) is a little complicated, it allows the computation of our objective function.

4.2. Nonsmooth optimisation

There is a vast literature on techniques of convex optimisation (cf. Boyd and Vandenberghd (2004),
for example), including the method of steepest descent and Newton’s method. Unfortunately, these
methods rely on the differentiability of the objective function, and the function o is not differentiable.
This can be seen informally by studying the schematic diagram in Figure Bl again. If the ith tent
pole, say, is touching but not critically supporting the tent, then decreasing the height of this tent
pole does not change the tent function, and thus does not alter the integral in (El); on the other
hand, increasing the height of the tent pole does alter the tent function and therefore the integral
in @I). This argument may be used to show that at such a point, the ith partial derivative of o
does not exist.

The set of points at which o is not differentiable constitute a set of Lebesgue measure zero, but the
non-differentiability cannot be ignored in our optimisation procedure. Instead, it will be necessary to
derive a subgradient of o at each point y € R™. This derivation, along with a more formal discussion
of the non-differentiability of o, can be found in the Appendix.

The theory of non-differentiable, convex optimisation is perhaps less well-known than its differen-
tiable counterpart, but a fundamental contribution was made by Shoil (1985) with his introduction
of the subgradient method for minimising non-differentiable, convex functions defined on Euclidean
spaces. A slightly specialised version of his Theorem 2.2 gives that if do(y) is a subgradient of o at
y, then for any y(® € R™, the sequence generated by the formula

(e+1) _ y(é) . 50(2/“))

Yy hopr =5
oa(y@)]

has the property that either there exists an index ¢* such that y“) = y* or y® — y* and
o(y®) — o(y*) as £ — oo, provided we choose the step lengths hy so that hy — 0 as £ — oo, but
D2y he = 0.

Shor recognised, however, that the convergence of this algorithm could be slow in practice, and that
although appropriate step size selection could improve matters somewhat, the convergence would
never be better than linear (compared with quadratic convergence for Newton’s method near the
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optimum — see Boyd_and Vandenberghd (2004, Section 9.5)). Slow convergence can be caused by

taking at each stage a step in a direction nearly orthogonal to the direction towards the optimum,
which means that simply adjusting the step size selection scheme will never produce the desired
improvements in convergence rate.

One solution (M, @, Chapter 3) is to attempt to shrink the angle between the subgradient and
the direction towards the minimum through a (necessarily nonorthogonal) linear transformation,
and perform the subgradient step in the transformed space. By analogy with Newton’s method for
smooth functions, an appropriate transformation would be an approximation to the inverse of the
Hessian matrix at the optimum. This is not possible for nonsmooth problems, because the inverse
might not even exist (and will not exist at points at which the function is not differentiable, which
may include the optimum).

Instead, we perform a sequence of dilations in the direction of the difference between two succes-
sive subgradients, in the hope of improving convergence in the worst-case scenario of steps nearly
perpendicular to the direction towards the minimiser. This variant, which has become known as

Shor’s r-algorithm, has been implemented in [Kappel and Kuntsevich (200(). Accompanying software

SolvOpt is available from fhttp://www.uni-graz.at/imawww/kuntsevich/solvopt/|.

Although the formal convergence of the r-algorithm has not been proved, we agree with the au-
thors’ claims that it is robust, efficient and accurate. Of course, it is clear that if we terminate
the r-algorithm after any finite number of steps and apply the original Shor algorithm using our
terminating value of y as the new starting value, then formal convergence is guaranteed. We have
not found it necessary to run the original Shor algorithm after termination of the r-algorithm in
practice.

If (y®) denotes the sequence of vectors in R” produced by the r-algorithm, we terminate when
o [o(y“tV) —o(y®) <4
. |y§£+l) —yl@| <efori=1,...,n

o [1— [exp{hyw(x)}dz] <n

for some small §,¢ and n > 0. The first two termination criteria follow Kappel and Kuntsevich
M), while the third is based on our knowledge that the true optimum corresponds to a density

ection kbl). As default values, and throughout this paper, we too =107 and e=n=10"".
Secti As defaul 1 d th h hi k 6 = 107% and n=10"%

Table [M gives approximate running times and number of iterations of Shor’s r-algorithm required
for different sample sizes and dimensions on an ordinary desktop computer (1.8GHz, 2GB RAM).
Unsurprisingly, the running time increases relatively quickly with the sample size, while the number
of iterations increases approximately linearly with n. Each iteration takes longer as the dimension
increases, though it is interesting to note that the number of iterations required for the algorithm
to terminate decreases as the dimension increases. When d = 1, we recommend the Active Set

algorithm of |121'E'%%§gn et_all (2007). which is implemented in the R package logcondens (Rufibach
and Diimbgen, ).



http://www.uni-graz.at/imawww/kuntsevich/solvopt/

Log-concave density estimation 11

Table 1. Approximate running times (with number of iterations in brackets) for
computing the maximum likelihood estimator of a log-concave density

n = 100 n = 500 n = 1000 n = 2000

1.5 secs (260) 50 secs (1270) 4 mins (2540) 24 mins (5370)

6 secs (170) 100 secs (820) 7 mins (1530) 44 mins (2740)
23 secs (135) 670 secs (600) 37 mins (1100) 224 mins (2060)

QA a
Il
AW

5. Finite sample performance

Our simulation study considered, for d = 2 and 3, the following densities:

a) standard normal, ¢gq = ¢g 1
b) dependent normal, ¢g 5, with ¥;; = 1—j3 +0.21 15

) the joint density of independent I'(2,1) components

) the normal location mixture 0.6¢4(-) + 0.4¢4(- — p) for (d) ||ul] =1, (e) |ull =2, (f) |ull = 3.
An application of Proposition[ll gives that such a normal location mixture is log-concave if and
only if [lul] < 2.

