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We congratulate the authors for their stimulating paper; our comments focus on possible
avenues for further development.

A Gaussian quasi-SMUCE (GQSMUCE).

In the paper it is assumed that Y comes from a known exponential family, which may not
be realistic. But consider the following setting:

Yi = ϑ(i/n) + ǫi, for i = 1, . . . , n,

where ǫi are i.i.d. with Eǫ1 = 0 and Eǫ21 = σ2. The number of change points can still be
estimated by solving
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#J(ϑ) s.t. Tn(Y, ϑ, cn) ≤ q

with
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Scrutiny of the proof of Theorem 2.1 shows that the result continues to hold for the Gaus-

sian quasi-likelihood (GQSMUCE) estimator above provided there exists s0 > 0 such that
Eesǫ1 < ∞ for |s| < s0. An analogue of Theorem 2.2 can also be proved, establishing model
selection consistency.

To examine the performance of GQSMUCE in a non-Gaussian setting, and similar to Sec-
tion 5.1, we let

Yi = ϑ(i/n) + σǫi, for i = 1, . . . , 497, (1)

where ǫ1, . . . , ǫ497 have a shifted and scaled Beta(2, 2) distribution with zero mean and unit
variance. Results are summarised in Table 1. We see that GQSMUCE outperforms CBS
(Olshen et.al., 2004) at lower noise levels σ = 0.1 and 0.2, but tends to underestimate the
number of change points when σ = 0.3. These findings are qualitatively similar to results
in Section 5.1.
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Table 1. Relative frequencies of estimated numbers of change points by model
selection for GQSMUCE and CBS (Olshen et.al., 2004) in 500 Monte Carlo sim-
ulations. The true signals have six change points.

σ ≤ 4 5 6 7 ≥ 8

GQSMUCE (1− α = 0.55) 0.1 0.000 0.000 0.988 0.012 0.000
CBS (Olshen et. al., 2004) 0.1 0.000 0.000 0.924 0.036 0.040
GQSMUCE (1− α = 0.55) 0.2 0.000 0.000 0.994 0.006 0.000
CBS (Olshen et. al., 2004) 0.2 0.000 0.000 0.872 0.100 0.028
GQSMUCE (1− α = 0.55) 0.3 0.012 0.248 0.772 0.018 0.000
CBS (Olshen et. al., 2004) 0.3 0.000 0.010 0.806 0.148 0.036

Table 2. Empirical coverage and probability of correctly estimating the number of change points
K obtained from 500 simulations.
α SMUCE SMUCE2

Coverage of C(q1−α) P (K̂(q1−α) = K) Coverage of C(q∗, q1−α) P (K̂(q∗) = K)

0.90 0.874 0.978 0.882 0.986
0.95 0.874 0.914 0.944 0.986
0.99 0.728 0.738 0.974 0.986

More generally, we believe multiscale methods for change point inference (or appropriately
defined ‘regions of interest’ in multivariate settings) offer great potential even with more
complex data-generating mechanisms, and we await future methodological, theoretical and
computational developments with interest.

Coverage of confidence sets.

One attractive feature of SMUCE is the fact that confidence sets can be produced for ϑ.
However, Table 5 in the paper shows in the Gaussian example with unknown mean that
even when the sample size is as large as 1500, a nominal 95% confidence set only has only
55% coverage; even more strikingly, a nominal 80% coverage set has 84% coverage!

This phenomenon, where larger nominal coverage may reduce actual coverage, is caused by
the choice of 1 − α determining not only the nominal coverage but also K̂, the estimated
number of change points.

As an alternative, consider the confidence set

C(q∗, q1−α) :=
{

ϑ ∈ S : #J(ϑ) = K̂(q∗) and Tn(Y, ϑ) ≤ q1−α

}

,

where q∗ can be chosen as suggested in Section 4, for example. We compare this approach
(SMUCE2) with that proposed in the paper for the simulation setting (1), where here we
take ǫi ∼ N(0, 0.05); results are presented in Table 2. As well as giving better coverage
here, the new confidence sets have the reassuring property that C(q∗, q1−α′) ⊇ C(q∗, q1−α)
for α′ ≤ α.


