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Completion of the proof of Theorem 1. Step 6: To show (6.5),
which gives the Radon–Nikodym derivative of the restriction of the distribu-
tion of X(i) − x to a small ball about the origin

Recall that Bδ(u) = {y ∈ Rd : ‖y − u‖ ≤ δ}, and that νd denotes d-
dimensional Lebesgue measure. For a Borel subset A of Rd, let N(A) =∑n

i=1 1{Xi∈A}. It follows from the hypothesis (A.2) that for x ∈ Sεn with n
sufficiently large, and for i ≤ k2, the restriction of the distribution of X(i)−x
to a small ball about the origin is absolutely continuous with respect to νd.
Thus for x ∈ Sεn with n sufficiently large, for i ≤ k2, for u 6= 0 with ‖u‖
sufficiently small, and for δ < ‖u‖,
P{X(i) − x ∈ Bδ(u)}

νd(Bδ(u))

≥ 1

adδd
P
{
N(Bδ(x+ u)) = 1, N(B‖u‖−δ(x)) = i− 1, N(B‖u‖+δ(x)) = n− i

}
=

n

adδd

{∫
Bδ(x+u)

f̄(v) dv

}(
n− 1

i− 1

)
pi−1
‖u‖−δ(1− p‖u‖+δ)

n−i

→ nf̄(x+ u)

(
n− 1

i− 1

)
pi−1
‖u‖(1− p‖u‖)

n−i

as δ → 0, by the Lebesgue differentiation theorem. For the other bound,
write A = B‖u‖+δ(x) \B‖u‖−δ(x) and observe that

P{X(i) − x ∈ Bδ(u)}
νd(Bδ(u))

≤ 1

adδd

[
P{X(i) ∈ Bδ(x+ u) ∩N(A) = 1}

+ P{N(Bδ(x+ u)) ≥ 1 ∩N(A) ≥ 2}
]

=
1

adδd

[
n

{∫
Bδ(x+u)

f̄(v) dv

}(
n− 1

i− 1

)
pi−1
‖u‖−δ(1− p‖u‖+δ)

n−i + o(δd)

]
→ nf̄(x+ u)

(
n− 1

i− 1

)
pi−1
‖u‖(1− p‖u‖)

n−i

1
imsart-aos ver. 2012/08/31 file: AOS1049Supp.tex date: September 11, 2012

http://www.imstat.org/aos/
http://arxiv.org/abs/arXiv:1101.5783
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as δ → 0. The result therefore follows by Folland (1999, Theorem 3.22).

To show (6.4), which bounds R1: We have

R1 =
n∑

i=k2+1

wni[E{η(X(i))} − η(x)] +

k2∑
i=1

wni

[
E{η(X(i))} − η(x)

− E{(X(i) − x)T η̇(x)} − 1

2
E{(X(i) − x)T η̈(x)(X(i) − x)}

]
≡ R11 +R12,

say. Now η ≤ 1, so

sup
wn∈Wn,β

sup
x∈Sεn

|R11|
tn
≤ sup

wn∈Wn,β

∑n
i=k2+1wni

tn
≤ 1/ log n.

To handle R12, observe that by a Taylor expansion, given ε > 0, we can find
δ > 0 such that for all sufficiently large n, all x ∈ Sεn and all ‖y − x‖ ≤ δ,
we have

|η(y)− η(x)− (y − x)T η̇(x)− 1
2(y − x)T η̈(x)(y − x)| ≤ ε‖y − x‖2.

For 1 ≤ i ≤ k2, let Ai = {‖X(i) − x‖ ≤ δ}. Further, let D1 = supx∈S ‖η̇(x)‖
and let D2 = supx∈S λmax{η̈(x)}, where λmax(·) denotes the largest eigen-
value of a matrix. Then for large n and x ∈ Sεn ,

|R12| ≤ ε
k2∑
i=1

wniE(‖X(i) − x‖21Ai) + 2P(Aci ) + (1 +D1)E{‖X(i) − x‖1Aci }

+ (1 +D2)E{‖X(i) − x‖21Aci }.(0.1)

We can apply a very similar argument to that employed in Step 1 to deduce
that uniformly for 1 ≤ i ≤ k2,

(0.2) sup
x∈Sεn

E(‖X(i) − x‖21Ai) = O{(i/n)2/d}.