In Tables Bl and Bl we present, for each density and for four different sample sizes, an estimate of the
mean integrated squared error (MISE) of the nonparametric maximum likelihood estimator based
on 100 Monte Carlo iterations. We also show the MISE for the kernel density estimates with a
Gaussian kernel and, for all of the normal and mixture of normal examples, the choice of bandwidth
that minimises the MISE. In the gamma example, exact MISE calculations are not possible, so we
took the bandwidth that minimises the asymptotic mean integrated squared error (AMISE). These
optimal bandwidths can be computed using the formulae in [Wand and Joned (1994, Sections 4.3
and 4.4). As minimisation of the expressions for both the MISE and the AMISE requires knowledge
of certain functionals of the true density that would be unknown in practice, we also provide a
comparison with an empirical bandwidth selector based on least squares cross validation (LSCV)
(Wand _and Joned, 1995, Section 4.7). The LSCV bandwidths were computed using the ks package
(Duong, 2007) in R, and we used the option of constraining the bandwidth matrices to be diagonal
in cases (a) and (c) where the components are independent.

We see that in cases (a)-(e) the log-concave maximum likelihood estimator has a smaller MISE
than the kernel estimate with bandwidth chosen by LSCV, and at least for moderate and large
sample sizes, the difference is quite dramatic. Even more remarkably, in these cases the log-concave
estimator also outperforms the kernel estimate with optimally chosen bandwidth when the sample
size is not too small. It seems that for small sample sizes, the fact that the convex hull of the data
is rather small hinders the performance of the log-concave estimator, but that this effect is reduced
as the sample size increases. The log-concave estimator copes well with the dependence in case (b),
and it also deals particularly impressively with case (¢), where the true density decays to zero at the
boundary of the positive orthant.

In case (f), where the log-concavity assumption is violated, the performance of our estimator is not
as good as the kernel estimate with the optimally chosen bandwidth, but is still comparable in most
cases with the LSCV method. One would not expect the MISE of f,, to approach zero as n — oo
if log-concavity is violated, and in fact we conjecture that in this case the log-concave maximum
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Table 2. Mean integrated squared error estimates (with standard errors in brackets

where applicable; d = 2)

100
500
1000
2000

100
500
1000
2000

100
500
1000
2000

100
500
1000
2000

100
500
1000
2000

100
500
1000
2000

LogConcDEAD
0.00620(0.000222)
0.00161(0.0000514)
0.000983(0.0000289)
0.000599(0.0000155)

(a) Independent Normal

LogConcDEAD
0.00607(0.000283)
0.00168(0.0000573)
0.00100(0.0000295)
0.000608(0.0000154)

(b) Dependent Normal

LogConcDEAD
0.00588(0.000222)
0.00143(0.0000478)
0.000802(0.0000236)
0.000451(0.0000110)

Kernel (opt MISE)

Kernel (opt MISE)

Kernel (opt AMISE)

Kernel (LSCV)
0.00622(0.000383)
0.00199(0.0000844)
0.00122(0.0000495)
0.000803(0.0000276)

Kernel (LSCV)
0.00827(0.000583)
0.00240(0.000122)
0.00142(0.0000662)
0.000868(0.0000331)

Kernel (LSCV)
0.00800(0.000339)

0.00291(0.0000687)
0.00194(0.0000456)
0.00130(0.0000209)

(c) I'(2,1) (independent components)

LogConcDEAD
0.00504(0.000206)
0.00136(0.0000745)
0.000747(0.0000622)
0.000543(0.0000553)

Kernel (opt MISE)

Kernel (LSCV)
0.00515(0.000195)
0.00179(0.0000515)
0.00116(0.0000376)
0.000683(0.0000121)

(d) Normal location mixture, ||u|| =1

LogConcDEAD
0.00434(0.00158)
0.000996(0.0000622)
0.000640(0.0000502)
0.000445(0.0000455)

Kernel (opt MISE)

Kernel (LSCV)
0.00514(0.000322)
0.00146(0.000442)
0.000880(0.000176)
0.000583(0.0000192)

(e) Normal location mixture, ||u|| = 2

LogConcDEAD
0.00467(0.000139)
0.00173(0.0000522)
0.00122(0.0000456)
0.00105(0.0000340)

(f) Normal location mixture, |

Kernel (opt MISE)

Kernel (LSCV)
0.00484(0.000244)
0.00150(0.000363)
0.000925(0.0000131)
0.000577(0.0000651)

pll=3
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Table 3. Mean integrated squared error estimates (with standard errors in brackets
where applicable; d = 3)

n LogConcDEAD Kernel (opt MISE) Kernel (LSCV)

100 0.00426(0.000131) 0.00240 0.00505(0.000279)
500 0.000835(0.0000302)  0.00106 0.00143(0.0000338)
1000  0.000442(0.0000236)  0.000737 0.000888(0.0000139)
2000  0.000304(0.0000238)  0.000508 0.000579(0.00000985)

(a) Independent Normal

n LogConcDEAD Kernel (opt MISE) Kernel (LSCV)
100 0.00467(0.000147) 0.00254 0.00550(0.000361)
500 0.000812(0.0000301)  0.00112 0.00152(0.0000367)
1000  0.000431(0.0000249)  0.000778 0.000922(0.0000145)
2000  0.000304(0.0000233)  0.000537 0.000603(0.00000676)

(b) Dependent Normal

n LogConcDEAD Kernel (opt AMISE) Kernel (LSCV)

