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This is the supplementary material to Samworth (2012).

COMPLETION OF THE PROOF OF THEOREM 1. Step 6: To show (6.5),
which gives the Radon—Nikodym derivative of the restriction of the distribu-
tion of X;y —x to a small ball about the origin

Recall that Bs(u) = {y € R? : |ly — u| < 6}, and that v4 denotes d-
dimensional Lebesgue measure. For a Borel subset A of R? let N(A) =
> im1 Lix,eay- It follows from the hypothesis (A.2) that for z € S with n
sufficiently large, and for ¢ < kg, the restriction of the distribution of X ;) —x
to a small ball about the origin is absolutely continuous with respect to vy.
Thus for x € S with n sufficiently large, for i < kg, for u # 0 with [jul|
sufficiently small, and for 6 < ||ul|,

P{X@) — = € Bs(w)}
vi(Bs(u))
adl(SdP{N(Bé(x +u)) =1, N(B”u”_(;(l’)) =1—1, N(BHUH-M(:C)) =n — Z}

n I n—1\ ., ,
= d i—1 1— n—i
aqo* {/195(z+u) fv) U} (z — 1>p||u||—5( Pllull+s)

_ n—1 . i
S aftea (7)ot - )
as 6 — 0, by the Lebesgue differentiation theorem. For the other bound,

write A = Bjjy4+5(%) \ Bjjy|—s(x) and observe that

IP{X(Z) —T € Bg(u)} < 1
va(Bs(u)) ~ agd?

Y

[IP){X(Z-) € Bs(z +u) N N(A) = 1}

+P{N(Bs(z +u)) > 1N N(A) > 2}]

- adléd [n{/Ba(x-&-u) fv) d“} <7Z__ ; )pﬁlﬁg(l —Pug+a)" "+ 0(5d)]

— nf(z+u) (?__ ;)pif(l — Pluy)"
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2 R. J. SAMWORTH
as 0 — 0. The result therefore follows by Folland (1999, Theorem 3.22).

To show (6.4), which bounds R,: We have

n

ko
Bi= Y wnlB(X0)} - @]+ 3w [E(X)) - (o)

i=ka+1
- B{(Xg — 0)7i(@)} — 5B{(X — )@ (X — )}
= Ri1 + Rio,
say. Now 1 < 1, so

n
| Ry1 D ik +1 Wni
sup sup —— < sup —=2——— < 1/logn.
wn €W, g zESn tn wn€Wn 5 tn

To handle R, observe that by a Taylor expansion, given € > 0, we can find
d > 0 such that for all sufficiently large n, all x € S and all ||y — x| < ¢,
we have

[n(y) —n(a) = (y — 2)"i(z) — 5y — 2)Tij(2)(y —2)| < ey — 2|

For 1 <i < ko, let A; = {||X(;) — z[| < d}. Further, let Dy = sup,¢s [|[7()]|
and let Dy = sup,cs Amax{7(z)}, where Apax(-) denotes the largest eigen-
value of a matrix. Then for large n and x € S,

ko
|Rio| < €3 wnB(| X5y — 2l*1a,) + 2P(AF) + (1 + D)E{|| X5y — x| 1ac}
i=1
(0.1) + (14 Do)B{|| X5y — x[|* D ac}.
We can apply a very similar argument to that employed in Step 1 to deduce
that uniformly for 1 <7 < ko,

(0.2) sup E(| X — |*1a,) = O{(i/n)*/*}.

reSen

Now, using notation defined in Step 1,

o

E(IXq) - z*1ag) = P(I|1 Xy — 2l > 0) +/52 P(| X — x|l > ¢'/?) dt

(03) <G+ [ aati) i
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WEIGHTED NEAREST NEIGHBOUR CLASSIFIERS 3

For 0 > 0 sufficiently small, there exists co > 0 such that for all x € S, we
have nps — ka > cand®. So by Hoeffding’s inequality, for any to > 62,

to
(0.4) sup sup {qg(z) +/ qﬁ/z(i) dt} < (1 +t0)e—2c§n52d _ O(n_M),
zeSen 1<i<ksy 52

for every M > 0. Moreover, using the moment bound in (A.3),
(0.5) 1—pi=P{z+u:l|ul>t})=01"),

as t — oo, uniformly for z € §¢. Therefore we can apply Bennett’s inequal-
ity (Shorack and Wellner, 1986, p.440) to show that there exist ¢3,c4 > 0
such that for sufficiently large n and ¢y and all t > ¢,