Now, using notation defined in Step 1,

E(‖X(i) − x‖21Aci ) = P(‖X(i) − x‖ > δ) +

∫ ∞
δ2

P(‖X(i) − x‖ > t1/2) dt

≤ qnδ (i) +

∫ ∞
δ2

qn
t1/2

(i) dt.(0.3)
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WEIGHTED NEAREST NEIGHBOUR CLASSIFIERS 3

For δ > 0 sufficiently small, there exists c2 > 0 such that for all x ∈ Sεn , we
have npδ − k2 ≥ c2nδ

d. So by Hoeffding’s inequality, for any t0 > δ2,

(0.4) sup
x∈Sεn

sup
1≤i≤k2

{
qnδ (i) +

∫ t0

δ2
qn
t1/2

(i) dt

}
≤ (1 + t0)e−2c22nδ

2d
= O(n−M ),

for every M > 0. Moreover, using the moment bound in (A.3),

(0.5) 1− pt = P̄ ({x+ u : ‖u‖ > t}) = O(t−ρ),

as t→∞, uniformly for x ∈ Sεn . Therefore we can apply Bennett’s inequal-
ity (Shorack and Wellner, 1986, p.440) to show that there exist c3, c4 > 0
such that for sufficiently large n and t0 and all t > t0,
(0.6)

sup
x∈Sεn

sup
1≤i≤k2

qn
t1/2

(i) ≤ exp

[
−c3n

{
log
(

1+
c3n

1− pt1/2

)
−1

}]
≤ (1+c4t

ρ
2 )−

c3n
2 .

We deduce from (6.26), (6.27) and (6.29) that

(0.7) sup
x∈Sεn

sup
1≤i≤k2

E{‖X(i) − x‖21Aci } = O(n−M )

for all M > 0. This result, combined with (6.25) and Markov’s inequality
applied to the two central terms in (6.24) proves (6.4) as required.

To show (6.21), which bounds R2: Observe that by Step 1 and Step 2,
there exist constants c5, C2 > 0 such that

inf
x0∈S

inf
C2tn≤|t|≤εn

|1/2− µn(xt0)|
σn(xt0)

≥ c5|t|
sn

,

uniformly for wn ∈Wn,β. Hence,

|R2| ≤
C1
∑n

i=1w
3
ni

s3
n

∫
S

∫
|t|≤C2tn

|t|‖ψ̇(x0)‖ dt dVold−1(x0)

+
C1
∑n

i=1w
3
ni

s3
n

∫
S

∫
C2tn<|t|≤εn

|t|‖ψ̇(x0)‖
1 + c3

5|t|3/s3
n

dt dVold−1(x0)

= o(t2n + s2
n),

uniformly for wn ∈Wn,β, as required.

To show (6.22), which bounds R3. Let

rx0 =
−a(x0)

‖η̇(x0)‖
tn
sn
.
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4 R. J. SAMWORTH

Using the results of Step 1 and Step 2, given ε ∈ (0, infx0∈S ‖η̇(x0)‖)
sufficiently small, for large n we have that for all wn ∈Wn,β, all x0 ∈ S and
all r ∈ [−εn/sn, εn/sn] that∣∣∣∣1/2− µn(xrsn0 )

σn(xrsn0 )
−
{
−2‖η̇(x0)‖(r − rx0)

}∣∣∣∣ ≤ ε2(|r|+ tn/sn).

It follows that for large n,∣∣∣∣Φ{1/2− µn(xrsn0 )

σn(xrsn0 )

}
− Φ

{
−2‖η̇(x0)‖r − 2tn

sn
a(x0)

}∣∣∣∣
≤
{

1 if |r − rx0 | ≤ εtn/sn
ε2(|r|+ tn/sn)φ(‖η̇(x0)‖|r − rx0 |) if εtn/sn < |r| < εn/sn.

We deduce that for large n,∫ εn

−εn
|t|‖ψ̇(x0)‖

∣∣∣∣Φ{1/2− µn(xt0)

σn(xt0)

}
− Φ

{
2

sn

(
−‖η̇(x0)‖t− a(x0)tn

)}∣∣∣∣ dt
≤ εs2

n

∫
|r−rx0 |≤εtn/sn

|r| dr + s2
n

∫ ∞
−∞

ε2(|r|+ tn/sn)φ(‖η̇(x0)‖|r − rx0 |) dr

≤ ε(s2
n + t2n).

This allows us to conclude (6.22).