100 0.00365(0.000142) 0.00344 0.0741(0.00400)

500 0.000779(0.0000243)  0.00136 0.00192(0.0000518)
1000  0.000538(0.000104) 0.000922 0.00123(0.0000262)
2000  0.000292(0.0000414)  0.000622 0.000849(0.0000228)

(c) I'(2,1) (independent components)

n LogConcDEAD Kernel (opt MISE) Kernel (LSCV)
100 0.00395(0.000124) 0.00214 0.00446(0.000242)
500 0.000743(0.0000272)  0.000946 0.00124(0.0000298)
1000  0.000446(0.0000218)  0.000656 0.000822(0.0000179)
2000  0.000265(0.0000202)  0.000452 0.000508(0.00000537)
(d) Normal location mixture, ||x|| = 1
n LogConcDEAD Kernel (opt MISE) Kernel (LSCV)
100 0.00319(0.000100) 0.00168 0.00371(0.000203)
500 0.000596(0.0000231)  0.000748 0.00103(0.0000340)
1000  0.000329(0.0000173)  0.000520 0.000656(0.0000160)
2000  0.000220(0.0000171)  0.000358 0.000410(0.00000519)
(e) Normal location mixture, ||u|| = 2
n LogConcDEAD Kernel (opt MISE) Kernel (LSCV)
100 0.00328(0.0000930) 0.00166 0.00296(0.000120)
500 0.000803(0.0000184)  0.000751 0.000998(0.000254)
1000  0.000552(0.0000169)  0.000525 0.000613(0.0000892)
2000 0.000401(0.0000133)  0.000364 0.000404(0.00000488)

(f) Normal location mixture, |

pll=3
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likelihood estimator will converge to the density f* that minimises the Kullback—Leibler divergence
d(foll f) = [ fo(x)log fjﬁ)((;)) dx over f € Fy. Such a result would be interesting for robustness
purposes, because it could be interpreted as saying that provided the underlying density does not
violate the log-concavity assumption too seriously, the log-concave maximum likelihood estimator is

still sensible.

6. Clustering example

In a recent paper, (Chang and Walthet (2008) introduced an algorithm which combines the univariate
log-concave maximum likelihood estimator with the EM algorithm (Dempster et all, [1977), to fit a

finite mixture density of the form

HOEDIEAAC (61)

where the mixture proportions 71, ..., 7, are positive and sum to one, and the component densities
fi,..., fp are univariate and log-concave. The method is an extension of the standard Gaussian EM
algorithm, e.g. [Fraley and Raftery (2002), which assumes that each component density is normal.
Once estimates 7, ..., 7p, fl, ceey fp have been obtained, clustering can be carried out by assigning
to the jth cluster those observations X; for which j = argmax, 7, f,(X;). [Chang and Walthel
(IM) show empirically that in cases where the true component densities are log-concave but not
normal, their algorithm tends to make considerably fewer misclassifications and have smaller mean
absolute error in the mixture proportion estimates than the Gaussian EM algorithm, with very
similar performance in cases where the true component densities are normal.

Owing to the previous lack of an algorithm for computing the maximum likelihood estimator of a
multidimensional log-concave density, (Chang_and Waltheil (2008) discuss an extension of the model
in (EJ) to a multivariate context where the univariate marginal densities of each component in
the mixture are assumed to be log-concave, and the dependence structure within each component
density is modelled with a normal copula. Now that we are able to compute the maximum likelihood
estimator of a multidimensional log-concave density, we can carry this method through to its natural
conclusion. That is, in the finite mixture model (@Il for a multidimensional log-concave density
f, we simply assume that each of the component densities fq,..., f, is log-concave. An interesting
problem that we do not address here that of finding appropriate conditions under which this model

is identifiable — see [Titterington et all (1985, Section 3.1) for a nice discussion.

6.1. EM algorithm

An introduction to the EM algorithm can be found in [McLachlan and Krishnan (1997). Briefly, given

current estimates of the mixture proportions and component densities 7%52), . ,frz(,e), fl(e), ey f;” at
the /th iteration of the algorithm, we update the estimates of the mixture proportions by setting

7Ar§€+1) =n" Y0, éf? for j=1,...,p, where

L (0) 3¢
o0 79 119(X))
Yo s RO
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is the current estimate of the posterior probability that the ith observation belongs to the jth
component. We then update the estimates of the component densities in turn using the algorithm

described in Section Bl choosing f;“l) to be the log-concave density f; that maximises

n

36 10g (X)),
i=1
The incorporation of the weights ég@, ceey éff)‘ in the maximisation process presents no additional
complication, as is easily seen by inspecting the proof of Theorem 1 As usual with methods based
on the EM algorithm, although the likelihood increases at each iteration, there is no guarantee that
the sequence converges to a global maximum. In fact, it can happen that the algorithm produces
a sequence that approaches a degenerate solution, corresponding to a component concentrated on
a single observation, so that the likelihood becomes arbitrarily high. The same issue can arise
when fitting mixtures of Gaussian densities, and in this context [Fraley and Raftery (2002) suggest
that a Bayesian approach can alleviate the problem in these instances by effectively smoothing the
likelihood. In general, it is standard practice to restart the algorithm from different initial values,
taking the solution with the highest likelihood.

6.2. Breast cancer example

We illustrate the log-concave EM algorithm on the Wisconsin breast cancer data set of Street. et al
(1993), available on the UCI Machine Learning Repository website (Asuncion and Newman, [2007):

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+7,28Diagnostic?29.

