Paper 4, Section I

5K Statistical Modelling

Consider the normal linear model where the *n*-vector of responses Y satisfies $Y = X\beta + \varepsilon$ with $\varepsilon \sim N_n(0, \sigma^2 I)$ and X is an $n \times p$ design matrix with full column rank. Write down a $(1 - \alpha)$ -level confidence set for β .

Define the *Cook's distance* for the observation (Y_i, x_i) where x_i^T is the *i*th row of X, and give its interpretation in terms of confidence sets for β .

In the model above with n = 100 and p = 4, you observe that one observation has Cook's distance 3.1. Would you be concerned about the influence of this observation? Justify your answer.

[*Hint:* You may find some of the following facts useful:

- 1. If $Z \sim \chi_4^2$, then $\mathbb{P}(Z \leqslant 1.06) = 0.1$, $\mathbb{P}(Z \leqslant 7.78) = 0.9$.
- 2. If $Z \sim F_{4,96}$, then $\mathbb{P}(Z \leq 0.26) = 0.1$, $\mathbb{P}(Z \leq 2.00) = 0.9$.
- 3. If $Z \sim F_{96,4}$, then $\mathbb{P}(Z \leq 0.50) = 0.1$, $\mathbb{P}(Z \leq 3.78) = 0.9$.]

Paper 3, Section I

5K Statistical Modelling

In an experiment to study factors affecting the production of the plastic polyvinyl chloride (PVC), three experimenters each used eight devices to produce the PVC and measured the sizes of the particles produced. For each of the 24 combinations of device and experimenter, two size measurements were obtained.

The experimenters and devices used for each of the 48 measurements are stored in R as factors in the objects experimenter and device respectively, with the measurements themselves stored in the vector psize. The following analysis was performed in R.

```
> fit0 <- lm(psize ~ experimenter + device)
> fit <- lm(psize ~ experimenter + device + experimenter:device)
> anova(fit0, fit)
Analysis of Variance Table
Model 1: psize ~ experimenter + device
Model 2: psize ~ experimenter + device + experimenter:device
Res.Df RSS Df Sum of Sq F Pr(>F)
1 38 49.815
2 24 35.480 14 14.335 0.6926 0.7599
```

Let X and X_0 denote the design matrices obtained by model.matrix(fit) and model.matrix(fit0) respectively, and let Y denote the response psize. Let P and P_0 denote orthogonal projections onto the column spaces of X and X_0 respectively.

For each of the following quantities, write down their numerical values if they appear in the analysis of variance table above; otherwise write 'unknown'.

- 1. $||(I-P)Y||^2$
- 2. $||X(X^TX)^{-1}X^TY||^2$
- 3. $||(I-P_0)Y||^2 ||(I-P)Y||^2$
- 4. $\frac{\|(P-P_0)Y\|^2/14}{\|(I-P)Y\|^2/24}$
- 5. $\sum_{i=1}^{48} Y_i/48$

Out of the two models that have been fitted, which appears to be the more appropriate for the data according to the analysis performed, and why?

89

Paper 2, Section I

5K Statistical Modelling

Define the concept of an exponential dispersion family. Show that the family of scaled binomial distributions $\frac{1}{n}Bin(n,p)$, with $p \in (0,1)$ and $n \in \mathbb{N}$, is of exponential dispersion family form.

Deduce the mean of the scaled binomial distribution from the exponential dispersion family form.

What is the canonical link function in this case?

Paper 1, Section I

5K Statistical Modelling

Write down the model being fitted by the following **R** command, where $y \in \{0, 1, 2, ...\}^n$ and X is an $n \times p$ matrix with real-valued entries.

fit <- glm(y ~ X, family = poisson)</pre>

Write down the log-likelihood for the model. Explain why the command

sum(y) - sum(predict(fit, type = "response"))

gives the answer 0, by arguing based on the log-likelihood you have written down. [*Hint: Recall that if* $Z \sim Pois(\mu)$ *then*

$$\mathbb{P}(Z=k) = \frac{\mu^k e^{-\mu}}{k!}$$

for $k \in \{0, 1, 2, ...\}$.

Paper 4, Section II

13K Statistical Modelling

In a study on infant respiratory disease, data are collected on a sample of 2074 infants. The information collected includes whether or not each infant developed a respiratory disease in the first year of their life; the gender of each infant; and details on how they were fed as one of three categories (breast-fed, bottle-fed and supplement). The data are tabulated in R as follows:

	disease	nondisease	gender	food
1	77	381	Воу	Bottle-fed
2	19	128	Воу	Supplement
3	47	447	Воу	Breast-fed
4	48	336	Girl	Bottle-fed
5	16	111	Girl	Supplement
6	31	433	Girl	Breast-fed

Write down the model being fit by the R commands on the following page:

```
CAMBRIDGE 92
> total <- disease + nondisease
> fit <- glm(disease/total ~ gender + food, family = binomial,
+ weights = total)</pre>
```

The following (slightly abbreviated) output from R is obtained.

```
> summary(fit)
```

UNIVERSITY OF

Coefficients:

Estimate Std. Error z value Pr(|z|)0.1124 -14.347 < 2e-16 *** (Intercept) -1.61270.1410 -2.216 genderGirl -0.3126 0.0267 * foodBreast-fed -0.6693 0.1530 -4.374 1.22e-05 *** foodSupplement -0.1725 0.2056 -0.839 0.4013 ___ Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 (Dispersion parameter for binomial family taken to be 1)

Null deviance: 26.37529 on 5 degrees of freedom Residual deviance: 0.72192 on 2 degrees of freedom

Briefly explain the justification for the standard errors presented in the output above.

Explain the relevance of the output of the following R code to the data being studied, justifying your answer:

> exp(c(-0.6693 - 1.96*0.153, -0.6693 + 1.96*0.153))
[1] 0.3793940 0.6911351

[*Hint: It may help to recall that if* $Z \sim N(0, 1)$ *then* $\mathbb{P}(Z \ge 1.96) = 0.025$.]

Let D_1 be the deviance of the model fitted by the following R command.

```
> fit1 <- glm(disease/total ~ gender + food + gender:food,
+ family = binomial, weights = total)
```

What is the numerical value of D_1 ? Which of the two models that have been fitted should you prefer, and why?

Paper 1, Section II

13K Statistical Modelling

Consider the normal linear model where the *n*-vector of responses Y satisfies $Y = X\beta + \varepsilon$ with $\varepsilon \sim N_n(0, \sigma^2 I)$. Here X is an $n \times p$ matrix of predictors with full column rank where $n \ge p+3$, and $\beta \in \mathbb{R}^p$ is an unknown vector of regression coefficients. Let X_0 be the matrix formed from the first $p_0 < p$ columns of X, and partition β as $\beta = (\beta_0^T, \beta_1^T)^T$ where $\beta_0 \in \mathbb{R}^{p_0}$ and $\beta_1 \in \mathbb{R}^{p-p_0}$. Denote the orthogonal projections onto the column spaces of X and X_0 by P and P_0 respectively.

It is desired to test the null hypothesis $H_0: \beta_1 = 0$ against the alternative hypothesis $H_1: \beta_1 \neq 0$. Recall that the *F*-test for testing H_0 against H_1 rejects H_0 for large values of

$$F = \frac{\|(P - P_0)Y\|^2/(p - p_0)}{\|(I - P)Y\|^2/(n - p)}.$$

Show that $(I - P)(P - P_0) = 0$, and hence prove that the numerator and denominator of F are independent under either hypothesis.

Show that

$$\mathbb{E}_{\beta,\sigma^2}(F) = \frac{(n-p)(\tau^2+1)}{n-p-2},$$

where $\tau^2 = \frac{\|(P - P_0)X\beta\|^2}{(p - p_0)\sigma^2}$.

[In this question you may use the following facts without proof: $P - P_0$ is an orthogonal projection with rank $p - p_0$; any $n \times n$ orthogonal projection matrix Π satisfies $\|\Pi \varepsilon\|^2 \sim \sigma^2 \chi_{\nu}^2$, where $\nu = \operatorname{rank}(\Pi)$; and if $Z \sim \chi_{\nu}^2$ then $\mathbb{E}(Z^{-1}) = (\nu - 2)^{-1}$ when $\nu > 2$.]

CAMBRIDGE

Paper 4, Section I

5J Statistical Modelling

The output X of a process depends on the levels of two adjustable variables: A, a factor with four levels, and B, a factor with two levels. For each combination of a level of A and a level of B, nine independent values of X are observed.

Explain and interpret the R commands and (abbreviated) output below. In particular, describe the model being fitted, and describe and comment on the hypothesis tests performed under the summary and anova commands.

> fit1 <- $lm(x^{\sim}a+b)$

```
> summary(fit1)
```

Coefficients:

	E	Estimate	Std. Err	or	t val	ue	Pr(> t)	
(Intercept)	2.5445	0.24	49	10.	39	6.66e-	16	***
a2		-5.6704	0.48	859	-11.	67	< 2e-	16	***
a3		4.3254	0.3480		12.	12.43		16	***
a4		-0.5003	0.37	34	-1.	34	0.09	23	
b2		-3.5689	0.22	275	-15.	69	< 2e-	16	***
> anova(fi	t1)								
Response:	x								
	Df	Sum Sq	mean Sq	F	value		Pr(>F)		
a	3	71.51	23.84		17.79	1	.34e-8	**	*
b	1	105.11	105.11		78.44	6.	91e-13	**	*
Residuals	67	89.56	1.34						

CAMBRIDGE

Paper 3, Section I

5J Statistical Modelling

Consider the linear model $Y = X\beta + \epsilon$ where $Y = (Y_1, \ldots, Y_n)^T$, $\beta = (\beta_1, \ldots, \beta_p)^T$, and $\epsilon = (\epsilon_1, \ldots, \epsilon_n)^T$, with $\epsilon_1, \ldots, \epsilon_n$ independent $N(0, \sigma^2)$ random variables. The $(n \times p)$ matrix X is known and is of full rank p < n. Give expressions for the maximum likelihood estimators $\hat{\beta}$ and $\hat{\sigma}^2$ of β and σ^2 respectively, and state their joint distribution. Show that $\hat{\beta}$ is unbiased whereas $\hat{\sigma}^2$ is biased.