To show (6.23), which bounds R4. We have

|R4| = s2
n

∫
S

∫
|r|>εn/sn

|r|
[
Φ{−2‖η̇(x0)‖(r − rx0)} − 1{r<0}

]
dr dVold−1(x0)

≤ 2s2
n

∫
S

∫
r>εn/sn

|r|Φ(−‖η̇(x0)‖r) dr dVold−1(x0) = o(s2
n),

uniformly for wn ∈Wn,β, as required.

Proof that (A.1)–(A.4) imply the margin condition (2.1). For the
upper bound, recall from (6.16) that by the mean value theorem, for suffi-
ciently small ε > 0,

inf
x∈R\Sε

|η(x)− 1/2| ≥ c∗ε,

where we may take c∗ = infx∈U0 ‖η̇(x)‖, which is positive. By shrinking U0

if necessary, we may assume that D∗ ≡ supx∈U0
f̄(x) < ∞, and it follows

that for small ε > 0,

P(|η(X)− 1/2| ≤ ε ∩X ∈ R) ≤ P̄ (Sε/c∗) ≤ D∗νd(Sε/c∗) ≤ Cε,
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WEIGHTED NEAREST NEIGHBOUR CLASSIFIERS 5

where C <∞, using Weyl’s tube formula (Gray, 2004).
For the lower bound, we construct a tube similar to Sε, but contained in

R. To do this, let Sεε = {x ∈ S : dist(x, ∂S) > ε} and let

Sε =

{
x0 + t

η̇(x0)

‖η̇(x0)‖
: x0 ∈ Sεε, |t| < ε

}
.

Further, let C∗ = supx∈U0
‖η̇(x)‖, which is finite. Again by the mean value

theorem, for sufficiently small ε > 0,

sup
x∈Sε
|η(x)− 1/2| ≤ C∗ε.

Thus, letting d∗ = infx∈U0 f̄(x) > 0, for sufficiently small ε > 0,

P(|η(X)− 1/2| ≤ ε ∩X ∈ R) ≥ P̄ (Sε/C∗) ≥ d∗νd(Sε/C∗) ≥ cε,

where c > 0, again using Weyl’s tube formula.

Proof of Theorem 2. Consider any vector w∗∗n = (w∗∗ni)
n
i=1 of non-

negative weights that minimises the function γn(·) defined in the statement
of Theorem 1. Since s2

n is symmetric in wn1, . . . , wnn, while αi is increasing
in i, we see that (w∗∗ni)

n
i=1 is decreasing in i. We let k∗∗ = max{i : w∗∗ni > 0}.

Now form the Lagrangian

L(wn, λ) =
1

2
B1s

2
n +

1

2
B2t

2
n + λ

( k∗∗∑
i=1

wni − 1

)
.

Then for some λ∗∗,

(0.8) 0 =
∂L

∂wni

∣∣∣∣
(w∗∗

n ,λ∗∗)

= B1w
∗∗
ni +

B2

n4/d
αi

k∗∗∑
j=1

αjw
∗∗
nj + λ∗∗,

for i = 1, . . . , k∗∗. By summing (0.8) from i = 1, . . . , k∗∗, and then multiply-
ing (0.8) by αi and again summing from i = 1, . . . , k∗∗, we obtain two linear
equations in

∑k∗∗

j=1 αjw
∗∗
nj and λ∗∗, which can be solved and substituted back

into (0.8) to yield

w∗∗ni =

1
k∗∗ {1 + B2

B1n4/d

∑k∗∗

j=1 α
2
j}

1 + B2

B1n4/d {
∑k∗∗

j=1 α
2
j−(k∗∗)1+4/d}

−
αi

B2(k∗∗)2/d

B1n4/d

1 + B2

B1n4/d {
∑k∗∗

j=1 α
2
j−(k∗∗)1+4/d}

for i = 1, . . . , k∗∗. In particular, w∗∗n is the unique minimiser of γn(·). The
weight vector w∗n is asymptotically equivalent to w∗∗n in the following sense:

imsart-aos ver. 2012/08/31 file: AOS1049Supp.tex date: September 11, 2012
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elementary calculations reveal that k∗∗ = k∗{1 +O((k∗)−1)}, and moreover
that

k∗∗∑
i=1

αiw
∗∗
ni =

(d+ 2)(k∗)2/d

d+ 4
{1 +O((k∗)−1)}(0.9)

k∗∗∑
i=1

(w∗∗ni)
2 =

2(d+ 2)

(d+ 4)k∗
{1 +O((k∗)−1)}.(0.10)