The data set was created by taking measurements from a digitised image of a fine needle aspirate of
a breast mass, for each of 569 individuals, with 357 benign and 212 malignant instances. We study
the problem of trying to diagnose (cluster) the individuals based on the standard errors of two of the
measurements, namely the radius of the cell nucleus (mean of distances from center to points on the
perimeter, X) and its texture (standard deviation of grey-scale values, Y'). The data are presented in
Figure Bl(a). In fact, the full data set consists of 30 measurements for each patient, representing the
mean, standard error and ‘worst’ (mean of the three largest values) of 10 different features computed
for each cell nucleus in the image. Since one would reasonably expect the means of each feature to
be approximately normally distributed, and hence the Gaussian EM algorithm to be appropriate, we
took the standard errors of the first two measurements to illustrate the log-concave EM algorithm
methodology.

It is important also to note that although for this particular data set we do know whether a particular
instance is benign or malignant, we did not use this information in fitting our mixture model.
Instead this information was only used afterwards to assess the performance of the method, as
reported below. Thus we are studying a clustering (or unsupervised learning) problem, by taking
a classification (or supervised learning) data set and ‘covering up the labels’ until it comes to
performance assessment.

The skewness in the data suggests that the mixture of Gaussians model may be inadequate, and in
Figure E(b) we show the contour plot and misclassified instances from this model. The corresponding
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0 0
- - Benign < - Correct
’ - Malignant ’ . - Incorrect
0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5
X X
(a) Data (b) Gaussian mixture classification

. Correct
. Incorrect

0.5 1.0 1.5 2.0 2.5
X
(c) Log-concave mixture classification (d) Estimated log-concave mixture

Fig. 4. Panel (a) plots the Wisconsin breast cancer data, with benign cases as solid squares and malignant
ones as open circles. Panel (b) gives a contour plot together with the misclassified instances from the Gaussian
EM algorithm, while the corresponding plot obtained from the log-concave EM algorithm is given in Panel (c).
Panel (d) plots the fitted mixture distribution from the log-concave EM algorithm.
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plot obtained from the log-concave EM algorithm is given in Figure Eic), while Figure Bl(d) plots
the fitted mixture distribution from the log-concave EM algorithm. For this example, the number
of misclassified instances is reduced from 144 with the Gaussian EM algorithm to 121 with the
log-concave EM algorithm.

In some examples, it will be necessary to estimate p, the number of mixture components. In the
general context of model-based clustering, [Fraley and Raftery (2002) cite several possible approaches
for this purpose, including methods based on resampling (McLachlan and Basford, [1988) and an
information criterion (Bozdogan, [1994). Further research will be needed to ascertain which of these
methods is most appropriate in the context of log-concave component densities.

7. Plug-in estimation of functionals, sampling and the bootstrap

Suppose X has density f. Often, we are less interested in estimating a density directly than in
estimating some functional 6(f). Examples of functionals of interest (some of which were given in
Section [), include:

) POIX > 1) = [ f(@)Ljz>1y do

) Moments, such as E(X) = [z f(x)dz, or E(||X||?) foH flz

) The differential entropy of X (or f), defined by H(f) = — [ f log flx)dx

) The 100(1 — )% highest density region, defined by R, = {z € R : f(z) > fa}, where f,
is the largest constant such that P(X € R,) > 1 — . Hyndman (1996) argues that this is
an informative summary of a density; note that subject to a minor restriction on f, we have

J @)@y pyde=1-a

Each of these may be estimated by the corresponding functional 6( fn) of the log-concave maximum
likelihood estimator. In examples (a) and (b) above, §(f) may also be written as a functional of the
corresponding distribution function F, e.g. P([| X|| > 1) = [ 1gj>13dF (x). In such cases, it is more
natural to use the plug-in estimator based on the empirical distribution function, F,, of the sample
X1,...,X,, and indeed in our simulations we found that the log-concave plug-in estimator did not
offer an improvement on this method. In the other examples, however, an empirical distribution
function plug-in estimator is not available, and the log-concave plug-in estimator is a potentially
attractive procedure.

7.1. Monte Carlo estimation of functionals and sampling from the density estimate

For some functionals we can compute 6 = 0(fn) analytically. If this is not possible, but we can write
= [ f(x)g(x) dz, we may approximate 6 by

Op = = ZgXb
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for some (large) B, where X7, ..., X}, are independent samples from fn Conditional on X1, ..., X,

the strong law of large numbers gives that b “3 0 as B — co. In practice, even when analytic
calculation of # was possible, this method was found to be fast and accurate.

In order to use this Monte Carlo procedure, we must be able to sample from fn Fortunately, this
can be done efficiently using the following rejection sampling procedure. As in Section B, for j € J
let A; be the d x d matrix whose [th column is X;,, — X; forl = 1,...,d, and let a; = X},

so that w — Ajw + o; maps the unit simplex Ty to Cp ;. Recall that log fn(Xi) =y, and let
zj = (%1, -, %j,a), where zjy = y;  —y; for [ =1,...,d. Write

o= [

We may then draw an observation X* from fn as follows:

(1) Select j* € J, selecting j* = j with probability ¢,
(i) Select w ~ Unif(Ty) and u ~ Unif([0, 1]) independently. If

exp((w, zj-))

u <
maxyer, exp((v, zj+))’

accept the point and set X* = Ajw + «;. Otherwise, repeat (ii).

7.2. Simulation study

In this section we illustrate some simple applications of this technique to functionals (c) and (d)
above, using the Monte Carlo procedure and sampling scheme described in Section [L1]l Estimates
are based on random samples from a N5 (0, I) distribution, and we compare the performance of the
LogConcDEAD estimate with that of a kernel-based plug-in estimate, where the bandwidth matrix
was chosen using our knowledge of the underlying density to minimise the MISE.