(0.6)

C n c3gn
SUp  SUP  q/o(i) < exp {—Csn{log<1+1_3) —1}] < (Itegt?) 5.
TESEN 1<’L<k2 pt1/2

We deduce from (6.26), (6.27) and (6.29) that

(0.7) sup sup E{[|X;) — x||2ﬂA§} =0(n ™M)
zeSen 1<i<kso

for all M > 0. This result, combined with (6.25) and Markov’s inequality
applied to the two central terms in (6.24) proves (6.4) as required.

To show (6.21), which bounds Ra: Observe that by Step 1 and Step 2,
there exist constants c5,Co > 0 such that

1/2 — ¢ t
T0ES Cotn<[t|<en on(xf) Sn

uniformly for w,, € W,, 3. Hence,

C w
|Ro| < 11n//tl > 1[[4 () | d AVl (o)
2ln

> t
_|_ z 1wnz // ’ ’”w(xg)Hg dthOld_l(SL'o)
Cotn<lti<en L+ It /53

= O(t% + 3%)7
uniformly for w,, € W,, 3, as required.
To show (6.22), which bounds R3. Let

—a(zo) tn
(o) sn

Tzg =
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4 R. J. SAMWORTH

Using the results of Step 1 and Step 2, given € € (0,inf; s [|7(z0)]|)
sufficiently small, for large n we have that for all w,, € W), 3, all zg € S and
all 7 € [—€,/Sn, €n/sp] that

22 ) i)l — o)} < 1+ )

It follows that for large n,

o L2l ol alitenl - Z2atan |

g (530 ) n
< { 1 if |1 — 7| < €tn/sn
=L Erl+ta/sn)o(li(@o)lllr — ragl) i etn/sn < || < €n/sn.

We deduce that for large n,

/_; [t][1%) (o II‘ {1/2 (2 } <I>{ (= lli(zo) It — alzo)t )}‘dt

[ee]
< 2 / ir|dr + 52 / 2(1r| 4 tu /s b0} |7 — rao ) dr
|r—Tao | <etn/sn

e}

< e(s2 4+12).
This allows us to conclude (6.22).

To show (6.23), which bounds Ry. We have
il =t [ [ 2~ ra) ~ Liecoy] dr Vol )
T|>€n/Sn

<25 [ [ (- iteo) ) dr dVol' (ao) = of ),
S Jr>en/sn
uniformly for w,, € W,, g, as required. O

PROOF THAT (A.1)—(A.4) IMPLY THE MARGIN CONDITION (2.1). For the
upper bound, recall from (6.16) that by the mean value theorem, for suffi-
ciently small € > 0,

inf x) — 1/2| > cqe,
nfIn(a) — 172>
where we may take ¢, = infiep, [|7()]|, which is positive. By shrinking Up
if necessary, we may assume that D* = sup,cy, f(z) < oo, and it follows
that for small € > 0,

P(jn(X)—1/2| <enX € R) < P(8/%) < D*14(S9/°) < Ce,
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WEIGHTED NEAREST NEIGHBOUR CLASSIFIERS )

where C' < oo, using Weyl’s tube formula (Gray, 2004).
For the lower bound, we construct a tube similar to S¢, but contained in
R. To do this, let See = {2 € S : dist(z,0S) > €} and let

_ /. n(zo)
Sﬁ‘{ o)

Further, let C* = sup,¢y, [|7(x)||, which is finite. Again by the mean value
theorem, for sufficiently small ¢ > 0,

Do € See, [t < 6}.

sup [n(x) ~1/2) < C*e.
CEE €

Thus, letting d. = inf,cy, f(z) > 0, for sufficiently small € > 0,
P(In(X)—-1/2|<enX eR) > P(SE/C*) > dwvg(Se/cn) = ce,
where ¢ > 0, again using Weyl’s tube formula. O

