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SUMMARY

We consider the property of consistency and its relevance for determining the per-
formance of the bootstrap. We analyse various parametric bootstrap approximations
to the distributions of the Hodges and Stein estimators, whose behaviour is typical
of that of superefficient estimators employed in wavelet regression, kernel density
estimation and nonparametric curve fitting. Our results reveal not only some of the
difficulties in selecting good modifications to the intuitive bootstrap, but also that
inconsistent bootstrap approximations may perform better than consistent versions,

even in large samples.
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1. INTRODUCTION

Consistency is seen as the sine qua non for the bootstrap. Much recent research
has focused on known cases of bootstrap inconsistency and on methods which restore
consistency. As with all asymptotic statistical properties, however, it is important
to assess its relevance to the finite samples which face the practitioner.

In this article we argue that the pointwise asymptotics of consistency can mask
the finite-sample behaviour, and that inconsistent bootstrap estimators may in fact
perform better than their consistent counterparts. We illustrate this point with

reference to the parametric bootstrap and the Hodges and Stein estimators. In both



cases, we find that the intuitive, inconsistent, parametric bootstrap outperforms the
consistent methods we consider, namely the m out of n bootstrap and a refined

choice of parameter estimate.
2. THE HODGES ESTIMATOR

Let X4,..., X, beindependent and identically distributed random variables, each
distributed according to N(6,1), and let X, = n=' >_" | X;. The Hodges estimator
is defined by

Ton =

I

bX, if | X,| <n 4
X, otherwise,

where b € (0,1). We wish to estimate the distribution H, () of n'/?(T,, i — 6), and
consider the bootstrap approximation H,(X,). The risk of the Hodges estimator,
given by E{n(T, u —6)?}, converges to b*> when # = 0 and to 1 otherwise (Lehmann
1998, p.442). Thus the sequence (7, ) is asymptotically superefficient at 6 = 0,
and Beran (1997) shows that the intuitive n out of n bootstrap above is inconsistent
at points of asymptotic superefficiency.

The Hodges estimator is studied in this form for its simplicity and tractability.
Similar superefficient truncation estimators have been studied in wavelet regression,
where estimates of wavelet coefficients are discarded if smaller in modulus than
some threshold value. Further details can be found in, for example, an unpublished
technical report by A. J. Canty, A. C. Davison, D. V. Hinkley and V. Ventura.

Denoting by H,(z,0) the distribution function corresponding to H, (), we find
that

() if ¥ < —nl/* —nl/29

®(—n'/* — nl'/2p) if —n'/t —nl/20 <z < —bn'/* —n'/%9
H,(z,0) = { ®b Yz + (1 —0b)n'/2}] if —bn'/* —n'/20 <z < bnl/* —n'/?0

d(n'/* —n'/%9) if b/t —n'/20 <z < n'/t —nl/29

O (x) if > nl/* —nl/2g,

1)
where ®(-) denotes the distribution function of a standard normal random variable.
Thus H,(f) converges weakly for all # € R, with limiting distribution H (6) which
is N(0,1) when § # 0 and N(0,b?) when § = 0. The bootstrap distribution also
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converges weakly, in probability, to N(0,1) when 6 # 0. However, when 6§ = 0,
Beran (1982) shows that H,(X,) converges, as a random element of the space of
probability measures on the real line metrised by weak convergence, to the random
probability measure N{(b—1)Z,b*}, where Z ~ N(0,1). Hence the standard n out
of n bootstrap is consistent if and only if 6 # 0.

One procedure which restores consistency in this context involves reducing the
bootstrap resample size, an idea which dates back to Bretagnolle (1983). To be
specific, it follows from Corollary 2.1(b) of Beran (1997) that, if m = m,, is chosen

so that m — oo but m = o(n), then H,,(X,) is consistent for all § € R.
[Figure 1 about here.]

In Fig. 1, we compare the errors in the bootstrap approximations H,,(X,) as

3/4 and m = n. These values of m are

estimators of H,(0) for m = n'/?2, m = n
understood to be rounded to the nearest integer. Comparisons are made using the
Kolmogorov distance, that is the supremum metric on the corresponding distribution
functions. This distance is averaged over 1000 realisations of X,,.

It is particularly interesting to note that, although smaller choices of m do improve
the bootstrap performance in a very small neighbourhood of # = 0, the improvements
come at the expense of considerably worse performance outside this neighbourhood.
Treated as a problem in decision theory, the minimax rule appears to be to choose
m = n, and this would agree with the Bayes rule unless most of the mass of the
prior were concentrated in a very small neighbourhood of 6 = 0.

We give here a heuristic explanation for the results observed. Write m'/2X,, =
m'20 + m'/?>n=12Z, where Z ~ N(0,1). From (1), we see that the magnitude
of the error in the bootstrap approximation depends on the absolute value of the
difference between n'/20 and m!'/20 + m'/?2n=2Z. 1f |§| < n~'/2 | then the random
term in the error, m'/?n~"2Z, dominates. The variance of this term increases as m
increases relative to n, although it always has zero expectation. However, for larger
values of |6], the fixed error, §(m'/2 —n'/?) is crucial. This is large in absolute value

for small m relative to n, and decreases to zero as m increases to n.