The expressions corresponding to (6.32) and (6.33) when w∗ni replaces w∗∗ni
are the same, except that the relative error is now O((k∗)−2) in both cases.
It follows immediately that

RR(Ĉwnn
n,w∗∗

n
)−RR(CBayes)

RR(Ĉwnn
n,w∗

n
)−RR(CBayes)

=
γn(w∗∗n )

γn(w∗n)
{1 + o(1)} → 1,

and therefore that (2.5) holds.
Arguing similarly to the above, we see that the pair of conditions that∑n
i=1w

2
ni/
∑n

i=1(w∗ni)
2 → 1 and

∑n
i=1 αiwni/

∑n
i=1 αiw

∗
ni → 1, or equiva-

lently (2.6), are sufficient for (2.5) to hold. To see the necessity of these
conditions, suppose for now that for some small β > 0, the weight vector
wn ∈Wn,β satisfies

(0.11)

∑n
i=1w

2
ni∑n

i=1(w∗ni)
2
≡ τn → τ ∈ [0, 1).

Then, by almost the same Lagrangian calculation as that above, we have

lim inf
n→∞

RR(Ĉwnn
n,wn)−RR(CBayes)

RR(Ĉwnn
n,w̃n

)−RR(CBayes)
≥ 1,

where w̃n = (w̃ni)
n
i=1 is given by

w̃ni =
1

k̃

(
1 +

d

2
− dαi

2k̃2/d

)
1{1≤i≤k̃},

and where k̃/k∗ → 1/τ . It follows that for small β > 0, and for any wn ∈
Wn,β satisfying

∑n
i=1w

2
ni/
∑n

i=1(w∗ni)
2 ≤ τn, we have

lim inf
n→∞

RR(Ĉwnn
n,wn)−RR(CBayes)

RR(Ĉwnn
n,w∗

n
)−RR(CBayes)

≥ lim
n→∞

RR(Ĉwnn
n,w̃n

)−RR(CBayes)

RR(Ĉwnn
n,w∗

n
)−RR(CBayes)

=
1

d+ 4

( d

τ4/d
+ 4τ

)
> 1.(0.12)
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WEIGHTED NEAREST NEIGHBOUR CLASSIFIERS 7

A very similar argument shows that if

(0.13)

∑n
i=1 αiwni∑n
i=1 αiw

∗
ni

→ σ ∈ [0, 1),

then the conclusion of (6.35) also holds. But if (2.5) holds and it is not the
case that both

∑n
i=1w

2
ni/
∑n

i=1(w∗ni)
2 → 1 and

∑n
i=1 αiwni/

∑n
i=1 αiw

∗
ni →

1, then either (6.34) or (6.36) would have to hold on a subsequence. But then
we see from (6.35) that (2.5) cannot hold, and this contradiction means that
the conditions (2.6) are necessary for (2.5).

The final part of the theorem, deriving (2.7), is an elementary calculation
and is omitted.

Proof of Corollary 4. Writing an,q = 1
nq + q2 and bn,q = 1

nq + q, this
corollary follows from Theorem 1 and the following facts:

n∑
i=1

αiw
b,with
ni =

Γ(2 + 2
d)

q2/d
{1 +O(an,q)} and

n∑
i=1

(wb,with
ni )2 =

q

2
{1 +O(an,q)}

n∑
i=1

αiw
b,w/o
ni =

Γ(2 + 2
d)

q2/d
{1 +O(bn,q)} and

n∑
i=1

(w
b,w/o
ni )2 =

q

2
{1 +O(bn,q)}

n∑
i=1

αiw
Geo
ni =

Γ(2 + 2/d)

q2/d
{1 +O(q)} and

n∑
i=1

(wGeo
ni )2 =

q

2
{1 +O(q)},

where the error terms are, in each case, uniform for n−(1−β) ≤ q ≤ n−β.

Proof of Theorem 6. Let t
(r)
n = n−2r/d

∑n
i=1 α

(r)
i wni. We only need

to show that

(0.14) sup
x∈Sεn

∣∣∣∣µn(x)− η(x)− a(r)(x)t(r)n

∣∣∣∣ = o(t(r)n ),

uniformly for wn ∈W †n,β,r, because the rest of the proof is virtually identical
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to that of Theorem 1. Analogously to (6.8), we can write

k2∑
i=1

wni

[ ∑
|s1|≤2r

ηs1(x)E{(X(i) − x)s
1} − η(x)

]

= {1 + o(1)}
k2∑
i=k1

n∆wni
∑

(s1,s2)∈S̄r

ηs1(x)f̄s2(x)

|s1|!|s2|!

