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We would like to begin by congratulating the authors on their fine paper. Handling highly correlated variables is one of
the most important issues facing practitioners in high-dimensional regression problems, and in some ways it is surprising
that it has not received more attention up to this point. The authors have made substantial progress towards practical
methodological proposals, however, and we are sure that the paper will stimulate considerable future research. In this
discussion, we present a possible improvement to the cluster representative Lasso, give some further insights into the
cluster group Lasso and conclude with some brief remarks on one possible new direction suggested by the work.

1. Variable cancellation and the cluster representative Lasso

In terms of variable selection, the cluster representative Lasso is without doubt the clear winner from the simulation
studies. It even performs rather well, relative to the competing methods, when coefficients in the same group may have
opposite signs (scenarios (Ac), (Ad), (Bc) and (Bd)). One way of understanding its success is to realise that when groups
consist of highly positively correlated variables, any linear combination of them can be represented reasonably well by some
multiple of the average of these variables.

However, when some of the variables in a group may be negatively correlated with one another, the cluster
representative Lasso can perform quite poorly. Note that the proposed bottom-up hierarchical agglomerative clustering
algorithm can certainly result in groups containing negative correlations since it is invariant under multiplying any of the
variables by −1. In these situations, when taking averages of variables within a group, pairs of very negatively correlated
variables can almost cancel each other out. The result is that the cluster representatives may have little correlation with any
of their respective group members. In Fig. 1, we show an extreme case of this phenomenon. The top panel shows the results
of repeating simulations (Aa)–(Ad) but with two important differences: the blocks comprising the covariance matrix of X are

Γ−
ij ¼

1 if i¼ j;

−ρ if i≡jþ 1ðmod 2Þ;
ρ otherwise;

8><
>: ð1:1Þ

with ρ¼ 0:9; and the coefficient vector β0 correspondingly has its components with even indices multiplied by −1. Thus the
signal XTβ0 has the same distribution as in the simulations in the paper. The cluster representative Lasso is here hardly
better at variable selection than random guessing. When we reduce ρ to 0.6 (bottom panel), its performance improves as the
cancellation effect is not quite as dramatic, but it is still lagging behind its competitors. In some ways this problem is more
serious than coefficients in the same group having opposite signs because in that case, the magnitude of the signal drops
and this presents a challenging situation for almost all methods. The variable cancellation effect is, however, an issue unique
to the cluster representative Lasso.

One way of solving this problem is to multiply certain variables by −1 in order to maintain mostly positive correlations
among variables within the same group, and then create cluster representatives from this ‘sign-corrected’ design matrix.
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Fig. 1. Plots of jŜ∩S0j=jS0j against jŜj for the cluster group Lasso with a groupwise prediction penalty (solid blue); the cluster group Lasso with a standard
group penalty (green dashes); the cluster representative Lasso (solid purple); and the cluster representative Lasso with sign corrections (red dots). Modified
versions of scenarios (Aa)–(Ad) with s¼ 3 are left to right, and the top and bottom panels have ρ¼ 0:9 and 0.6 respectively. (For interpretation of the
references to colour in this figure caption, the reader is referred to the web version of this article.)
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This can be accomplished by adding a further step to the clustering algorithm: when two clusters to be merged have been
identified, compute the scalar product between the cluster representatives of each of these clusters. If the scalar product is
negative, multiply each of the variables in one of the clusters (the one containing the variable with the lowest index, for
example) by −1. Thinking inductively, suppose that at the bth iteration, most variables in clusters are highly positively
correlated with their respective cluster representatives. Then the sign correction described above should ensure that the
same holds true for the newly merged cluster at the (b+1)th iteration.

The greatly improved performance of the cluster representative Lasso with this ‘sign correction’ applied is shown by the
red dots in Fig. 1. One additional benefit of the sign correction is that the magnitudes of the estimated coefficients are
invariant under multiplying any of the variables by −1; this property, of course, does not hold for the vanilla cluster
representative Lasso.