Suppose that a new variable Y^* is to be observed, satisfying the relationship

$$Y^* = x^{*\mathrm{T}}\beta + \epsilon^* \; ,$$

where x^* $(p \times 1)$ is known, and $\epsilon^* \sim N(0, \sigma^2)$ independently of ϵ . We propose to predict Y^* by $\widetilde{Y} = x^{*T} \widehat{\beta}$. Identify the distribution of

$$\frac{Y^* - \widetilde{Y}}{\tau \, \widetilde{\sigma}},$$

where

$$\begin{aligned} \widetilde{\sigma}^2 &= \frac{n}{n-p} \widehat{\sigma}^2 , \\ \tau^2 &= x^{*\mathrm{T}} (X^{\mathrm{T}} X)^{-1} x^* + 1 . \end{aligned}$$

Paper 2, Section I

5J Statistical Modelling

Consider a linear model $Y = X\beta + \epsilon$, where Y and ϵ are $(n \times 1)$ with $\epsilon \sim N_n(0, \sigma^2 I)$, β is $(p \times 1)$, and X is $(n \times p)$ of full rank p < n. Let γ and δ be sub-vectors of β . What is meant by *orthogonality* between γ and δ ?

Now suppose

$$Y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \beta_{3}P_{3}(x_{i}) + \epsilon_{i} \quad (i = 1, \dots, n),$$

where $\epsilon_1, \ldots, \epsilon_n$ are independent $N(0, \sigma^2)$ random variables, x_1, \ldots, x_n are real-valued known explanatory variables, and $P_3(x)$ is a cubic polynomial chosen so that β_3 is orthogonal to $(\beta_0, \beta_1, \beta_2)^{\mathrm{T}}$ and β_1 is orthogonal to $(\beta_0, \beta_2)^{\mathrm{T}}$.

Let $\tilde{\beta} = (\beta_0, \beta_2, \beta_1, \beta_3)^{\mathrm{T}}$. Describe the matrix \tilde{X} such that $Y = \tilde{X}\tilde{\beta} + \epsilon$. Show that $\tilde{X}^{\mathrm{T}}\tilde{X}$ is block diagonal. Assuming further that this matrix is non-singular, show that the least-squares estimators of β_1 and β_3 are, respectively,

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n x_i Y_i}{\sum_{i=1}^n x_i^2}$$
 and $\widehat{\beta}_3 = \frac{\sum_{i=1}^n P_3(x_i) Y_i}{\sum_{i=1}^n P_3(x_i)^2}$.

Paper 1, Section I

5J Statistical Modelling

Variables Y_1, \ldots, Y_n are independent, with Y_i having a density $p(y | \mu_i)$ governed by an unknown parameter μ_i . Define the *deviance* for a model M that imposes relationships between the (μ_i) .

From this point on, suppose $Y_i \sim \text{Poisson}(\mu_i)$. Write down the log-likelihood of data y_1, \ldots, y_n as a function of μ_1, \ldots, μ_n .

Let $\hat{\mu}_i$ be the maximum likelihood estimate of μ_i under model M. Show that the deviance for this model is given by

$$2\sum_{i=1}^n \left\{ y_i \log \frac{y_i}{\widehat{\mu}_i} - (y_i - \widehat{\mu}_i) \right\} \,.$$

Now suppose that, under M, $\log \mu_i = \beta^T x_i$, i = 1, ..., n, where $x_1, ..., x_n$ are known p-dimensional explanatory variables and β is an unknown p-dimensional parameter. Show that $\hat{\mu} := (\hat{\mu}_1, ..., \hat{\mu}_n)^T$ satisfies $X^T y = X^T \hat{\mu}$, where $y = (y_1, ..., y_n)^T$ and X is the $(n \times p)$ matrix with rows $x_1^T, ..., x_n^T$, and express this as an equation for the maximum likelihood estimate $\hat{\beta}$ of β . [You are not required to solve this equation.]

Paper 4, Section II

13J Statistical Modelling

Let f_0 be a probability density function, with cumulant generating function K. Define what it means for a random variable Y to have a model function of exponential dispersion family form, generated by f_0 .

A random variable Y is said to have an *inverse Gaussian distribution*, with parameters ϕ and λ (both positive), if its density function is

$$f(y;\phi,\lambda) = \frac{\sqrt{\lambda}}{\sqrt{2\pi y^3}} e^{\sqrt{\lambda\phi}} \exp\left\{-\frac{1}{2}\left(\frac{\lambda}{y} + \phi y\right)\right\} \qquad (y>0).$$

Show that the family of all inverse Gaussian distributions for Y is of exponential dispersion family form. Deduce directly the corresponding expressions for E(Y) and Var(Y) in terms of ϕ and λ . What are the corresponding canonical link function and variance function?

Consider a generalized linear model, M, for independent variables Y_i (i = 1, ..., n), whose random component is defined by the inverse Gaussian distribution with link function $g(\mu) = \log(\mu)$: thus $g(\mu_i) = x_i^T \beta$, where $\beta = (\beta_1, ..., \beta_p)^T$ is the vector of unknown regression coefficients and $x_i = (x_{i1}, ..., x_{ip})^T$ is the vector of known values of the explanatory variables for the i^{th} observation. The vectors x_i (i = 1, ..., n) are linearly independent. Assuming that the dispersion parameter is known, obtain expressions for the score function and Fisher information matrix for β . Explain how these can be used to compute the maximum likelihood estimate $\hat{\beta}$ of β .

UNIVERSITY OF

Paper 1, Section II

13J Statistical Modelling

A cricket ball manufacturing company conducts the following experiment. Every day, a bowling machine is set to one of three levels, "Medium", "Fast" or "Spin", and then bowls 100 balls towards the stumps. The number of times the ball hits the stumps and the average wind speed (in kilometres per hour) during the experiment are recorded, yielding the following data (abbreviated):

Day	Wind	Level	Stumps
1	10	Medium	26
2	8	Medium	37
÷	:	:	÷
50	12	Medium	32
51	7	Fast	31
÷	:	:	:
120	3	Fast	28
121	5	Spin	35
÷	:	:	:
150	6	Spin	31

Write down a reasonable model for Y_1, \ldots, Y_{150} , where Y_i is the number of times the ball hits the stumps on the i^{th} day. Explain briefly why we might want to include interactions between the variables. Write R code to fit your model.

The company's statistician fitted her own generalized linear model using R, and obtained the following summary (abbreviated):

```
>summary(ball)
Coefficients:
```

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-0.37258	0.05388	-6.916	4.66e-12	***
Wind	0.09055	0.01595	5.676	1.38e-08	***
LevelFast	-0.10005	0.08044	-1.244	0.213570	
LevelSpin	0.29881	0.08268	3.614	0.000301	***
Wind:LevelFast	0.03666	0.02364	1.551	0.120933	
Wind:LevelSpin	-0.07697	0.02845	-2.705	0.006825	**

Why are LevelMedium and Wind:LevelMedium not listed?

Suppose that, on another day, the bowling machine is set to "Spin", and the wind speed is 5 kilometres per hour. What linear function of the parameters should the statistician use in constructing a predictor of the number of times the ball hits the stumps that day?

Based on the above output, how might you improve the model? How could you fit your new model in \mathbb{R} ?

Paper 4, Section I

5K Statistical Modelling

Define the concepts of an exponential dispersion family and the corresponding variance function. Show that the family of Poisson distributions with parameter $\lambda > 0$ is an exponential dispersion family. Find the corresponding variance function and deduce from it expressions for E(Y) and Var(Y) when $Y \sim Pois(\lambda)$. What is the canonical link function in this case?

Paper 3, Section I5K Statistical ModellingConsider the linear model

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i,$$

for i = 1, 2, ..., n, where the ε_i are independent and identically distributed with $N(0, \sigma^2)$ distribution. What does it mean for the pair β_1 and β_2 to be *orthogonal*? What does it mean for all the three parameters β_0, β_1 and β_2 to be *mutually orthogonal*? Give necessary and sufficient conditions on $(x_{i1})_{i=1}^n, (x_{i2})_{i=1}^n$ so that β_0, β_1 and β_2 are mutually orthogonal. If $\beta_0, \beta_1, \beta_2$ are mutually orthogonal, find the joint distribution of the corresponding maximum likelihood estimators $\hat{\beta}_0, \hat{\beta}_1$ and $\hat{\beta}_2$.

Paper 2, Section I

UNIVERSITY OF

89

5K Statistical Modelling

The purpose of the following study is to investigate differences among certain treatments on the lifespan of male fruit flies, after allowing for the effect of the variable 'thorax length' (thorax) which is known to be positively correlated with lifespan. Data was collected on the following variables:

longevity lifespan in days

thorax (body) length in mm

treat a five level factor representing the treatment groups. The levels were labelled as follows: "00", "10", "80", "11", "81".

No interactions were found between thorax length and the treatment factor. A linear model with thorax as the covariate, treat as a factor (having the above 5 levels) and longevity as the response was fitted and the following output was obtained. There were 25 males in each of the five groups, which were treated identically in the provision of fresh food.