∫
‖u‖≤δn

qn−1
‖u‖ (i) du

= {1 + o(1)}
n∑
i=1

n∆wni

bd+2r
n

∑
(s1,s2)∈S̄r

ηs1(x)f̄s2(x)

|s1|!|s2|!

∫
‖v‖≤1

vs
1+s2 dv

= a(r)(x)t(r)n + o(t(r)n ),(0.15)

uniformly for x ∈ Sεn and wn ∈ W †n,β,r. Combining the analogues of (6.3)
and (6.4) with (6.38) proves (6.37).

Minimax properties of weighted nearest neighbour classifiers
The conditions imposed by Audibert and Tsybakov (2007) for their min-

imax results are closely related to the ones introduced in Section 2, and for
convenience we will use their conditions in this section. For fixed α ≥ 0,
fixed positive parameters C0, γ, L, r0, c0, f̄max > f̄min > 0 and a fixed com-
pact set C ⊆ Rd, let Pα,γ denote the class of probability distributions P on
Rd × {1, 2} such that:

(i) The margin condition is satisfied; that is,

P̄ ({x ∈ Rd : 0 < |η(x)− 1/2| ≤ ε}) ≤ C0ε
α

for all ε > 0, where P̄ denotes the marginal distribution of X.
(ii) The regression function η belongs to the Hölder ball Σ(γ, L,Rd); that

is, η is bγc times continuously differentiable and, writing η
bγc
x for the

Taylor series polynomial of η of order bγc, we have that for all x, x′ ∈
Rd,

|η(x′)− ηbγcx (x′)| ≤ L‖x− x′‖γ .

(iii) The marginal distribution P̄ is supported on a set A ⊆ C satisfying

νd(A ∩Br(x)) ≥ c0νd(Br(x))

for all r ∈ [0, r0] and x ∈ A; moreover, P̄ has a Lebesgue density f̄
satisfying f̄min ≤ f̄(x) ≤ f̄max for all x ∈ A. Finally, f̄ ∈ Σ(γ−1, L,A).
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WEIGHTED NEAREST NEIGHBOUR CLASSIFIERS 9

In Theorem 1 below, we let Ĉwnn
n be denote either a unweighted k-nearest

neighbour classifier with k � n2γ/(2γ+d), or a weighted nearest neighbour
classifier with weights of the form (1.1) with k∗ � n2γ/(2γ+d), or any of
the three types of bagged nearest neighbour classifier from Section 3 with
q � n−2γ/(2γ+d).

Theorem 1. For any α ≥ 0 and γ ∈ (0, 2], there exists C > 0 such that

sup
P∈Pα,γ

{R(Ĉwnn
n )−R(CBayes)} ≤ Cn−γ(1+α)/(2γ+d).

Remark: Using the ideas of Section 4, one can extend this result so that,
given any α ≥ 0 and γ > 0, we can construct a weighted nearest neighbour
classifier achieving the rate n−γ(1+α)/(2γ+d) uniformly over Pα,γ .

Proof. Write Pn for the joint distribution of (X1, Y1), . . . , (Xn, Yn). By
Lemma 3.1 of Audibert and Tsybakov (2007), it suffices to prove that there
exists C > 0 such that for all δ > 0, all n ∈ N and P̄ -almost all x,

(0.16) sup
P∈Pα,γ

Pn(|Sn(x)− η(x)| > δ) ≤ C exp(−n2γ/(2γ+δ)δ2/C).

Now, minor variants of the arguments in the proof of Theorem ?? show that
there exist C ′1, C

′ > 0 such that for all P ∈ Pα,γ and x ∈ A,

|µn(x)− η(x)| ≤ L
n∑
i=1

wniE{‖X(i) − x‖γ}+

∣∣∣∣ n∑
i=1

wniEηbγcx (X(i))− η(x)

∣∣∣∣
≤ C ′1

n∑
i=1

( i
n

)γ/d
wni ≤ C ′n−γ/(2γ+d).

Moreover, there exists C ′′ > 0 such that we have

n∑
i=1

w2
ni ≤ C ′′n−2γ/(2γ+d).