Table Bla) gives mean squared errors (with Monte Carlo standard errors) of the plug-in estimates
of the differential entropy. In Table B((b) we study the plug-in estimators R, of the highest density
region R,, and measure the quality of the estimation procedures through E{pf(Ra A Ra)}, where
py(A) = [, f(z)dr and A denotes set difference. Highest density regions can be computed once
we have approximated the sample versions of f,, using the density quantile algorithm described in
Hyndman (1996, Section 3.2).

For the differential entropy estimators, we find a similar pattern to that observed in Section
the log-concave plug-in estimator provides an improvement on the kernel-based estimator for the
moderate and large sample sizes in our simulations. For the case of highest density regions, the
relative performance of the log-concave estimator is better for the estimation of smaller density
regions. In Figure Bl we illustrate the estimation of three highest density regions based on 500
points from a N»(0,I) distribution. For comparison, a kernel-based plug-in estimate (where the
regions are not guaranteed to be convex) is also given.
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Log-concave density estimation

True HDRs, 500 N(0,]) observations

(b) True
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Fig. 5. Estimates of the 25%, 50% and 75% highest density region from 500 observations from the N2 (0, I)

distribution.
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Table 4. (a) gives mean squared errors for estimating the differential entropy of the V2 (0, I) distribution; (b) gives
E{us(Ra & Ra)} when estimating highest density regions. The numbers in brackets are Monte Carlo standard
errors.

n LogConcDEAD Kernel

100 0.0761(0.00629) 0.0457(0.00304)
500  0.00819(0.000653)  0.0137(0.000839)
1000  0.00378(0.000391)  0.00716(0.000581)
2000 0.00177(0.000232)  0.00427(0.000345)

(a) Differential entropy

n LogConcDEAD Kernel

100 0.0872(0.0024)/0.110(0.0033)/0.121(0.0047) 0.0753(0.0017)/0.0995(0.0028) /0.0959(0.0038)
500  0.0419(0.0010)/0.0587(0.0014)/0.0680(0.0022) 0.0467(0.0011)/0.0609(0.0013)/0.0637(0.0019)
1000  0.0311(0.00075),/0.0447(0.0011)/0.0536(0.0016) 0.0376(0.00095),/0.0476(0.0012)/0.0477(0.0015)
2000  0.0241(0.00054)/0.0363(0.00080)/0.0448(0.0013)  0.0322(0.00081)/0.0371(0.00098),/0.0399(0.0013)

(b) 25%/50%/75% highest density regions

In real data examples, we are unable to assess uncertainty in our functional estimates by taking
repeated samples from the true underlying model. Nevertheless, the fact that we can sample from
the log-concave maximum likelihood estimator does mean that we can apply standard bootstrap
methodology to compute standard errors or confidence intervals, for example. Finally, we remark
that the plug-in estimation procedure, sampling algorithm and bootstrap methodology extend in an
obvious way to the case of a finite mixture of log-concave densities.

8. Concluding discussion

We have developed methodology that gives a fully automatic nonparametric density estimate under
the condition that the density is log-concave, and shown how it may be extended to fit finite mix-
tures of log-concave densities. We have indicated a wide range of possible applications, including
classification, clustering and functional estimation problems. The area of shape-constrained estima-
tion is currently undergoing rapid growth, as evidenced by the many recent publications cited in the
penultimate paragraph of Section [l as well as recent workshops in Oberwolfach (November 2006),
Eindhoven (October 2007) and Bristol (November 2007). We hope that this paper will stimulate
further interest and research in the field.

As well as the continued development and refinement of the computational algorithms and graphical
displays of estimates, and studies of theoretical performance, there remain many challenges and
interesting directions for future research. These include:

(i) Studying other shape constraints. These have received some attention for univariate data,
dating back to IGrenanden (1956), but much less in the multivariate setting.
(ii) Developing both formal and informal diagnostic tools for assessing the validity of shape con-
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straints.
(iii) Assessing the uncertainty in shape-constrained nonparametric density estimates, through con-
fidence intervals/bands.
(iv) Developing analogous methodology for discrete data from shape-constrained distributions.
Examining nonparametric shape constraints in regression problems.
Studying methods for choosing the number of clusters in nonparametric, shape-constrained
mixture models.

A. Glossary of terms and results from convex analysis and computational geometry

All of the definitions and results below can be found in [Rockafellanl (1997) and [Led (1997). The
epigraph of a function f : R*¥ — [~00,00) is the set

epi(f) = {(z,p) :x € R, p € R, pu < f()}.

We say f is concave if its epigraph is non-empty and convex as a subset of RF*1: note that this
agrees with the terminology of [Barndorff-Nielsen (1978), but is what [Rockafellai (1991) calls a proper
concave function. If C is a convex subset of RF then provided f : C — [~o0, 00) is not identically
—00, it is concave if and only if

fltz+ (1 —t)y) > tf(x) + (1 —t)f(y)

for z,y € C and t € (0,1). A non-negative function f is log-concave if log f is concave, with the
convention that log0 = —oc. The support of a log-concave function f is {x € R* : log f(z) > —oc},
a convex subset of R¥.

A subset M of R¥ is affine if tx + (1 —t)y € M for all z,y € M and t € R. The affine hull of
M, denoted aff(M), is the smallest affine set containing M. Every non-empty affine set M in RF
is parallel to a unique subspace of R*, meaning that there is a unique subspace L of R* such that
M = L + a, for some a € RF. The dimension of M is the dimension of this subspace, and more
generally the dimension of a non-empty convex set is the dimension of its affine hull. A finite set of
points M = {xg, 1, ...,xq} is affinely independent if aff (M) is d-dimensional. The relative interior
of a convex set C is the interior which results when we regard C' as a subset of its affine hull. The
relative boundary of C is the set difference between its closure and its relative interior. If M is an
affine set in R¥, then an affine transformation (or afffine function) is a function 7' : M — RF such
that T (tz + (1 — t)y) = tT(x) + (1 — )T (y) for all 2,y € M and t € R.