We now investigate whether or not it is possible to retain the desirable charac-
teristics of both methods by means of an empirical, data-driven choice of m. That
is, if we let m = f,(|X,|), where f, : [0,00) — {1,...,n} is some suitably chosen
non-decreasing function, can we achieve improved performance in a neighbourhood
of 8 = 0 without loss elsewhere in the parameter space?

The resulting bootstrap approximation will be consistent if f,(z,) — co whenever
z, = 0+ O(n~'/?) for some 0 # 0, and f,(x,) = o(n) whenever z, = O(n""/?). A
simple class of possible choices of m is given by

[ An® if |X,| < Bn7# @)
"=\ n  if|X.|>Bn P,

where A, B >0, a € (0,1) and 8 € (0,1/2). The fact that the bootstrap estimators
H,,(X,) in this class are consistent follows from Corollary 1.1 of Putter & van Zwet
(1996) and the fact that pr{m =o(n)} — 1 as n — oo when 0 = 0.

Numerical studies suggest that improved performance in a small neighbourhood
of & = 0 can be achieved, but that once again this comes at the expense of worse
performance outside this neighbourhood. Although the ‘bad’ neighbourhoods vanish
in the limit as n tends to infinity, which ensures consistency, they remain a problem
in finite samples. The problem occurs in the region, in this case where || ~ Bn=",
in which the event {|X,| < Bn™"} has moderate probability. Considered as an
attempt to estimate the optimal value mqp = Mopt(F), the rule in (2) is analogous
to using the Hodges estimator as an estimator of €, and suffers the same drawbacks.
Of course, other more complicated empirical choices of m are possible, but the scope
for improvement over the naive n out of n bootstrap appears minimal.

A further suggestion for restoring consistency, proposed by Putter & van Zwet

(1996), involves a refined choice of parameter estimate in the bootstrap approxima-

tion: we replace H,(X,) by H, (én) where 6, is chosen so that

~

(i) pr(6, =0) - 1 asn — 0o when § =0

(ii) pr(d, #0) — 1 as n — oo when 6 # 0.



~

The consistency of H,(6,) then follows again from Corollary 1.1 of Putter & van

Zwet (1996). The authors themselves suggest an estimator from the following class:

b, =

5 0 if |X,| < Bn™?
X, if | X,| > Bn?,

where B > 0 and § € (0,1/2). Note that, when B = 1 and 8 = 1/4, 6, is the
Hodges estimator with b = 0. Once again, however, the improvements in the imme-
diate vicinity of # = 0 are offset by severe losses elsewhere in the parameter space.
Comparing the expression for H,(z,#) in (1) with the corresponding H,(z,8,), we
see that, when 0 € (n=%/2, Bn=?), it is likely that n'/2, will be zero, whereas n'/20
is large. Thus H,(z,0,) will be a poor estimator of H,(z,0) in this region of the

parameter space.
3. THE STEIN ESTIMATOR

Now suppose that X1, ..., X,, are independent and identically distributed random
vectors in R¥, where £ > 4. Each X; has a k-variate normal distribution Ny (6, I),
with mean vector § € R* and identity covariance matrix. Write X, =n~" Yo X,
define 1 : RF — R by pu(z) =kt Zle z;, and let e denote a k-vector of ones. The
Stein estimator 7T}, s is defined by

_ E_3 _ _
Tos = e+ (1 L e ) e~ e}

Thus the Stein estimator ‘shrinks’ each component of X,, towards the mean of the nk
observations. It has found many practical uses arising from the well-known fact that,
when 6 is estimated with respect to quadratic loss, T}, g strictly dominates X,,. More
generally, the behaviour of the Stein estimator in this regular parametric setting is
symptomatic of that of superefficient shrinkage estimators employed in more general
problems such as kernel density estimation and nonparametric regression. There,
the complexity of the parameter space allows far more severe forms of superefficiency
(Brown et al., 1997).

One notable difference between the Hodges and Stein estimators is that the Stein

estimator improves on X,, as an estimator of 6, in terms of mean squared error,



for every n, not just asymptotically. Le Cam (1953) showed that one-dimensional
asymptotically superefficient estimators necessarily perform poorly in a neighbour-
hood of a point of asymptotic superefficiency.

We are interested in the distribution H,(#) of n'/?(T,, s — ), and consider the
bootstrap estimator H,(X,). When the components of § are not all equal, H,(6)
converges weakly to N.(0,1), and H,(X,) converges weakly in probability to the
same limit. However, when the components of 6 are all equal, H, () converges to
the the probability measure 7(0), where for any h € R¥, we define 7(h) to be the

distribution of

(k—=3){Z — m(Z)e+ h — u(h)e}
17 = w(Z)e + h— p(h)el|*

where Z ~ Ni(0,I). On the other hand, H,(X,) converges, as a random element

7 —

of the space of probability distributions on RF metrised by weak convergence, to
the random probability measure 7(Z"), where Z' ~ Ni (0, I) and is independent of
Z (Beran, 1997). Thus the standard n out of n bootstrap is inconsistent when the
components of # are all equal.