It follows that for δ ≥ 2C ′n−γ/(2γ+d) and for P̄ -almost all x,

sup
P∈Pα,γ

Pn(|Sn(x)− η(x)| > δ) ≤ sup
P∈Pα,γ

Pn(|Sn(x)− µn(x)| > δ/2)

≤ 2 exp{−n2γ/(2γ+d)δ2/(2C ′′)},

by Hoeffding’s inequality. Therefore, if we choose C ≥ max(2, 2C ′′) such that
C exp{−4(C ′)2/C} ≥ 1, then (0.16) holds for all δ > 0, as required.
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For the lower bound, it is convenient to let P̄α,γ denote the set of probabil-
ity distributions on Rd × {1, 2} satisfying all the restrictions of Pα,γ except
for the condition that f̄ ∈ Σ(γ − 1, L,A). The following lower bound is
Theorem 3.5 of Audibert and Tsybakov (2007).

Theorem 2 (Audibert and Tsybakov (2007)). Suppose that αγ ≤ δ.
Then there exists c > 0 such that for any classifier Ĉn, we have

sup
P∈P̄α,γ

{R(Ĉn)−R(CBayes)} ≥ cn−γ(1+α)/(2γ+d).

Remark: The condition αγ ≤ δ is not too restrictive; in particular, it
allows all (α, γ, d) triples where the rate of convergence is not faster than
n−1.

Remark: In the proof of Theorem 3.5 of Audibert and Tsybakov (2007),
the authors construct a finite subset of P̄α,γ for which the lower bound
holds. Moreover, all of the distributions in this finite subset have the same
marginal density f̄ . This density is piecewise constant, so does not satisfy f̄ ∈
Σ(γ − 1, L,A), but it can be modified in a straightforward but cumbersome
way to do so, obtaining the same lower bound while preserving the margin
condition (i) and the other conditions in (iii) above. Thus the lower bound
in fact holds over Pα,γ .

A plug-in approach to estimating k∗

A direct, plug-in approach to estimating the constants B1 and B2 in (2.4)
involves estimating integrals over the manifold S, which could be achieved
using Monte Carlo integration. For instance, one might first try to assess
which points x are close to S by testing H0 : x ∈ S against H1 : x /∈ S. This
could be done by constructing a pilot weighted nearest neighbour estimate
S̃n(x) of η(x) and using the test statistic

Tn(x) =
(S̃n(x)− 1/2)2

S̃n(x){1− S̃n(x)}
;

cf. Samworth (2011). From the expressions in (2.3), we see that one would
then require estimates ‖ˆ̇η(·)‖ and â(·) of ‖η̇(·)‖ and a(·) respectively at
the training points for which we do not reject the null hypothesis. The
former estimates could be achieved using finite-difference approximations to
the partial derivatives; for the latter estimates, while it is in principle be
possible to construct further plug-in estimates of the unknown quantities in
the expression for a(·), this might be considered unattractive owing to the
need to estimate second partial derivatives. Instead, one could also base an
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estimate on a jackknife estimate of the bias E{Sn(·)}−η(·); cf. the discussion
preceding (2.4). Finally, one would then estimate B1 and B2 by

B̂1 =
1

|Ŝ|

∑
i:Xi∈Ŝ

1

‖ˆ̇η(Xi)‖
and B̂2 =

1

|Ŝ|

∑
i:Xi∈Ŝ

â(Xi)
2

‖ˆ̇η(Xi)‖
,

where Ŝ is the set of training data points for which we do not reject the
null hypothesis above. The potential advantages of this approach are both
computational speed (we avoid the cross-validation step) and theoretical,

especially if one could prove that B̂1
p→ B1 and B̂2

p→ B2. This would
guarantee that the estimate of k∗ was of the appropriate asymptotic order in
n, and that the asymptotic results corresponding to (2.7) and (2.8) continued
to hold using the plug-in estimates of the weights. Such a result would rely on
the fact that the convergence of the scaled regrets to their limits is uniform
in a range of k, as discussed after (2.10).

However, the plug-in approach does appear to have some drawbacks in this
context. There are several choices to make, including the pilot estimate, the
critical value for the test statistic, and the step size for the finite-difference
approximation (which is not straightforward since the estimates of η(·) are
piecewise constant, so if it is chosen too small, then the partial derivatives
will be estimated as zero). Moreover, there may be very few points in Ŝ,
leading to highly variable estimates of the unknown quantities, and there is
no guarantee that for a given sample size, the estimate of k∗ will necessarily
be less than n. It is for these reasons that we prefer the cross-validation
approach of Section 5 in this instance.
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