Coefficients:

	Estimate Std.	Error t	value	Pr(> t)
(Intercept)	-49.98	10.61	-4.71	6.7e-06
treat10	2.65	2.98	0.89	0.37
treat11	-7.02	2.97	-2.36	0.02
treat80	3.93	3.00	1.31	0.19
treat81	-19.95	3.01	-6.64	1.0e-09
thorax	135.82	12.44	10.92	<2e-16

Residual standard error: 10.5 on 119 degrees of freedom Multiple R-Squared: 0.656, Adjusted R-squared: 0.642 F-statistics: 45.5 on 5 and 119 degrees of freedom, p-value: 0

- (a) Assuming the same treatment, how much longer would you expect a fly with a thorax length 0.1mm greater than another to live?
- (b) What is the predicted difference in longevity between a male fly receiving treatment treat10 and treat81 assuming they have the same thorax length?
- (c) Because the flies were randomly assigned to the five groups, the distribution of thorax lengths in the five groups are essentially equal. What disadvantage would the investigators have incurred by ignoring the thorax length in their analysis (i.e., had they done a one-way ANOVA instead)?
- (d) The residual-fitted plot is shown in the left panel of Figure 1 overleaf. Is it possible to determine if the regular residuals or the studentized residuals have been used to construct this plot? Explain.
- (e) The Box–Cox procedure was used to determine a good transformation for this data. The plot of the log-likelihood for λ is shown in the right panel of Figure 1. What transformation should be used to improve the fit and yet retain some interpretability?

UNIVERSITY OF

90

Figure 1: Residual-Fitted plot on the left and Box-Cox plot on the right

Paper 1, Section I

5K Statistical Modelling

Let Y_1, \ldots, Y_n be independent with $Y_i \sim \frac{1}{n_i} \operatorname{Bin}(n_i, \mu_i), i = 1, \ldots, n$, and

$$\log\left(\frac{\mu_i}{1-\mu_i}\right) = x_i^\top \beta \,, \tag{1}$$

where x_i is a $p \times 1$ vector of regressors and β is a $p \times 1$ vector of parameters. Write down the likelihood of the data Y_1, \ldots, Y_n as a function of $\mu = (\mu_1, \ldots, \mu_n)$. Find the unrestricted maximum likelihood estimator of μ , and the form of the maximum likelihood estimator $\hat{\mu} = (\hat{\mu}_1, \ldots, \hat{\mu}_n)$ under the logistic model (1).

Show that the *deviance* for a comparison of the full (saturated) model to the generalised linear model with canonical link (1) using the maximum likelihood estimator $\hat{\beta}$ can be simplified to

$$D(y;\hat{\mu}) = -2\sum_{i=1}^{n} \left[n_i y_i x_i^{\top} \hat{\beta} - n_i \log(1 - \hat{\mu}_i) \right].$$

Finally, obtain an expression for the deviance residual in this generalised linear model.

Paper 4, Section II

13K Statistical Modelling

Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be jointly independent and identically distributed with $X_i \sim N(0, 1)$ and conditional on $X_i = x, Y_i \sim N(x\theta, 1), i = 1, 2, \ldots, n$.

- (a) Write down the likelihood of the data $(X_1, Y_1), \ldots, (X_n, Y_n)$, and find the maximum likelihood estimate $\hat{\theta}$ of θ . [You may use properties of conditional probability/expectation without providing a proof.]
- (b) Find the Fisher information $I(\theta)$ for a single observation, (X_1, Y_1) .
- (c) Determine the limiting distribution of $\sqrt{n}(\hat{\theta} \theta)$. [You may use the result on the asymptotic distribution of maximum likelihood estimators, without providing a proof.]
- (d) Give an asymptotic confidence interval for θ with coverage $(1-\alpha)$ using your answers to (b) and (c).
- (e) Define the observed Fisher information. Compare the confidence interval in part (d) with an asymptotic confidence interval with coverage (1α) based on the observed Fisher information.
- (f) Determine the exact distribution of $\left(\sum_{i=1}^{n} X_{i}^{2}\right)^{1/2} (\hat{\theta} \theta)$ and find the true coverage probability for the interval in part (e). [*Hint. Condition on* $X_{1}, X_{2}, \ldots, X_{n}$ and use the following property of conditional expectation: for U, V random vectors, any suitable function g, and $x \in \mathbb{R}$,

 $P\{g(U,V) \leq x\} = E[P\{g(U,V) \leq x|V\}].$

Paper 1, Section II

92

13K Statistical Modelling

The treatment for a patient diagnosed with cancer of the prostate depends on whether the cancer has spread to the surrounding lymph nodes. It is common to operate on the patient to obtain samples from the nodes which can then be analysed under a microscope. However it would be preferable if an accurate assessment of nodal involvement could be made without surgery. For a sample of 53 prostate cancer patients, a number of possible predictor variables were measured before surgery. The patients then had surgery to determine nodal involvement. We want to see if nodal involvement can be accurately predicted from the available variables and determine which ones are most important. The variables take the values 0 or 1.

- r An indicator 0=no/1=yes of nodal involvement.
- aged The patient's age, split into less than 60 (=0) and 60 or over (=1).
- stage A measurement of the size and position of the tumour observed by palpation with the fingers. A serious case is coded as 1 and a less serious case as 0.
- grade Another indicator of the seriousness of the cancer which is determined by a pathology reading of a biopsy taken by needle before surgery. A value of 1 indicates a more serious case of cancer.
- **xray** Another measure of the seriousness of the cancer taken from an X-ray reading. A value of 1 indicates a more serious case of cancer.
- acid The level of acid phosphatase in the blood serum where 1=high and 0=low.

A binomial generalised linear model with a logit link was fitted to the data to predict nodal involvement and the following output obtained:

Deviance Residuals:									
Min	1Q	Median	ЗQ	Max					
-2.332	-0.665	-0.300	0.639	2.150					
Coefficient	s:								
	Estimate	e Std.	Error	t value	Pr(z)				
(Intercept)	-3.079	9	0.987	-3.12	0.0018				
aged	-0.292	2	0.754	-0.39	0.6988				
grade	0.872	2	0.816	1.07	0.2850				
stage	1.373	3	0.784	1.75	0.0799				
xray	1.801	L	0.810	2.22	0.0263				
acid	1.684	1	0.791	2.13	0.0334				

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 70.252 on 52 degrees of freedom Residual deviance: 47.611 on 47 degrees of freedom AIC: 59.61

Number of Fisher Scoring iterations: 5

Part II, 2012 List of Questions

UNIVERSITY OF CAMBRIDGE

94

- (a) Give an interpretation of the coefficient of xray.
- (b) Give the numerical value of the sum of the squared deviance residuals.
- (c) Suppose that the predictors, stage, grade and xray are positively correlated. Describe the effect that this correlation is likely to have on our ability to determine the strength of these predictors in explaining the response.
- (d) The probability of observing a value of 70.252 under a Chi-squared distribution with 52 degrees of freedom is 0.047. What does this information tell us about the null model for this data? Justify your answer.
- (e) What is the lowest predicted probability of the nodal involvement for any future patient?
- (f) The first plot in Figure 1 shows the (Pearson) residuals and the fitted values. Explain why the points lie on two curves.
- (g) The second plot in Figure 1 shows the value of $\hat{\beta} \hat{\beta}_{(i)}$ where (i) indicates that patient i was dropped in computing the fit. The values for each predictor, including the intercept, are shown. Could a single case change our opinion of which predictors are important in predicting the response?

Figure 1: The plot on the left shows the Pearson residuals and the fitted values. The plot on the right shows the changes in the regression coefficients when a single point is omitted for each predictor.

UNIVERSITY OF

Paper 1, Section I

5J Statistical Modelling

Let Y_1, \ldots, Y_n be independent identically distributed random variables with model function $f(y,\theta), y \in \mathcal{Y}, \theta \in \Theta \subseteq \mathbb{R}$, and denote by E_{θ} and $\operatorname{Var}_{\theta}$ expectation and variance under $f(y,\theta)$, respectively. Define $U_n(\theta) = \sum_{i=1}^n \frac{\partial}{\partial \theta} \log f(Y_i,\theta)$. Prove that $E_{\theta}U_n(\theta) = 0$. Show moreover that if $T = T(Y_1, \ldots, Y_n)$ is any unbiased estimator of θ , then its variance satisfies $\operatorname{Var}_{\theta}(T) \ge (n\operatorname{Var}_{\theta}(U_1(\theta))^{-1}$. [You may use the Cauchy–Schwarz inequality without proof, and you may interchange differentiation and integration without justification if necessary.]

Paper 2, Section I

5J Statistical Modelling

Let f_0 be a probability density function, with cumulant generating function K. Define what it means for a random variable Y to have a model function of exponential dispersion family form, generated by f_0 . Compute the cumulant generating function K_Y of Y and deduce expressions for the mean and variance of Y that depend only on first and second derivatives of K.

Paper 3, Section I

5J Statistical Modelling

Define a generalised linear model for a sample Y_1, \ldots, Y_n of independent random variables. Define further the concept of the link function. Define the binomial regression model with logistic and probit link functions. Which of these is the canonical link function?

Paper 4, Section I

5J**Statistical Modelling**

The numbers of ear infections observed among beach and non-beach (mostly pool) swimmers were recorded, along with explanatory variables: frequency, location, age, and sex. The data are aggregated by group, with a total of 24 groups defined by the explanatory variables.

freq	F = frequent, NF = infrequent
loc	NB = non-beach, B = beach
age	15-19, 20-24, 24-29
sex	F = female, M = male
count	the number of infections reported over a fixed time period
n	the total number of swimmers

The data look like this:

	count	; n	freq	loc	sex	age
1	68	3 31	F	NB	М	15-19
2	14	4	F	NB	F	15-19
3	35	5 12	F	NB	М	20-24
4	16	5 11	F	NB	F	20-24
[.]					
23	5	5 15	NF	В	М	25-29
24	e	6	NF	В	F	25-29

Let μ_j denote the expected number of ear infections of a person in group j. Explain why it is reasonable to model $count_i$ as Poisson with mean $n_i \mu_i$.