PrOOF OF THEOREM 2. Consider any vector w;* = (w!¥)" ; of non-
negative weights that minimises the function ~,(-) defined in the statement
of Theorem 1. Since 32 is symmetric in wy1, ..., Wy, while o; is increasing
in 4, we see that (w})"_, is decreasing in 4. We let £** = max{i: w}¥ > 0}.
Now form the Lagranglan

Jo**
L(wp,\) = fBls + Bgt2+)\<2wm— >

=1
Then for some \**,

Jox*

oL
= Byw;; + 4/dO‘Z Z ajwp; + A,

OWni | (w x)

(0.8) 0=

fori=1,...,k*. By summing (0.8) from i = 1,..., k™, and then multiply-
ing (0.8) by o and again summing from ¢ = 1,. k:**, we obtain two linear
equations in Z —1 ajwy; and A*™, which can be solved and substituted back
into (0.8) to yleld

fox* 2 4 Bg(k**)2/d
el + 523 Y of) i W

1 + Bln4/d{zf**1 a2 (k**)1+4/d} 1 + 5 n4/d{2§**1 a2 (k**)1+4/d}

for i = 1,...,k*. In particular, w}* is the unique minimiser of 7, (-). The
weight vector w is asymptotically equivalent to w;* in the following sense:

*k
ni —
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6 R. J. SAMWORTH

elementary calculations reveal that k** = k*{1+ O((k*)~!)}, and moreover
that

k** *\2/d

0.9) > o m—-dﬂ?ﬁﬁ{1+0«wrw}
k**

(0.10) Z = Mg +O((k)™H}.

The expressions corresponding to (6.32) and (6.33) when w;, replaces w}*
are the same, except that the relative error is now O((k*)~2) in both cases.
It follows immediately that

R vannM - R CBayes ok
) e = ) o)) 1
RR(CWHH ) RR(CBayes) fyn(wn)

n,wy

and therefore that (2.5) holds.

Arguing similarly to the above, we see that the pair of conditions that
Yoty Wi/ Yoy (wi)? = Land 350 agwni/ 301 ciwy, — 1, or equiva-
lently (2.6), are sufficient for (2.5) to hold. To see the necessity of these
conditions, suppose for now that for some small 8 > 0, the weight vector
wy, € W), g satisfies

n ’IU2
(0.11) gi@)y_m%TemU

Then, by almost the same Lagrangian calculation as that above, we have

RR(CWHH ) _ RR(CBayes)

n,Wnp,

lim inf

n—oo RR(CWHD ) _ RR(CBayes)

n,Wn,

> 1

)

where W,, = (p;)?"_, is given by

+2_2pm>{ggm’

Wps = =

k

and where k/k* — 1 /T It follows that for small 8 > 0, and for any w,, €
Wi,.p satisfying Y7 w2,/ > (w},)? < 75, we have

.. RR(CX&? ) RR(CBayes) . RR(CA'X’I&? ) _ RR(CBayes)
lim inf n > lim n
n—oo R (C;fl\’rxl*) RR(CBaYBs) n—oo Rp (C;’}LVI\}\?*) — RR(CBayeS)
1 d
(0.12) :d—l—4< 4/d+47')>1.
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WEIGHTED NEAREST NEIGHBOUR CLASSIFIERS 7

A very similar argument shows that if

(0.13) Doimt Cillni [0,1)
. ~n % g ) )
Z?:l QW

then the conclusion of (6 35) also holds. But if (2.5) holds and it is not the

case that both Y0, w2,/ > (w};)?> — 1 and D 1 | aywni/ >y cyw); —
1, then either (6.34) or (6 36) Would have to hold on a subsequence. But then
we see from (6.35) that (2.5) cannot hold, and this contradiction means that
the conditions (2.6) are necessary for (2.5).