The m out of n bootstrap again restores consistency throughout the parameter
space provided that m = m,, satisfies m — oo, and m = o(n). To facilitate an
empirical comparison of different choices of m, we use a stochastic approximation
to the supremum metric on the space of distribution functions on R*, an idea first

suggested by Beran & Millar (1986). The algorithm consists of the following steps.

Step 1. Generate independent X,, 1, ..., X, g ~ Ni(8,n~'I) and compute H, z(6), the
empirical distribution of n'/2{T,, §(X,1) — 0}, ...,n"*{T, s(X, r) — 0}

Step 2. Fori=1,..., B, repeat Steps 3 and 4.

Step 3. Generate Y,,; ~ Ni(0,n~'I) and conditionally independent X}

m,l’---’X;’;z,R ~
Ni(Yy,i:,m™') in order to compute flm,R(Yn,i), the empirical distribution of

ml/Q{Tmys (X’;;L,l) - Yn;i}7 tt T 7m1/2{Tm;S(X’;:’Z,R) - Ynyi}'



Step 4. Generate independent yy, ..., Yz, ~ Ni(0, ), and compute

di = maXx |Hm R(yq; Yn z) - ﬁn,R(y(p 0)|7
1<q<qr

where I:In r(z,0) and ﬂm r(z,Y, ;) are the distribution functions corresponding

to ﬁn,R(O) and I;[mR(Yn,i) respectively.

Step 5. Compute d = B~' 37 d;
[Figure 2 about here.|

In Fig. 2, we plot d as a function of A = n||§ — u(f)el|?>. Note that \ =
corresponds to all the components of # being equal. Numerical studies show no
qualitative change for different #-directions. We find that improvements at A = 0
are possible, but there is still a price to be paid in terms of poor performance for
larger values of \.

To explain these observations, let Z, Z’ denote independent standard k-variate

normal random variables, and let T};, ¢ = T, 5(X;). We can write

/2 —0) =n/2(X. — _( - 3)[n'*{X,, _N( n)€}]
s =00 = =0 = iR (R, = el

(k= 8)12 — p(Z)e + 020 — p(O)e)]
12~ W@ + w170 — )l

~ J —

and
(k = 3)[m"*{ Xy, — p(X;)e}]
Im'2{X;, — u(X5)e} 1
o k=37 — w(Ze + m*{Z — p(Z)e} /n'? + m*/2{6 — p(0)e}]
|12 = w(Z")e +m\2{Z — p(Z)e}/n'/? + m12{6 — p(O)e} |’

m!' (T, ¢ = Xn) = m'2(X5, = Xo) =

)

~Yy

Comparing these expressions, we see that H,,(X,) will be a good approximation to
H,(0) when m'?{Z — u(Z)e}/n'? + m'/2{0 — u(h)e} is close to n'/2{h — u(h)e}.
When X is small, and in particular when A = 0, the main error is likely to come
from the random term, m'/2{Z — u(Z)e}/n'/?. Since we can choose m to tend to

infinity as slowly as we like, we can make this error as small as we like, in probability.

7



However, when A is large, the dominant part is the difference between the two non-
random terms, m!/2{0 — pu(0)e} and n'/2{ — u(f)e}. This decreases to zero as m
increases towards n, and explains the poor performance of the reduced resample size
methods for larger values of \.

Analogues of the empirical rules for choosing m and the Putter & van Zwet method
of restoring consistency also exist for this problem. For instance, the latter may be
implemented with

6, — { p(Xn)e if [|Xn — p(Xp)el] < Bn™?
X, otherwise,

where B > 0 and § € (0,1/2), in which case the resulting bootstrap approximation
Hn(én) is consistent for all # € RF. Although numerical studies suggest it is possible
to achieve minor improvements for a fixed n with a suitable choice of B, any choice
of B will eventually be poor for sufficiently large n, because n|| X, — u(X,)e||* has a
noncentral chi-squared distribution with (k—1) degrees of freedom and noncentrality
parameter ), so the event {|| X, — (X, )e|]| < Bn~"} has moderate probability when
A ~ B2n'~%_ Thus the event {6, = p(X,)e} is eventually probable, even for large
A, and Hn(én) will then perform poorly. Similar remarks apply to empirical choices
of m in the m out of n bootstrap.

As in § 2, we see that the standard parametric bootstrap performs better than
expected relative to its competitors, and the fixed-parameter asymptotics of consis-

tency tell only part of the story.
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Figure 1: The average maximum error over 1000 realisations of the bootstrap approx-
imations with m,, = n'/? (dotted), m,, = n** (dashed), m, = n (solid). Parameter
values: b = 0.5; (a) n = 100; (b) n = 10, 000.
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Figure 2: A compag‘son of the errors in the bootstrap approximations I:Im, r(7, X,)
for m = n'/? (circles), m = n3/* (grey squares) and m = n (black triangles). Param-
eter values: R = 500; gz = 1,000; B = 200; k = 5; n'/20 = (\/2)"/?(-1,1,0,0,0);
(a) n = 100; (b) n = 10, 000.
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