We fit the following Poisson model:

 $\log(\mathbb{E}(\texttt{count}_i)) = \log(n_i \mu_i) = \log(n_i) + \mathbf{x}_i \beta,$

where $\log(n_i)$ is an offset, i.e. an explanatory variable with known coefficient 1.

R produces the following (abbreviated) summary for the main effects model:

```
Call:
glm(formula = count ~ freq + loc + age + sex, family = poisson, offset = log(n))
[...]
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                                  3.984 6.78e-05 ***
(Intercept)
            0.48887
                        0.12271
freqNF
                                -5.823 5.76e-09 ***
            -0.61149
                        0.10500
locNB
            0.53454
                        0.10668
                                 5.011 5.43e-07 ***
age20-24
            -0.37442
                        0.12836
                                 -2.917 0.00354 **
age25-29
            -0.18973
                        0.13009
                                -1.458 0.14473
            -0.08985
                                -0.800 0.42371
sexM
                        0.11231
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
                                                   1
[...]
```

Part II, 2011 List of Questions

UNIVERSITY OF

91

Why are expressions freqF, locB, age15-19, and sexF not listed?

Suppose that we plan to observe a group of 20 female, non-frequent, beach swimmers, aged 20-24. Give an expression (using the coefficient estimates from the model fitted above) for the expected number of ear infections in this group.

Now, suppose that we allow for interaction between variables **age** and **sex**. Give the R command for fitting this model. We test for the effect of this interaction by producing the following (abbreviated) ANOVA table:

Re	sid. Df	Resid.	Dev	Df	Deviance	P(> Chi)	
1	18	51	.714					
2	16	44	.319	2	7.3948	0.024	79 *	
Sign	if. cod	es: 0	*** (0.00	1 ** 0.0	1 * 0.05	. 0.1	1

Briefly explain what test is performed, and what you would conclude from it. Does either of these models fit the data well?

Paper 1, Section II

13J Statistical Modelling

The data consist of the record times in 1984 for 35 Scottish hill races. The columns list the record time in minutes, the distance in miles, and the total height gained during the route. The data are displayed in R as follows (abbreviated):

> hills

	dist	climb	time
Greenmantle	2.5	650	16.083
Carnethy	6.0	2500	48.350
Craig Dunain	6.0	900	33.650
Ben Rha	7.5	800	45.600
Ben Lomond	8.0	3070	62.267
[]			
Cockleroi	4.5	850	28.100
Moffat Chase	20.0	5000	159.833

Consider a simple linear regression of time on dist and climb. Write down this model mathematically, and explain any assumptions that you make. How would you instruct R to fit this model and assign it to a variable hills.lm1?

First, we test the hypothesis of no linear relationship to the variables dist and climb against the full model. R provides the following ANOVA summary:

	Res.Df	RSS	\mathtt{Df}	\mathtt{Sum}	of	Sq		F		Pr(>F)		
1	34	85138										
2	32	6892	2		782	247	181	.66	<	2.2e-16	***	
S	ignif. d	codes:	0	***	0.0	001	**	0.01	L *	• 0.05 .	0.1	1

Using the information in this table, explain carefully how you would test this hypothesis. What do you conclude?

The R command

summary(hills.lm1)

provides the following (slightly abbreviated) summary:

```
[...]
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.992039
                        4.302734
                                  -2.090
                                            0.0447 *
dist
             6.217956
                        0.601148 10.343 9.86e-12 ***
             0.011048
                        0.002051
                                    5.387 6.45e-06 ***
climb
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
                                                    1
[...]
```

UNIVERSITY OF

Carefully explain the information that appears in each column of the table. What are your conclusions? In particular, how would you test for the significance of the variable climb in this model?

Figure 1: Hills data: diagnostic plots

Finally, we perform model diagnostics on the full model, by looking at studentised residuals versus fitted values, and the normal QQ-plot. The plots are displayed in Figure 1. Comment on possible sources of model misspecification. Is it possible that the problem lies with the data? If so, what do you suggest?

Paper 4, Section II

13J Statistical Modelling

Consider the general linear model $Y = X\beta + \epsilon$, where the $n \times p$ matrix X has full rank $p \leq n$, and where ϵ has a multivariate normal distribution with mean zero and covariance matrix $\sigma^2 I_n$. Write down the likelihood function for β, σ^2 and derive the maximum likelihood estimators $\hat{\beta}, \hat{\sigma}^2$ of β, σ^2 . Find the distribution of $\hat{\beta}$. Show further that $\hat{\beta}$ and $\hat{\sigma}^2$ are independent.

Paper 1, Section I

5J Statistical Modelling

Consider a binomial generalised linear model for data $y_1, ..., y_n$ modelled as realisations of independent $Y_i \sim \text{Bin}(1, \mu_i)$ and logit link $\mu_i = e^{\beta x_i}/(1 + e^{\beta x_i})$ for some known constants x_i , i = 1, ..., n, and unknown scalar parameter β . Find the log-likelihood for β , and the likelihood equation that must be solved to find the maximum likelihood estimator $\hat{\beta}$ of β . Compute the second derivative of the log-likelihood for β , and explain the algorithm you would use to find $\hat{\beta}$.

Paper 2, Section I

5J Statistical Modelling

Suppose you have a parametric model consisting of probability mass functions $f(y;\theta), \theta \in \Theta \subset \mathbb{R}$. Given a sample $Y_1, ..., Y_n$ from $f(y;\theta)$, define the maximum likelihood estimator $\hat{\theta}_n$ for θ and, assuming standard regularity conditions hold, state the asymptotic distribution of $\sqrt{n} (\hat{\theta}_n - \theta)$.

Compute the Fisher information of a single observation in the case where $f(y;\theta)$ is the probability mass function of a Poisson random variable with parameter θ . If $Y_1, ..., Y_n$ are independent and identically distributed random variables having a Poisson distribution with parameter θ , show that $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ and $S = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$ are unbiased estimators for θ . Without calculating the variance of S, show that there is no reason to prefer S over \overline{Y} .

[You may use the fact that the asymptotic variance of $\sqrt{n}(\hat{\theta}_n - \theta)$ is a lower bound for the variance of any unbiased estimator.]

Paper 3, Section I

5J Statistical Modelling

Consider the linear model $Y = X\beta + \varepsilon$, where Y is a $n \times 1$ random vector, $\varepsilon \sim N_n(0, \sigma^2 I)$, and where the $n \times p$ nonrandom matrix X is known and has full column rank p. Derive the maximum likelihood estimator $\hat{\sigma}^2$ of σ^2 . Without using Cochran's theorem, show carefully that $\hat{\sigma}^2$ is biased. Suggest another estimator $\tilde{\sigma}^2$ for σ^2 that is unbiased.

UNIVERSITY OF

Paper 4, Section I

5J Statistical Modelling

Below is a simplified 1993 dataset of US cars. The columns list index, make, model, price (in \$1000), miles per gallon, number of passengers, length and width in inches, and weight (in pounds). The data are displayed in R as follows (abbreviated):

> cars

	make	model	price	mpg	psngr	length	width	weight
1	Acura	Integra	15.9	31	5	177	68	2705
2	Acura	Legend	33.9	25	5	195	71	3560
3	Audi	90	29.1	26	5	180	67	3375
4	Audi	100	37.7	26	6	193	70	3405
5	BMW	535i	30.0	30	4	186	69	3640
				•••				
92	Volvo	240	22.7	28	5	190	67	2985
93	Volvo	850	26.7	28	5	184	69	3245

It is reasonable to assume that prices for different makes of car are independent. We model the logarithm of the price as a linear combination of the other quantitative properties of the cars and an error term. Write down this model mathematically. How would you instruct R to fit this model and assign it to a variable "fit"?

R provides the following (slightly abbreviated) summary:

```
> summary(fit)
```

```
[...]
```

```
Coefficients:
```

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept	;) 3.8751080	0.7687276	5.041	2.50e-06	***
mpg	-0.0109953	0.0085475	-1.286	0.201724	
psngr	-0.1782818	0.0290618	-6.135	2.45e-08	***
length	0.0067382	0.0032890	2.049	0.043502	*
width	-0.0517544	0.0151009	-3.427	0.000933	***
weight	0.0008373	0.0001302	6.431	6.60e-09	***
Signif. cc	des: 0 '***	' 0.001'**'	0.01 '>	∗'0.05'.	. 0.1 ' ' 1
[]					

Briefly explain the information that is being provided in each column of the table. What are your conclusions and how would you try to improve the model?

Paper 1, Section II

13J Statistical Modelling

Consider a generalised linear model with parameter β^{\top} partitioned as $(\beta_0^{\top}, \beta_1^{\top})$, where β_0 has p_0 components and β_1 has $p - p_0$ components, and consider testing $H_0: \beta_1 = 0$ against $H_1: \beta_1 \neq 0$. Define carefully the deviance, and use it to construct a test for H_0 .

[You may use Wilks' theorem to justify this test, and you may also assume that the dispersion parameter is known.]

Now consider the generalised linear model with Poisson responses and the canonical link function with linear predictor $\eta = (\eta_1, ..., \eta_n)^T$ given by $\eta_i = x_i^\top \beta$, i = 1, ..., n, where $x_{i1} = 1$ for every i. Derive the deviance for this model, and argue that it may be approximated by Pearson's χ^2 statistic.

Paper 4, Section II

CAMBRIDGE

13J Statistical Modelling

Every day, Barney the darts player comes to our laboratory. We record his facial expression, which can be either "mad", "weird" or "relaxed", as well as how many units of beer he has drunk that day. Each day he tries a hundred times to hit the bull's-eye, and we write down how often he succeeds. The data look like this:

>

Day	Beer	Expression	BullsEye
1	3	Mad	30
2	3	Mad	32
:	:	:	:
60	2	Mad	37
61	4	Weird	30
:	:	:	:
110	4	Weird	28
111	2	Relaxed	35
:	:	:	:
150	3	Relaxed	31

Write down a reasonable model for Y_1, \ldots, Y_n , where n = 150 and where Y_i is the number of times Barney has hit bull's-eye on the *i*th day. Explain briefly why we may wish initially to include interactions between the variables. Write the R code to fit your model.