The final part of the theorem, deriving (2.7), is an elementary calculation
and is omitted. O

PROOF OF COROLLARY 4. Writing ay,q = oo +¢* and b, g = - + ¢, this
corollary follows from Theorem 1 and the following facts:

" T
> el - O ){1+0<anq}and2 2 = 4404 O}

=1

Zal bw/(’:” ){1+o<nq}andZ "= 504 O]
Zal Geozzq—g/g/d){ }andz Geo - {l—I—O(Q)}?

where the error terms are, in each case, uniform for n= =% < g <n 8. O

PROOF OF THEOREM 6. Let tg) n=2r/d Yoy a( )wm We only need
to show that

(0.14) sup |pin () = n(z) — al? (2)t]| = o(t)),
TESN

uniformly for w,, € wi n.5. Decause the rest of the proof is virtually identical
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8 R. J. SAMWORTH

to that of Theorem 1. Analogously to (6.8), we can write

ko
> v X aa@E(CXG - 2"} - (o)

i=1 |st|<2r
ko £
Tlsl(if)fSQ(fU) n—1¢,

={1+o0(1)} Z nAwWp; Z W 9w (i) du
i=ky (s1,52)€8, T Jleli<on
n nAwy; Usl(x)fSQ (l’) 14s?

— (14+0(1)) S o / v dv
— (Slgesr st i<

(0.15) = a" (@)t + o(t)),

uniformly for z € §* and w,, € Wi 5.~ Combining the analogues of (6.3)

W

and (6.4) with (6.38) proves (6.37). O

MINIMAX PROPERTIES OF WEIGHTED NEAREST NEIGHBOUR CLASSIFIERS

The conditions imposed by Audibert and Tsybakov (2007) for their min-
imax results are closely related to the ones introduced in Section 2, and for
convenience we will use their conditions in this section. For fixed o > 0,
fixed positive parameters Cy, v, L, 70, o, fmax > fmin > 0 and a fixed com-
pact set C C RY, let Pa,y denote the class of probability distributions P on
R¢ x {1,2} such that:

(i) The margin condition is satisfied; that is,
P({z e RY: 0 < |n(z) — 1/2| < €}) < Cpe®

for all € > 0, where P denotes the marginal distribution of X.
(ii) The regression function 7 belongs to the Holder ball ¥(v, L, R%); that

is, n is || times continuously differentiable and, writing 77;[@J for the
Taylor series polynomial of 7 of order |v], we have that for all z, 2" €
R,

[n(2') —ni @) < Ljje - 2|,

(iii) The marginal distribution P is supported on a set A C C satisfying
va(AN By(z)) > covg(Br(x))

for all r € [0,7] and = € A; moreover, P has a Lebesgue density f
satisfying fmin < f(2) < fmax for all x € A. Finally, f € ¥(y—1, L, A).
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WEIGHTED NEAREST NEIGHBOUR CLASSIFIERS 9

In Theorem 1 below, we let C¥™ be denote either a unweighted k-nearest
neighbour classifier with k& =< n2?/(7+d) o a weighted nearest neighbour
classifier with weights of the form (1.1) with k* =< n®/(7+d) or any of

the three types of bagged nearest neighbour classifier from Section 3 with

THEOREM 1. For any o > 0 and «y € (0, 2], there exists C > 0 such that

sup {R(CI™) — R(CB¥*)} < Cp~7(1+)/(2r+d)
PEPa

Remark: Using the ideas of Section 4, one can extend this result so that,
given any « > 0 and v > 0, we can construct a weighted nearest neighbour
classifier achieving the rate n=71+®)/v+d) uniformly over P, .

PROOF. Write P" for the joint distribution of (X1, Y1),...,(Xy,Ys). By
Lemma 3.1 of Audibert and Tsybakov (2007), it suffices to prove that there
exists C' > 0 such that for all § > 0, all n» € N and P-almost all z,

(0.16) sup  P(|S,(x) — n(z)| > 6) < Cexp(—n?/ 262/,
PEPa,~

Now, minor variants of the arguments in the proof of Theorem ?7 show that
there exist C7,C’ > 0 such that for all P € P, and = € A4,

> wniEn (X)) — n(z)
=1

[tn(2) = n(@)| < LY wni{|| X — 2"} +
i=1

~ iy —y(2y+d)
§C{;<n) Wy < C'n =Y/ Cr+d)