2. The cluster group Lasso and the groupwise prediction penalty

Using a group Lasso-type penalty with groups defined by the clusters seems like a sensible idea, and we were initially
surprised at how convincingly it was trumped by the ostensibly more naive cluster representative Lasso under most of the
simulation settings. The cluster group Lasso did, however, improve when half of the signs of the true active coefficients were
switched. One way of explaining this is to observe that the success of penalised regression methods relies on the penalty
applied to the true coefficient vector (or at least some suitable surrogate), having a relatively low value. This is easiest to see
when we look at the constrained form of the optimisation problems: for given values of the tuning parameters, the
optimisation problem is equivalent to searching among all coefficient vectors whose penalty contribution is bounded by
some value, and picking the one which minimises the empirical risk term. If the true coefficient vector (or its surrogate) is
far away from this constraint set, there is no hope of recovering it or anything close to it by such a method.

Let us suppose we have q groups G1;…;Gq and that, for simplicity,

1
n
fðXðGr ÞÞTXðGr Þgij ¼

1 if i¼ j;

ρ otherwise;

(
ð2:1Þ

for 1≤r≤q and i; j≤gr , where gr ¼ jGrj and ρ∈ð0;1Þ. Denoting the average of the components of a vector u by u, we see that
for a coefficient vector β, the groupwise prediction penalty is proportional to

∑
q

r ¼ 1

g1=2r

n1=2 ∥X
ðGr ÞβGr

∥2 ¼ ∑
q

r ¼ 1
g1=2r fðρgr þ 1−ρÞgrβ

2
Gr

þ ð1−ρÞ∥βGr
−βGr

1gr∥
2
2g

1=2
:

Thus when the groupwise averages of the true coefficient vector are large and ρ is close to 1, as was the case in most of the
simulation settings, the groupwise prediction penalty becomes large and so the cluster group Lasso performs poorly.
Conversely, when the groupwise averages are relatively small, as occurred when half the signs of the active coefficients were
switched, the performance of the cluster group Lasso improves.

In general, our experience is that the groupwise prediction penalty is not always well-suited to situations with high
correlations within groups. In fact, the standard group Lasso penalty (green dashes in Fig. 1) does better or at least as well in
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all cases except scenario (Ac) in our simulations. Interestingly, the ROC-type performance curves it traces are remarkably
similar to those of the cluster representative Lasso. To see why this is the case, suppose we have a design matrix X with
within cluster covariance structure given by (2.1). For a fixed λ, consider applying the cluster group Lasso with a standard
group Lasso penalty:

β̂ ¼ β̂ðλÞ ∈ arg min
β∈Rp

1
n
∥Y−Xβ∥22 þ λ ∑

q

r ¼ 1
g1=2r ∥βGr

∥2

� �
:

Now for fixed ℓ, let R¼ Y−∑r≠ℓXðGr ÞβGr
. Provided β̂ is the unique minimiser and β̂Gℓ

≠0, there exists by strong duality μ¼ μðλÞ
such that

β̂Gℓ
¼ arg min

β∈Rgℓ

1
n
∥R−XðGℓÞβ∥22 þ μ∥β∥22

� �
:

Letting α¼ fðXðGℓÞÞTXðGℓÞg−1ðXðGℓÞÞTR, we have

β̂Gℓ
¼ fðXðGℓÞÞTXðGℓÞ þ nμIgℓ g

−1ðXðGℓÞÞTXðGℓÞα

¼ 1−ρ
1−ρþ μ

ðα−α1gℓ Þ þ
1þ ðgℓ−1Þρ

1þ μþ ðgℓ−1Þρ
α1gℓ :

Thus, certainly when ρ is close to 1, we see that β̂Gℓ
has almost constant components. This is similar to the situation with the

cluster representative Lasso, where the estimated coefficient vector is constrained to be exactly constant within each group.

3. Use of clustering in high-dimensional inference

Several methods for carrying out high-dimensional inference that are currently in popular use rely on marginal measures
of the significance of individual variables. An important example is the Stability Selection methodology for variable selection
proposed in Meinshausen and Bühlmann (2010) and further developed in Shah and Samworth (2013). Such algorithms are
vulnerable in situations with two or more highly correlated signal variables. In the case of Stability Selection, this is because
these variables can ‘split the vote’, with the result that neither/none of the variables is chosen. Similar issues arise with other
variable selection methods based on p-values for the additional effect of each individual variable. Switching the focus to the
significance of clusters (determined for instance using the methodology outlined in the paper), rather than individual
variables, offers the potential to alleviate these difficulties, and promises to provide a fruitful direction for future research.
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