The scientist of the above story fitted her own generalized linear model, and subsequently obtained the following summary (abbreviated):

```
> summary(barney)
[...]
```

Coefficients:

	Estimate	Std. Error	z value	Pr(z)	
(Intercept)	-0.37258	0.05388	-6.916	4.66e-12	***
Beer	-0.09055	0.01595	-5.676	1.38e-08	***
ExpressionWeird	-0.10005	0.08044	-1.244	0.213570	
ExpressionRelaxed	0.29881	0.08268	3.614	0.000301	***
Beer:ExpressionWeird	0.03666	0.02364	1.551	0.120933	
Beer:ExpressionRelaxed	-0.07697	0.02845	-2.705	0.006825	**

```
[...]
```

Why are ExpressionMad and Beer:ExpressionMad not listed? Suppose on a particular day, Barney's facial expression is weird, and he drank three units of beer. Give the linear predictor in the scientist's model for this day.

Based on the summary, how could you improve your model? How could one fit this new model in R (without modifying the data file)?

Paper 1, Section I

5I Statistical Modelling

Consider a binomial generalised linear model for data y_1, \ldots, y_n , modelled as realisations of independent $Y_i \sim Bin(1, \mu_i)$ and logit link, i.e. $\log \frac{\mu_i}{1-\mu_i} = \beta x_i$, for some known constants x_1, \ldots, x_n , and an unknown parameter β . Find the log-likelihood for β , and the likelihood equations that must be solved to find the maximum likelihood estimator $\hat{\beta}$ of β .

Compute the first and second derivatives of the log-likelihood for β , and explain the algorithm you would use to find $\hat{\beta}$.

Paper 2, Section I

5I Statistical Modelling

What is meant by an *exponential dispersion family*? Show that the family of Poisson distributions with parameter λ is an exponential dispersion family by explicitly identifying the terms in the definition.

Find the corresponding variance function and deduce directly from your calculations expressions for $\mathbb{E}(Y)$ and $\operatorname{Var}(Y)$ when $Y \sim \operatorname{Pois}(\lambda)$.

What is the canonical link function in this case?

Paper 3, Section I

5I Statistical Modelling

Consider the linear model $Y = X\beta + \varepsilon$, where $\varepsilon \sim N_n(0, \sigma^2 I)$ and X is an $n \times p$ matrix of full rank p < n. Suppose that the parameter β is partitioned into k sets as follows: $\beta^{\top} = (\beta_1^{\top} \cdots \beta_k^{\top})$. What does it mean for a pair of sets $\beta_i, \beta_j, i \neq j$, to be *orthogonal*? What does it mean for all k sets to be *mutually orthogonal*?

In the model

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

where $\varepsilon_i \sim N(0, \sigma^2)$ are independent and identically distributed, find necessary and sufficient conditions on $x_{11}, \ldots, x_{n1}, x_{12}, \ldots, x_{n2}$ for β_0, β_1 and β_2 to be mutually orthogonal.

If β_0 , β_1 and β_2 are mutually orthogonal, what consequence does this have for the joint distribution of the corresponding maximum likelihood estimators $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\beta}_2$?

85

UNIVERSITY OF

Paper 4, Section I

5I Statistical Modelling

Sulphur dioxide is one of the major air pollutants. A dataset by Sokal and Rohlf (1981) was collected on 41 US cities/regions in 1969–1971. The annual measurements obtained for each region include (average) sulphur dioxide content, temperature, number of manufacturing enterprises employing more than 20 workers, population size in thousands, wind speed, precipitation, and the number of days with precipitation. The data are displayed in R as follows (abbreviated):

> usair

	region	so2	temp	manuf	pop	wind	precip	days
1	Phoenix	10	70.3	213	582	6.0	7.05	36
2	Little Rock	13	61.0	91	132	8.2	48.52	100
							• • •	
41	Milwaukee	16	45.7	569	717	11.8	29.07	123

Describe the model being fitted by the following R commands.

> fit <- lm(log(so2) ~ temp + manuf + pop + wind + precip + days)

Explain the (slightly abbreviated) output below, describing in particular how the hypothesis tests are performed and your conclusions based on their results:

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)	7.2532456	1.4483686	5.008	1.68e-05	***
temp	-0.0599017	0.0190138	-3.150	0.00339	**
manuf	0.0012639	0.0004820	2.622	0.01298	*
рор	-0.0007077	0.0004632	-1.528	0.13580	
wind	-0.1697171	0.0555563	-3.055	0.00436	**
precip	0.0173723	0.0111036	1.565	0.12695	
days	0.0004347	0.0049591	0.088	0.93066	

Residual standard error: 0.448 on 34 degrees of freedom

Based on the summary above, suggest an alternative model.

Finally, what is the value obtained by the following command?

```
> sqrt(sum(resid(fit)^2)/fit$df)
```

86

Paper 1, Section II

13I Statistical Modelling

A three-year study was conducted on the survival status of patients suffering from cancer. The age of the patients at the start of the study was recorded, as well as whether or not the initial tumour was malignant. The data are tabulated in R as follows:

> cancer

	age	malignant	survive	die
1	<50	no	77	10
2	<50	yes	51	13
3	50-69	no	51	11
4	50-69	yes	38	20
5	70+	no	7	3
6	70+	yes	6	3

Describe the model that is being fitted by the following R commands:

```
> total <- survive + die
```

```
> fit1 <- glm(survive/total ~ age + malignant, family = binomial,</pre>
```

```
+ weights = total)
```

Explain the (slightly abbreviated) output from the code below, describing how the hypothesis tests are performed and your conclusions based on their results.

```
> summary(fit1)
```

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.2812 7.372 1.68e-13 *** 2.0730 0.3112 -2.030 age50-69 -0.6318 0.0424 * age70+ -0.9282 0.5504 -1.686 0.0917 . malignantyes -0.7328 0.2985 -2.455 0.0141 * ____

Null deviance: 12.65585 on 5 degrees of freedom Residual deviance: 0.49409 on 2 degrees of freedom AIC: 30.433

Based on the summary above, motivate and describe the following alternative model:

```
> age2 <- as.factor(c("<50", "<50", "50+", "50+", "50+", "50+"))
```

```
> fit2 <- glm(survive/total ~ age2 + malignant, family = binomial,</pre>
```

```
+ weights = total)
```

This question continues on the next page

CAMBRIDGE

88

Based on the output of the code that follows, which of the two models do you prefer? Why?

```
> summary(fit2)
Coefficients:
            Estimate Std. Error z value Pr(|z|)
(Intercept)
               2.0721
                          0.2811
                                  7.372 1.68e-13 ***
              -0.6744
                          0.3000 -2.248
age250+
                                           0.0246 *
                          0.2983 -2.451
                                           0.0143 *
malignantyes -0.7310
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
                                                   1
    Null deviance: 12.656 on 5 degrees of freedom
Residual deviance: 0.784 on 3 degrees of freedom
AIC: 28.723
```

What is the final value obtained by the following commands?

```
> mu.hat <- inv.logit(predict(fit2))
> -2 * (sum(dbinom(survive, total, mu.hat, log = TRUE)
+     - sum(dbinom(survive, total, survive/total, log = TRUE)))
```

Paper 4, Section II

13I Statistical Modelling

Consider the linear model $Y = X\beta + \varepsilon$, where $\varepsilon \sim N_n(0, \sigma^2 I)$ and X is an $n \times p$ matrix of full rank p < n. Find the form of the maximum likelihood estimator $\hat{\beta}$ of β , and derive its distribution assuming that σ^2 is known.

Assuming the prior $\pi(\beta, \sigma^2) \propto \sigma^{-2}$ find the joint posterior of (β, σ^2) up to a normalising constant. Derive the posterior conditional distribution $\pi(\beta|\sigma^2, X, Y)$.

Comment on the distribution of $\hat{\beta}$ found above and the posterior conditional $\pi(\beta|\sigma^2, X, Y)$. Comment further on the predictive distribution of y^* at input x^* under both the maximum likelihood and Bayesian approaches.

1/I/5J Statistical Modelling

Consider the following Binomial generalized linear model for data y_1, \ldots, y_n , with logit link function. The data y_1, \ldots, y_n are regarded as observed values of independent random variables Y_1, \ldots, Y_n , where

$$Y_i \sim \operatorname{Bin}(1, \mu_i), \quad \log \frac{\mu_i}{1 - \mu_i} = \beta^{\mathsf{T}} x_i, \quad i = 1, \dots, n,$$

where β is an unknown *p*-dimensional parameter, and where x_1, \ldots, x_n are known *p*-dimensional explanatory variables. Write down the likelihood function for $y = (y_1, \ldots, y_n)$ under this model.

Show that the maximum likelihood estimate $\hat{\beta}$ satisfies an equation of the form $X^{\top}y = X^{\top}\hat{\mu}$, where X is the $p \times n$ matrix with rows $x_1^{\top}, \ldots, x_n^{\top}$, and where $\hat{\mu} = (\hat{\mu}_1, \ldots, \hat{\mu}_n)$, with $\hat{\mu}_i$ a function of x_i and $\hat{\beta}$, which you should specify.

Define the deviance $D(y;\hat{\mu})$ and find an explicit expression for $D(y;\hat{\mu})$ in terms of y and $\hat{\mu}$ in the case of the model above.