Moreover, there exists C” > 0 such that we have

n
S wd, < Ok,
=1

It follows that for § > 2C'n~"/27+d) and for P-almost all z,

sup  P"(|9n(z) = n(x)] > 0) < sup P*([Su(x) = pa(z)] > 6/2)
P€EPa,y P€EPa,y

< 2exp{—n?"/ @2/ (207},

by Hoeffding’s inequality. Therefore, if we choose C' > max(2,2C") such that
Cexp{—4(C")?/C} > 1, then (0.16) holds for all § > 0, as required. O
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10 R. J. SAMWORTH

For the lower bound, it is convenient to let P, , denote the set of probabil-
ity distributions on R% x {1, 2} satisfying all the restrictions of Pa,y except
for the condition that f € X(y — 1, L, A). The following lower bound is
Theorem 3.5 of Audibert and Tsybakov (2007).

THEOREM 2 (Audibert and Tsybakov (2007)). Suppose that ay < 0.
Then there exists ¢ > 0 such that for any classifier Cy,, we have

sup {R(Cr) — R(CBH)} > en =7 (+0)/(23+d),
PEPa.y

Remark: The condition ay < § is not too restrictive; in particular, it
allows all («,~,d) triples where the rate of convergence is not faster than
n1L.

Remark: In the proof of Theorem 3.5 of Audibert and Tsybakov (2007),
the authors construct a finite subset of 75Cw for which the lower bound
holds. Moreover, all of the distributions in this finite subset have the same
marginal density f. This density is piecewise constant, so does not satisfy f €
Y(y—1,L,A), but it can be modified in a straightforward but cumbersome
way to do so, obtaining the same lower bound while preserving the margin
condition (i) and the other conditions in (iii) above. Thus the lower bound
in fact holds over P, .

A PLUG-IN APPROACH TO ESTIMATING k*

A direct, plug-in approach to estimating the constants By and Bz in (2.4)
involves estimating integrals over the manifold S, which could be achieved
using Monte Carlo integration. For instance, one might first try to assess
which points x are close to S by testing Hy : = € S against Hy : x ¢ S. This
could be done by constructing a pilot weighted nearest neighbour estimate
S, (x) of n(x) and using the test statistic

_ (Su(x) —1/2)*

Th(z) = = . ;

Sn(x){1 — Sp(z)}
cf. Samworth (2011). From the expressions in (2.3), we see that one would
then require estimates [|7(-)|| and a(-) of ||7(-)|| and a(-) respectively at
the training points for which we do not reject the null hypothesis. The
former estimates could be achieved using finite-difference approximations to
the partial derivatives; for the latter estimates, while it is in principle be
possible to construct further plug-in estimates of the unknown quantities in
the expression for a(-), this might be considered unattractive owing to the
need to estimate second partial derivatives. Instead, one could also base an
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WEIGHTED NEAREST NEIGHBOUR CLASSIFIERS 11

estimate on a jackknife estimate of the bias E{S,,(-)} —n(-); cf. the discussion
preceding (2.4). Finally, one would then estimate B; and By by

~ N2
Bl = —= Z # and BQ = i/\ Z a}L’L),
5] Nieol 5] - 11X |

. X;ES i: X;ES

where S is the set of training data points for which we do not reject the
null hypothesis above. The potential advantages of this approach are both
computational speed (we avoid the cross-validation step) and theoretical,
especially if one could prove that B’l LN By and Bg LN Bsy. This would
guarantee that the estimate of k* was of the appropriate asymptotic order in
n, and that the asymptotic results corresponding to (2.7) and (2.8) continued
to hold using the plug-in estimates of the weights. Such a result would rely on
the fact that the convergence of the scaled regrets to their limits is uniform
in a range of k, as discussed after (2.10).

However, the plug-in approach does appear to have some drawbacks in this
context. There are several choices to make, including the pilot estimate, the
critical value for the test statistic, and the step size for the finite-difference
approximation (which is not straightforward since the estimates of n(-) are
piecewise constant, so if it is chosen too small, then the partial derivatives
will be estimated as zero). Moreover, there may be very few points in S ,
leading to highly variable estimates of the unknown quantities, and there is
no guarantee that for a given sample size, the estimate of £* will necessarily
be less than n. It is for these reasons that we prefer the cross-validation
approach of Section 5 in this instance.
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