The closure of a concave function g on R%, denoted cl(g), is the function whose epigraph is the closure
in R4+ of epi(g). It is the least upper semi-continuous, concave function satisfying cl(g) > g. The
function g is closed if cl(g) = g. An arbitrary function h on R? is continuous relative to a subset
S of R? if its restriction to S is a continuous function. A non-zero vector z € R? is a direction of
increase of h on R? if t +— h(x + t2) is non-decreasing for every z € R%.

The convex hull of finitely many points is called a polytope. The convex hull of d + 1 affinely
independent points is called a d-dimensional simplex (pl. simplices). If C is a convex set in R9,
then a supporting half-space to C' is a closed half-space which contains C' and has a point of C in its
boundary. A supporting hyperplane H to C is a hyperplane which is the boundary of a supporting
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half-space to C. Thus H = {z € R?: (x,b) = 3}, for some b € R? and 3 € R such that (z,b) < 8
for all x € C with equality for at least one z € C.

If V is a finite set of points in RY such that P = conv(V) is a d-dimensional polytope in R¢, then a
face of P is a set of the form PN H, where H is a supporting hyperplane to P. The vertex set of P,
denoted vert(P), is the set of 0-dimensional faces (vertices) of P. A subdivision of P is a finite set
of d-dimensional polytopes {S1,..., St} such that P is the union of Si,...,S; and the intersection
of any two distinct polytopes in the subdivision is a face of both of them. If S = {S4,...,5:} and
S = {5’1, ..., Sy} are two subdivisions of P, then S is a refinement of S if each S; is contained in
some Sy. The trivial subdivision of P is {P}. A triangulation of P is a subdivision of P in which
each polytope is a simplex.

If P is a d-dimensional polytope in R%, F is a (d — 1)-dimensional face of P and v € R%, then there
is a unique supporting hyperplane H to P containing F. The polytope P is contained in exactly
one of the closed half-spaces determined by H, and if v is in the opposite open half-space, then F' is
visible from v. If V is a finite set in R? such that P = conv(V), if v € V and S = {S1,...,S;} is a
subdivision of P, then the result of pushing v is the subdivision S of P obtained by modifying each
S; € S as follows:

(i) If v ¢ S, then S; € S
(ii) If v € S; and conv(vert(S;) \ {v}) is (d — 1)-dimensional, then S; € S
(iti) If v € S and S} = conv(vert(S;) \ {v}) is d-dimensional, then S; € S. Also, if F is any
(d — 1)-dimensional face of S} that is visible from v, then conv(F U {v}) € S.

If o is a convex function on R™, then ¢y € R™ is a subgradient of o at y if

o(z) 2 o(y) + ',z —y)

for all z € R™. If ¢ is differentiable at y, then Vo(y) is the unique subgradient to o at y; otherwise
the set of subgradients at y has more than one element. The one-sided directional derivative of o at
y with respect to z € R™ is
: +z) —
o' (y;2) = lim M’
t\.0 t

which always exists (allowing —oco and oo as limits) provided o(y) is finite.

B. Proofs

ProoF oF ProposITION [
(a) If f is log-concave, then for x € R, we can write

Ixipy (x)(@lt) o< f(2)Lipy ()=t}

a product of log-concave functions. Thus fx|p, (x)(:t) is log-concave for each ¢.

(b) Let x1, 2z € R? be distinct and let A € (0,1). Let V be the (d — 1)-dimensional subspace of R¢
whose orthogonal complement is parallel to the affine hull of {x1,x2} (i.e. the line through z; and
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xa). Writing fp, (x) for the marginal density of Py (X) and ¢ for the common value of Py (x1) and
Py (z2), the density of X at x € R is

f(@) = fxipyox)(@lt) fr, (x) (1)

Thus f is log-concave, as required. O

COMPLETION OF THE PROOF OF THEOREM

We prove each of the steps (i)—(v) outlined in Section Blin turn. First note that if xo € C,,, then by
Carathéodory’s theorem (Theorem 17.1 of Rockafellal (1997)), there exist distinct indices i1, .. ., i,
with r < d+ 1, such that zo = >;_; M X;, with each \; > 0 and Y ,_; \; = 1. Thus, if f(zo) =0,
then by Jensen’s inequality,

—o00 = log f(zg) > Z)\z log f(X,),
=1

so f(X;) =0 for some i. But then t,,(f) = —oo. This proves (i).

Now suppose f(zo) > 0 for some zg ¢ C),. Then {z : f(z) > 0} is a convex set containing C,, U{zo},
a set which has strictly larger d-dimensional Lebesgue measure than that of C,,. We therefore have

Yo (f) < ¥n(fle, ), which proves (ii).

To prove (iii), we first show that log f is closed. Suppose that log f(X;) = y; fori = 1,...,n but that
log f # hy. Then since log f(z) > hy(z) for all x € R?, we may assume that there exists xg € C,,
such that log f(z¢) > hy(xo). If mo is in the relative interior of C,, then since log f and h,, are
continuous at ¢ (by Theorem 10.1 of Rockafellai (1997)), we must have

wn(f) < 77[]n (exp(ﬁy)).