1/II/13J Statistical Modelling

Consider performing a two-way analysis of variance (ANOVA) on the following data:

> Y[,,1]		Υ[,	,2]		Υ[,	,3]	
[,1]	[,2]		[,1]	[,2]		[,1] [,2]
[1,] 2.72	6.66	[1,]	-5.780	1.7200	[1,]	-2.2900	0.158
[2,] 4.88	5.98	[2,]	-4.600	1.9800	[2,]	-3.1000	1.190
[3,] 3.49	8.81	[3,]	-1.460	2.1500	[3,]	-2.6300	1.190
[4,] 2.03	6.26	[4,]	-1.780	0.7090	[4,]	-0.2400	1.470
[5,] 2.39	8.50	[5,]	-2.610	-0.5120	[5,]	0.0637	2.110
		•	•	•	•	•	•
	•	•	•	•			•

Explain and interpret the R commands and (slightly abbreviated) output below. In particular, you should describe the model being fitted, and comment on the hypothesis tests which are performed under the summary and anova commands.

```
> K <- dim(Y)[1]
> I <- dim(Y)[2]
> J <- dim(Y)[3]
> c(I,J,K)
[1] 2 3 10
> y <- as.vector(Y)
> a <- gl(I, K, length(y))</pre>
> b <- gl(J, K * I, length(y))
> fit1 <- lm(y ~ a + b)
> summary(fit1)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              3.7673
                         0.3032
                                  12.43 < 2e-16 ***
              3.4542
                                  11.39 3.27e-16 ***
a2
                         0.3032
b2
             -6.3215
                         0.3713 -17.03 < 2e-16 ***
             -5.8268
                         0.3713 -15.69 < 2e-16 ***
b3
> anova(fit1)
```

Response: y Df Sum Sq Mean Sq F value Pr(>F) a 1 178.98 178.98 129.83 3.272e-16 *** b 2 494.39 247.19 179.31 < 2.2e-16 *** Residuals 56 77.20 1.38

The following R code fits a similar model. Briefly explain the difference between this model and the one above. Based on the output of the **anova** call below, say whether you prefer this model over the one above, and explain your preference.

> fit2 <- lm(y ~ a * b) > anova(fit2) Response: y Df Sum Sq Mean Sq F value Pr(>F) 1 178.98 178.98 125.6367 1.033e-15 *** а 2 494.39 247.19 173.5241 < 2.2e-16 *** b a:b 2 0.27 0.14 0.0963 0.9084 Residuals 54 76.93 1.42

Finally, explain what is being calculated in the code below and give the value that would be obtained by the final line of code.

```
> n <- I * J * K
> p <- length(coef(fit2))
> p0 <- length(coef(fit1))
> PY <- fitted(fit2)
> P0Y <- fitted(fit1)
> ((n - p)/(p - p0)) * sum((PY - P0Y)^2)/sum((y - PY)^2)
```


2/I/5J Statistical Modelling

Suppose that we want to estimate the angles α , β and γ (in radians, say) of the triangle *ABC*, based on a single independent measurement of the angle at each corner. Suppose that the error in measuring each angle is normally distributed with mean zero and variance σ^2 . Thus, we model our measurements y_A, y_B, y_C as the observed values of random variables

 $Y_A = \alpha + \varepsilon_A, \quad Y_B = \beta + \varepsilon_B, \quad Y_C = \gamma + \varepsilon_C,$

where $\varepsilon_A, \varepsilon_B, \varepsilon_C$ are independent, each with distribution $N(0, \sigma^2)$. Find the maximum likelihood estimate of α based on these measurements.

Can the assumption that $\varepsilon_A, \varepsilon_B, \varepsilon_C \sim N(0, \sigma^2)$ be criticized? Why or why not?

3/I/5J Statistical Modelling

Consider the linear model $Y = X\beta + \varepsilon$. Here, Y is an n-dimensional vector of observations, X is a known $n \times p$ matrix, β is an unknown p-dimensional parameter, and $\varepsilon \sim N_n(0, \sigma^2 I)$, with σ^2 unknown. Assume that X has full rank and that $p \ll n$. Suppose that we are interested in checking the assumption $\varepsilon \sim N_n(0, \sigma^2 I)$. Let $\hat{Y} = X\hat{\beta}$, where $\hat{\beta}$ is the maximum likelihood estimate of β . Write in terms of X an expression for the projection matrix $P = (p_{ij} : 1 \leq i, j \leq n)$ which appears in the maximum likelihood equation $\hat{Y} = X\hat{\beta} = PY$.

Find the distribution of $\hat{\varepsilon} = Y - \hat{Y}$, and show that, in general, the components of $\hat{\varepsilon}$ are not independent.

A standard procedure used to check our assumption on ε is to check whether the studentized fitted residuals

$$\hat{\eta}_i = \frac{\hat{\varepsilon}_i}{\tilde{\sigma}\sqrt{1-p_{ii}}}, \quad i = 1, \dots, n,$$

look like a random sample from an N(0, 1) distribution. Here,

$$\tilde{\sigma}^2 = \frac{1}{n-p} ||Y - X\hat{\beta}||^2.$$

Say, briefly, how you might do this in R.

This procedure appears to ignore the dependence between the components of $\hat{\varepsilon}$ noted above. What feature of the given set-up makes this reasonable?

4/I/5J Statistical Modelling

A long-term agricultural experiment had n = 90 grassland plots, each $25m \times 25m$, differing in biomass, soil pH, and species richness (the count of species in the whole plot). While it was well-known that species richness declines with increasing biomass, it was not known how this relationship depends on soil pH. In the experiment, there were 30 plots of "low pH", 30 of "medium pH" and 30 of "high pH". Three lines of the data are reproduced here as an aid.

```
> grass[c(1,31, 61), ]
```

```
pH Biomass Species

1 high 0.4692972 30

31 mid 0.1757627 29

61 low 0.1008479 18
```

Briefly explain the commands below. That is, explain the models being fitted.

```
> fit1 <- glm(Species ~ Biomass, family = poisson)
> fit2 <- glm(Species ~ pH + Biomass, family = poisson)
> fit3 <- glm(Species ~ pH * Biomass, family = poisson)</pre>
```

Let H_1 , H_2 and H_3 denote the hypotheses represented by the three models and fits. Based on the output of the code below, what hypotheses are being tested, and which of the models seems to give the best fit to the data? Why?

```
> anova(fit1, fit2, fit3, test = "Chisq")
Analysis of Deviance Table
Model 1: Species ~ Biomass
Model 2: Species ~ pH + Biomass
Model 3: Species ~ pH * Biomass
 Resid. Df Resid. Dev Df Deviance P(>|Chi|)
         88
                407.67
1
2
                 99.24
                            308.43 1.059e-67
         86
                        2
3
                 83.20 2
         84
                             16.04 3.288e-04
```

Finally, what is the value obtained by the following command?

```
> mu.hat <- exp(predict(fit2))</pre>
```

```
> -2 * (sum(dpois(Species, mu.hat, log = TRUE)) - sum(dpois(Species,
```

+ Species, log = TRUE)))

4/II/13J Statistical Modelling

Consider the following generalized linear model for responses y_1, \ldots, y_n as a function of explanatory variables x_1, \ldots, x_n , where $x_i = (x_{i1}, \ldots, x_{ip})^{\top}$ for $i = 1, \ldots, n$. The responses are modelled as observed values of independent random variables Y_1, \ldots, Y_n , with

15

$$Y_i \sim \text{ED}(\mu_i, \sigma_i^2), \quad g(\mu_i) = x_i^\top \beta, \quad \sigma_i^2 = \sigma^2 a_i,$$

Here, g is a given link function, β and σ^2 are unknown parameters, and the a_i are treated as known.

[Hint: recall that we write $Y \sim ED(\mu, \sigma^2)$ to mean that Y has density function of the form

$$f(y;\mu,\sigma^2) = a(\sigma^2, y) \exp\left\{\frac{1}{\sigma^2}[\theta(\mu)y - K(\theta(\mu))]\right\}$$

for given functions a and θ .]

[You may use without proof the facts that, for such a random variable Y,

$$E(Y) = K'(\theta(\mu)), \quad \operatorname{var}(Y) = \sigma^2 K''(\theta(\mu)) \equiv \sigma^2 V(\mu).$$

Show that the score vector and Fisher information matrix have entries:

$$U_j(\beta) = \sum_{i=1}^n \frac{(y_i - \mu_i)x_{ij}}{\sigma_i^2 V(\mu_i)g'(\mu_i)}, \quad j = 1, \dots, p,$$

and

$$i_{jk}(\beta) = \sum_{i=1}^{n} \frac{x_{ij} x_{ik}}{\sigma_i^2 V(\mu_i) (g'(\mu_i))^2}, \quad j,k = 1,\dots,p$$

How do these expressions simplify when the canonical link is used?

Explain briefly how these two expressions can be used to obtain the maximum likelihood estimate $\hat{\beta}$ for β .

1/I/5I Statistical Modelling

According to the *Independent* newspaper (London, 8 March 1994) the Metropolitan Police in London reported 30475 people as missing in the year ending March 1993. For those aged 18 or less, 96 of 10527 missing males and 146 of 11363 missing females were still missing a year later. For those aged 19 and above, the values were 157 of 5065 males and 159 of 3520 females. This data is summarised in the table below.

	age	gender	still	total
1	Kid	М	96	10527
2	Kid	F	146	11363
3	Adult	М	157	5065
4	Adult	F	159	3520

Explain and interpret the R commands and (slightly abbreviated) output below. You should describe the model being fitted, explain how the standard errors are calculated, and comment on the hypothesis tests being described in the summary. In particular, what is the worst of the four categories for the probability of remaining missing a year later?

```
> fit <- glm(still/total ~ age + gender, family = binomial,</pre>
+
             weights = total)
> summary(fit)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.06073
                        0.07216 -42.417 < 2e-16 ***
ageKid
            -1.27079
                        0.08698 -14.610 < 2e-16 ***
genderM
            -0.37211
                        0.08671 -4.291 1.78e-05 ***
Residual deviance:
                     0.06514 on 1 degrees of freedom
```

For a person who was missing in the year ending in March 1993, find a formula, as a function of age and gender, for the estimated expected probability that they are still missing a year later.

1/II/13I Statistical Modelling

This problem deals with data collected as the number of each of two different strains of *Ceriodaphnia* organisms are counted in a controlled environment in which reproduction is occurring among the organisms. The experimenter places into the containers a varying concentration of a particular component of jet fuel that impairs reproduction. Hence it is anticipated that as the concentration of jet fuel grows, the mean number of organisms should decrease.

The table below gives a subset of the data. The full dataset has n = 70 rows. The first column provides the number of organisms, the second the concentration of jet fuel (in grams per litre) and the third specifies the strain of the organism.

number	fuel	strain
82	0	1
58	0	0
45	0.5	1
27	0.5	0
29	0.75	1
15	1.25	1
6	1.25	1
8	1.5	0
4	1.75	0
•	•	•

Explain and interpret the R commands and (slightly abbreviated) output below. In particular, you should describe the model being fitted, explain how the standard errors are calculated, and comment on the hypothesis tests being described in the summary.

```
> fit1 <- glm(number ~ fuel + strain + fuel:strain,family = poisson)</pre>
> summary(fit1)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                         0.05101 81.252 < 2e-16 ***
(Intercept)
             4.14443
            -1.47253
                         0.07007 -21.015 < 2e-16 ***
fuel
             0.33667
                         0.06704
                                   5.022 5.11e-07 ***
strain
fuel:strain -0.12534
                        0.09385 -1.336
                                            0.182
```

The following R code fits two very similar models. Briefly explain the difference between these models and the one above. Motivate the fitting of these models in light of

the summary from the fit of the one above.

```
> fit2 <- glm(number ~ fuel + strain, family = poisson)
> fit3 <- glm(number ~ fuel, family = poisson)</pre>
```

Denote by H_1 , H_2 , H_3 the three hypotheses being fitted in sequence above.

Explain the hypothesis tests, including an approximate test of the fit of H_1 , that can be performed using the output from the following R code. Use these numbers to comment on the most appropriate model for the data.

```
> c(fit1$dev, fit2$dev, fit3$dev)
[1] 84.59557 86.37646 118.99503
> qchisq(0.95, df = 1)
[1] 3.841459
```

2/I/5I Statistical Modelling

Consider the linear regression setting where the responses Y_i , i = 1, ..., n are assumed independent with means $\mu_i = x_i^{\mathrm{T}}\beta$. Here x_i is a vector of known explanatory variables and β is a vector of unknown regression coefficients.

Show that if the response distribution is Laplace, i.e.,

$$Y_i \sim f(y_i; \mu_i, \sigma) = (2\sigma)^{-1} \exp\left\{-\frac{|y_i - \mu_i|}{\sigma}\right\}, \quad i = 1, \dots, n; \quad y_i, \mu_i \in \mathbb{R}; \ \sigma \in (0, \infty);$$

then the maximum likelihood estimate $\hat{\beta}$ of β is obtained by minimising

$$S_1(\beta) = \sum_{i=1}^n |Y_i - x_i^{\mathrm{T}}\beta|.$$

Obtain the maximum likelihood estimate for σ in terms of $S_1(\hat{\beta})$.

Briefly comment on why the Laplace distribution cannot be written in exponential dispersion family form.

3/I/5I Statistical Modelling

Consider two possible experiments giving rise to observed data y_{ij} where $i = 1, \ldots, I, j = 1, \ldots, J$.

1. The data are realizations of independent Poisson random variables, i.e.,

$$Y_{ij} \sim f_1(y_{ij}; \mu_{ij}) = \frac{\mu_{ij}^{y_{ij}}}{y_{ij}!} \exp\{-\mu_{ij}\}$$

where $\mu_{ij} = \mu_{ij}(\beta)$, with β an unknown (possibly vector) parameter. Write $\hat{\beta}$ for the maximum likelihood estimator (m.l.e.) of β and $\hat{y}_{ij} = \mu_{ij}(\hat{\beta})$ for the (i, j)th fitted value under this model.

2. The data are components of a realization of a multinomial random 'vector'

$$Y \sim f_2((y_{ij}); n, (p_{ij})) = n! \prod_{i=1}^{I} \prod_{j=1}^{J} \frac{p_{ij}^{y_{ij}}}{y_{ij}!}$$

where the y_{ij} are non-negative integers with

$$\sum_{i=1}^{I} \sum_{j=1}^{J} y_{ij} = n \quad \text{and} \quad p_{ij}(\beta) = \frac{\mu_{ij}(\beta)}{n}.$$

Write β^* for the m.l.e. of β and $y_{ij}^* = np_{ij}(\beta^*)$ for the (i, j)th fitted value under this model.

Show that, if

$$\sum_{i=1}^{I} \sum_{j=1}^{J} \hat{y}_{ij} = n \,,$$

then $\hat{\beta} = \beta^*$ and $\hat{y}_{ij} = y_{ij}^*$ for all i, j. Explain the relevance of this result in the context of fitting multinomial models within a generalized linear model framework.

4/I/5I Statistical Modelling

Consider the normal linear model $Y = X\beta + \varepsilon$ in vector notation, where

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_1^{\mathrm{T}} \\ \vdots \\ x_n^{\mathrm{T}} \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}, \quad \varepsilon_i \sim \text{i.i.d. } N(0, \sigma^2),$$

where $x_i^{\mathrm{T}} = (x_{i1}, \ldots, x_{ip})$ is known and X is of full rank (p < n). Give expressions for maximum likelihood estimators $\hat{\beta}$ and $\hat{\sigma}^2$ of β and σ^2 respectively, and state their joint distribution.

Suppose that there is a new pair (x^*, y^*) , independent of $(x_1, y_1), \ldots, (x_n, y_n)$, satisfying the relationship

$$y^* = x^{*T}\beta + \varepsilon^*, \text{ where } \varepsilon^* \sim N(0, \sigma^2).$$

We suppose that x^* is known, and estimate y^* by $\tilde{y} = x^* T \hat{\beta}$. State the distribution of

$$\frac{\ddot{y} - y^*}{\tilde{\sigma}\tau}$$
, where $\tilde{\sigma}^2 = \frac{n}{n-p}\hat{\sigma}^2$ and $\tau^2 = x^{*\mathrm{T}}(X^{\mathrm{T}}X)^{-1}x^* + 1$.

Find the form of a $(1 - \alpha)$ -level prediction interval for y^* .

4/II/13I Statistical Modelling

Let Y have a Gamma distribution with density

$$f(y; \alpha, \lambda) = \frac{\lambda^{\alpha} y^{\alpha - 1}}{\Gamma(\alpha)} e^{-\lambda y}.$$

Show that the Gamma distribution is of exponential dispersion family form. Deduce directly the corresponding expressions for $\mathbb{E}[Y]$ and $\operatorname{Var}[Y]$ in terms of α and λ . What is the canonical link function?

Let p < n. Consider a generalised linear model (g.l.m.) for responses y_i , i = 1, ..., nwith random component defined by the Gamma distribution with canonical link $g(\mu)$, so that $g(\mu_i) = \eta_i = x_i^{\mathrm{T}}\beta$, where $\beta = (\beta_1, ..., \beta_p)^{\mathrm{T}}$ is the vector of unknown regression coefficients and $x_i = (x_{i1}, ..., x_{ip})^{\mathrm{T}}$ is the vector of known values of the explanatory variables for the *i*th observation, i = 1, ..., n.

Obtain expressions for the score function and Fisher information matrix and explain how these can be used in order to approximate $\hat{\beta}$, the maximum likelihood estimator (m.l.e.) of β .

[Use the canonical link function and assume that the dispersion parameter is known.]

Finally, obtain an expression for the deviance for a comparison of the full (saturated) model to the g.l.m. with canonical link using the m.l.e. $\hat{\beta}$ (or estimated mean $\hat{\mu} = X\hat{\beta}$).

1/I/5I**Statistical Modelling**

Assume that observations $Y = (Y_1, \ldots, Y_n)^T$ satisfy the linear model

$$Y = X\beta + \epsilon,$$

where X is an $n \times p$ matrix of known constants of full rank p < n, where $\beta = (\beta_1, \ldots, \beta_p)^T$ is unknown and $\epsilon \sim N_n(0, \sigma^2 I)$. Write down a $(1 - \alpha)$ -level confidence set for β .

Define Cook's distance for the observation (x_i, Y_i) , where x_i^T is the *i*th row of X. Give its interpretation in terms of confidence sets for β .

In the above model with n = 50 and p = 2, you observe that one observation has Cook's distance 1.3. Would you be concerned about the influence of this observation?

You may find some of the following facts useful:

- (i) If $Z \sim \chi_2^2$, then $\mathbb{P}(Z \leq 0.21) = 0.1$, $\mathbb{P}(Z \leq 1.39) = 0.5$ and $\mathbb{P}(Z \leq 4.61) = 0.9$.
- (ii) If $Z \sim F_{2,48}$, then $\mathbb{P}(Z \leq 0.11) = 0.1$, $\mathbb{P}(Z \leq 0.70) = 0.5$ and $\mathbb{P}(Z \leq 2.42) = 0.9$. (iii) If $Z \sim F_{48,2}$, then $\mathbb{P}(Z \leq 0.41) = 0.1$, $\mathbb{P}(Z \leq 1.42) = 0.5$ and $\mathbb{P}(Z \leq 9.47) = 0.9$.]

UNIVERSITY OF

11

1/II/13I Statistical Modelling

The table below gives a year-by-year summary of the career batting record of the baseball player Babe Ruth. The first column gives his age at the start of each season and the second gives the number of 'At Bats' (AB) he had during the season. For each At Bat, it is recorded whether or not he scored a 'Hit'. The third column gives the total number of Hits he scored in the season, and the final column gives his 'Average' for the season, defined as the number of Hits divided by the number of At Bats.