The only remaining possibility is that xg is on the relative boundary of C,,. But By is closed by
Corollary 17.2.1 of Rockafellar (1997), so writing cl(g) for the closure of a concave function g, we
have hy = cl(hy,) = cl(log f) > log f, where we have used Corollary 7.3.4 of [Rockafellai (1997) to

obtain the middle equality. It follows that log f is closed and log f = h,, which proves (iii).

Note that log f has no direction of increase, because if x € C,,, z is a non-zero vector and ¢t > 0 is
large enough that « + ¢tz ¢ C,,, then —oo = log f(z + tz) < log f(z). It follows by Theorem 27.2 of
[Rockafellan (1997) that the supremum of f is finite (and is attained). Using properties (i) and (ii)
as well, we may write [ f(z)dz = ¢, say, where ¢ € (0,00). Thus f(z) = cf(z), for some f € Fy.
But then

U (f) = thn(f) = =1 —logc+¢ >0,
with equality only if ¢ = 1. This proves (iv).

To prove (v), we may assume by (iv) that exp(h,) is a density. Let max; hy(X;) = M and let
min; hy (X;) = m. We show that when M is large, in order for exp(h,) to be a density, m must be
negative with |m| so large that v, (exp(hy)) < ¥, (f). First observe that if z € C,, and hy(X;) = M,
then for M sufficiently large we must have M —m > 1, and then

(0= %)) 2 sy (@) + TR (X)

M
m +(M—m—1)M
M — M —-—m

v

By<Xi+ Ml

v

=M —-1.
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(The fact that h,(x) > m follows by Jensen’s inequality.) Hence, denoting Lebesgue measure on R?
by u, we have

(e s Ryfa) = M = 13) 2 w({Xi + 37 (O = X0}) = s

Thus

7 -1 N(Cn)
/Rd exp{hy(z)} dzx > M A —m)i

For exp(hy) to be a density, then, we require m < —2eM=1/dy(C,)1/¢ when M is large. But then

dn(explhy) < B LMoy (0,10 < ()

when M is sufficiently large. This proves (v).

It is not hard to see that for any M > 0, the function y — 1, (exp(hy)) is continuous on the compact
set [—M, M]™, and thus the proof of the existence of a maximum likelihood estimator is complete.
To prove uniqueness, suppose that fi1, fo € F and both f; and fo maximise 1, (f). We may assume
f1, fo € Fo, log f1,log fo € H and f; and f5 are supported on C;,. Then the normalised geometric
mean

9(z) = {fl(m)fQ(m)}l/Q
Je, Afi) fa(y) /2 dy’

is a log-concave density, with

Unlo) = 5 D Tow filX0) + 5 > log fo(Xs) ~ log /C {h)f()}2 dy 1
=1 =1 n
= u(f1) —log / (1) fa) Y7 dy.
Ch

However, by Cauchy—Schwarz, fcn{fl(y)fg(y)}l/Q dy < 1, so ¥n(9) > ¥n(f1). Equality is ob-
tained if and only if f; = fo almost everywhere, but since f; and fo are continuous relative to C,
(Theorem 10.2 of Rockafellai (1997)), this implies that f; = fo. An alternative way of proving the
uniqueness of the maximum likelihood estimator may be based on the fact that 1, (t fi+(1-1) fg) >
tn(f1) + (1 — ), (f2) for all t € (0,1), provided f; and fo are distinct elements of F. a

PROOF OF THEOREM B

For t € (0,1) and y™, 4 € R", the function hiy) 4 (1—t)y 1s the least concave function satisfying
Bty<1)+(1—t)y(2) (X;) > tygl) +(1- t)yl@) fori =1,...,n, so Bty<1)+(1—t)y<2) < tﬁym +(1- t)i?,y(z).
The convexity of o follows from this and the convexity of the exponential function. It is clear that
o > T, since hy(X;) >y, fori=1,...,n.

From Theorem ] we can find y* € R" such that log f,, = hys with hy«(X;) =y} fori=1,...,n, and
this y* minimises 7. For any other y € R" which minimises 7, by the uniqueness part of Theorem
we must have hy = hy+, so o(y) > o(y*) = 7(y*). O
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B.1. Non-differentiability of c and computation of subgradients

In this section, we find explicitly the set of points at which the function ¢ defined in I is
differentiable, and compute a subgradient of ¢ at each point. For ¢ = 1,...,n, define

Ji={ji=01,- - Jar1) € J i =y forsome l=1,...,d+ 1}.

The set J; is the index set of those simplices C), ; that have X; as a vertex. Let ) denote the set
of vectors y = (y1,...,Yn) € R™ with the property that for each j = (j1,...,jat+1) € J, if i # j; for
any [ then

{(Xiayi)a (Xj1ayj1)a IR (de+17yjd+1)}

is affinely independent in R4+, This is the set of points for which no tent pole is touching but not
critically supporting the tent. Notice that the complement of ) has zero Lebesgue measure in R™.
For y e R™ and ¢ = 1,...,n, and in the notation of Section Hl let

d
1 ) )
(%(y) = —; + Z |det AJ'A e(w723>+y11 { (l — Zwl)l{jlzi} + Zwl]l{jlﬂ—i}} dw.
d =1

jeT; 1=1

PROPOSITION 4. Assume (A1). (a) Fory € ), the function o is differentiable at y and for i =
1,...,n satisfies

Jo
0 ()

= 0;(y).

(b) For y € Y, the function o is not differentiable at y, but the vector (01(y),...,0,(y)) is a
subgradient of o at y.

Proor. By Theorem 25.2 of [Rockafellar (1997), it suffices to show that for y € ), all of the partial
derivatives exist and are given by the expression in the statement of the proposition. Fori =1,...,n
and t € R, let y®) =y 4 te?, where el denotes the ith unit coordinate vector in R™. For sufficiently
small values of |t|, we may write

B o (z) = (x, bg-t)> - ﬁj(-t) if x € C,; for some j € J
Y —00 if x ¢ Cp,
for certain values of bgt), . ,be} € R? and ﬁ%t), ey 7(7? eR. If j ¢ J;, then b§t) =b; and ﬂj(.t) = f3;

for sufficiently small |¢|. On the other hand, if j € J;, then there are two cases to consider:

(t)

(i) If j1 =i, then for sufficiently small ¢, we have z; = z; —tla, where 14 denotes a d-vector of
ones, so that b;t) =b; —t(AT)"'14 and ﬂ;t) =0; —t(1+ (A;laj, 14))
(ii) If ji41 = for some [ € {1,...,d}, then for sufficiently small ¢, we have zj(»t) = zj +tefl, so that

b\ = b; + (A7) Tef and B = B + H{AT 0y, ef).
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It follows that

0o
5, W) =~ +lim > Z/ exp{(z,b)") = B} — exp {{2,b;) — 3} da
Yi jeds
1 . 1 r.b:V—03; 1— (AT (z—a; ,1
:_E+}%¥Z [/c elot T {Om A e ) — 1}l )
JjEJ ™.
d
+ Z/ Bj{e e _1}d$1{jl+1:i}
1=17Cn.j
= 81(3/)7

where to obtain the final line we have made the substitution x = A;w + o, after taking the limit
ast — 0.

(b) If y € Y°, then it can be shown that there exists a unit coordinate vector e’ in R™ such that
the one-sided directional derivative at y with respect to el', denoted o’ (y;el’), satisfies o’(y; el!) >

o'(y; —el'). Thus o is not differentiable at y. To show that A(y) = (01(y),-..,0n(y)) is a subgra-
dlent of o at y, it is enough by Theorem 25.6 of [Rockafellan (1997) to find, for each € > 0, a point
7 € R™ such that ||§ — y|| < € and such that o is differentiable at § with ||Vo(g) — 9(y)|| < €. This
can be done by sequentially making small adjustments to the components of y in the same order as
that in which the vertices were pushed in constructing the triangulation. a

A subgradient of o at any y € R"® may be computed using Proposition Bl (Bl) and {Z) once we

have a formula for )
fd,u(z) = / Wy, €XP (Z zrwr> dw,
Ta r=1

when z1,...,24 are non-zero and distinct. In |Cule et all (2008h), it is shown that the required
formula is

- e*r 1 e N
=3 o= Mo X s U o5

T T u

1<r<d 1<s<d 1<r<d 1<s<d
r#u S#T r#u S#T
GV Gt B I —— G
z Hd z Zu (20 — 25) .
ulls=17s 1<s<d

AU
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Further technical arguments

We first establish ([EZ2]). We have

/ exp{hy(x)}dx=Z|detAj|e—5j/ exp{(Ajw + ay,b;)} dw
Chn Ty

JjeJ
= Z|detA |e¥ir / exp(Z zj, rw’r> dw.
jed r=1

For ease of notation, we drop the j subscript, and consider
d
Li(z) = / exp (Z zrwr) dw.
Tq r=1

Observe that I)(z1) = 2y '(e* — 1), in agreement with ([@2). Assume the result for d — 1 as an
inductive hypothesis. Then

d—1 d—1
1 1
Ii(z) = —ezd/ exp( (zp — zd)wr> dw — — exp< zrwr) dw
Zd Ta—1 ; Zd J Ty rzzl
1 1
= —e"Ig_1(21 — 2zda, .- 2a—1 — 2a) — —La—1(21, ..., 24)
Zd Zd
-1
I e | (R I
24 £ (zr — 24) lifat (zr —25)  2za = I<ifat (zp — 25)
S#T S#T
d—1 d—1
e*d 1 1 1 1
:Z H — —z—dZH mu;z; Gy B2
=1 1<s<d r=11<s<d = % r=1"1<s<q-1 " 7
s#r SF#T s#T

To deal with the middle term in the last line of (B2)) above, define a polynomial

0= I (22

e A
s#ET
This polynomial P;(t) is of degree at most d — 1, but has roots z1,..., 24, so is identically zero.

Examining the coefficient of t¥~1 in this polynomial, we find

Z H ="

r= 11<s<d
s#Er
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To deal with the final term in (B2), observe that

d—1 d—1
1 1 1 1 z —1)¢
Z_ZZ_ H (z —z):zz z H (z —Sz):z(z )z{Pd_l(O)+1}
dr:l Tlgsgd—l T s 12”.dT:11§s§d—1 T s 12 ...2d
S#T S#T
d
i DEl | (e
2122 ...24 o s, (zp — 25)
S
Substituting these expressions into ([B2) yields @2). 0

Our final task is to establish ([BJJ). To this end, observe that for v = 1, we have the recurrence
relation

R Zd—k T R+1
= e* Iy _r_1,1(%1 — Zd—r, - Zd—R—1 — Zd— -1 =
Ij1(2) = Z ( e r) + (R ) Ig—r—1,1(21,-- ., 2d—Rr-1),
—o Rd—r ng;ﬁR(Zd—T’ - Zd—s) Hr:O Zd—r
SFT

which holds for R = 0,...,d — 2, and may be proved by induction on R. The formulae for other
values of u may be deduced by symmetry. The formula for I;,(z) in ([B) is found by using this
expression with R = d — 2 together with the fact that for z # 0,

1
1 1 1

/ wexp(zw) dw = —(1 - —)ez + -
0 z z z
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