Age	AB	Hits	Average
19	10	2	0.200
20	92	29	0.315
21	136	37	0.272
22	123	40	0.325
23	317	95	0.300
24	432	139	0.322
25	457	172	0.376
26	540	204	0.378
27	406	128	0.315
28	522	205	0.393
29	529	200	0.378
30	359	134	0.373
31	495	184	0.372
32	540	192	0.356
33	536	173	0.323
34	499	172	0.345
35	518	186	0.359
36	534	199	0.373
37	457	156	0.341
38	459	138	0.301
39	365	105	0.288
40	72	13	0.181

Explain and interpret the R commands below. In particular, you should explain the model that is being fitted, the approximation leading to the given standard errors and the test that is being performed in the last line of output.

```
> Mod <- glm(Hits/AB~Age+I(Age^2),family=binomial,weights=AB)
> summary(Mod)
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-4.5406713	0.8487687	-5.350	8.81e-08	***
Age	0.2684739	0.0565992	4.743	2.10e-06	***
I(Age^2)	-0.0044827	0.0009253	-4.845	1.27e-06	***

Residual deviance: 23.345 on 19 degrees of freedom

Assuming that any required packages are loaded, draw a careful sketch of the graph that you would expect to see on entering the following lines of code:

```
> Coef <- coef(Mod)</pre>
```

```
> Fitted <- inv.logit(Coef[[1]]+Coef[[2]]*Age+Coef[[3]]*Age^2)</pre>
```

- > plot(Age,Average)
- > lines(Age,Fitted)

2/I/5I Statistical Modelling

Let Y_1, \ldots, Y_n be independent Poisson random variables with means μ_1, \ldots, μ_n , for $i = 1, \ldots, n$, where $\log(\mu_i) = \beta x_i$, for some known constants x_i and an unknown parameter β . Find the log-likelihood for β .

By first computing the first and second derivatives of the log-likelihood for β , explain the algorithm you would use to find the maximum likelihood estimator, $\hat{\beta}$.

3/I/5I Statistical Modelling

Consider a generalized linear model for independent observations Y_1, \ldots, Y_n , with $\mathbb{E}(Y_i) = \mu_i$ for $i = 1, \ldots, n$. What is a *linear predictor*? What is meant by the *link function*? If Y_i has model function (or density) of the form

$$f(y_i; \mu_i, \sigma^2) = \exp\left[\frac{1}{\sigma^2} \left\{\theta(\mu_i)y_i - K(\theta(\mu_i))\right\}\right] a(\sigma^2, y_i),$$

for $y_i \in \mathcal{Y} \subseteq \mathbb{R}$, $\mu_i \in \mathcal{M} \subseteq \mathbb{R}$, $\sigma^2 \in \Phi \subseteq (0, \infty)$, where $a(\sigma^2, y_i)$ is a known positive function, define the *canonical link function*.

Now suppose that Y_1, \ldots, Y_n are independent with $Y_i \sim Bin(1, \mu_i)$ for $i = 1, \ldots, n$. Derive the canonical link function.

4/I/5I Statistical Modelling

The table below summarises the yearly numbers of named storms in the Atlantic basin over the period 1944–2004, and also gives an index of average July ocean temperature in the northern hemisphere over the same period. To save space, only the data for the first four and last four years are shown.

Year	Storms	Temp
1944	11	0.165
1945	11	0.080
1946	6	0.000
1947	9	-0.024
÷	:	÷
2001	15	0.592
2002	12	0.627
2003	16	0.608
2004	15	0.546

Explain and interpret the R commands and (slightly abbreviated) output below.

	протшало	Dua. Hiioi	2 Varao	11(7 2)	
(Intercept)	2.26061	0.04841	46.697	< 2e-16	***
Temp	0.48870	0.16973	2.879	0.00399	**

Residual deviance: 51.499 on 59 degrees of freedom

In 2005, the ocean temperature index was 0.743. Explain how you would predict the number of named storms for that year.

4/II/13I Statistical Modelling

Consider a linear model for $Y = (Y_1, \ldots, Y_n)^T$ given by

$$Y = X\beta + \epsilon,$$

where X is a known $n \times p$ matrix of full rank p < n, where β is an unknown vector and $\epsilon \sim N_n(0, \sigma^2 I)$. Derive an expression for the maximum likelihood estimator $\hat{\beta}$ of β , and write down its distribution.

Find also the maximum likelihood estimator $\hat{\sigma}^2$ of σ^2 , and derive its distribution.

[You may use Cochran's theorem, provided that it is stated carefully. You may also assume that the matrix $P = X(X^TX)^{-1}X^T$ has rank p, and that I - P has rank n - p.]

1/I/5I Statistical Modelling

Suppose that Y_1, \ldots, Y_n are independent random variables, and that Y_i has probability density function

$$f(y_i|\theta_i,\phi) = \exp\left[\frac{(y_i\theta_i - b(\theta_i))}{\phi} + c(y_i,\phi)\right]$$
.

Assume that $\mathbb{E}(Y_i) = \mu_i$ and that there is a known link function g(.) such that

$$g(\mu_i) = \beta^T x_i \; ,$$

where x_1, \ldots, x_n are known *p*-dimensional vectors and β is an unknown *p*-dimensional parameter. Show that $\mathbb{E}(Y_i) = b'(\theta_i)$ and that, if $\ell(\beta, \phi)$ is the log-likelihood function from the observations (y_1, \ldots, y_n) , then

$$\frac{\partial \ell(\beta,\phi)}{\partial \beta} = \sum_{1}^{n} \frac{(y_i - \mu_i) x_i}{g'(\mu_i) V_i} \; ,$$

where V_i is to be defined.

1/II/13I Statistical Modelling

The Independent, June 1999, under the headline 'Tourists get hidden costs warnings' gave the following table of prices in pounds, called 'How the resorts compared'.

Algarve	8.00	0.50	3.50	3.00	4.00	100.00
CostaDelSol	6.95	1.30	4.10	12.30	4.10	130.85
Majorca	10.25	1.45	5.35	6.15	3.30	122.20
Tenerife	12.30	1.25	4.90	3.70	2.90	130.85
Florida	15.60	1.90	5.05	5.00	2.50	114.00
Tunisia	10.90	1.40	5.45	1.90	2.75	218.10
Cyprus	11.60	1.20	5.95	3.00	3.60	149.45
Turkey	6.50	1.05	6.50	4.90	2.85	263.00
Corfu	5.20	1.05	3.75	4.20	2.50	137.60
Sorrento	7.70	1.40	6.30	8.75	4.75	215.40
Malta	11.20	0.70	4.55	8.00	4.80	87.85
Rhodes	6.30	1.05	5.20	3.15	2.70	261.30
Sicily	13.25	1.75	4.20	7.00	3.85	174.40
Madeira	10.25	0.70	5.10	6.85	6.85	153.70

Here the column headings are, respectively: Three-course meal, Bottle of Beer, Suntan Lotion, Taxi (5km), Film (24 exp), Car Hire (per week). Interpret the R commands, and explain how to interpret the corresponding (slightly abbreviated) R output given below. Your solution should include a careful statement of the underlying statistical model, but you may quote without proof any distributional results required.

```
> price = scan("dresorts") ; price
> Goods = gl(6,1,length=84); Resort=gl(14,6,length=84)
> first.lm = lm(log(price) ~ Goods + Resort)
```

> summary(first.lm)

Coefficients:

	Estimate	Std. Err	or t val	Lue Pr(> t)
(Intercept)	1.8778	0.1629	11.527	< 2e-16
Goods2	-2.1084	0.1295	-16.286	< 2e-16
Goods3	-0.6343	0.1295	-4.900	6.69e-06
Goods4	-0.6284	0.1295	-4.854	7.92e-06
Goods5	-0.9679	0.1295	-7.476	2.49e-10
Goods6	2.8016	0.1295	21.640	< 2e-16
Resort2	0.4463	0.1978	2.257	0.02740
Resort3	0.4105	0.1978	2.076	0.04189
Resort4	0.3067	0.1978	1.551	0.12584
Resort5	0.4235	0.1978	2.142	0.03597
Resort6	0.2883	0.1978	1.458	0.14963
Resort7	0.3457	0.1978	1.748	0.08519
Resort8	0.3787	0.1978	1.915	0.05993
Resort9	0.0943	0.1978	0.477	0.63508
Resort10	0.5981	0.1978	3.025	0.00356
Resort11	0.3281	0.1978	1.659	0.10187
Resort12	0.2525	0.1978	1.277	0.20616
Resort13	0.5508	0.1978	2.785	0.00700
Resort14	0.4590	0.1978	2.321	0.02343

Residual standard error: 0.3425 on 65 degrees of freedom Multiple R-Squared: 0.962

2/I/5I Statistical Modelling

You see below three R commands, and the corresponding output (which is slightly abbreviated). Explain the effects of the commands. How is the deviance defined, and why do we have d.f.=7 in this case? Interpret the numerical values found in the output.

```
> n = scan()
  3 5 16 12 11 34 37 51 56
> i = scan ()
  1 2 3 4 5 6 7 8 9
> summary(glm(n~i,poisson))
  deviance = 13.218
      d.f. = 7
  Coefficients:
                 Value
                            Std.Error
  (intercept)
                 1.363
                            0.2210
  i
                 0.3106
                            0.0382
```

3/I/5I Statistical Modelling

Consider the model $Y = X\beta + \epsilon$, where Y is an n-dimensional observation vector, X is an $n \times p$ matrix of rank p, ϵ is an n-dimensional vector with components $\epsilon_1, \ldots, \epsilon_n$, and $\epsilon_1, \ldots, \epsilon_n$ are independently and normally distributed, each with mean 0 and variance σ^2 .

(a) Let $\hat{\beta}$ be the least-squares estimator of β . Show that

$$(X^T X)\hat{\beta} = X^T Y$$

and find the distribution of $\hat{\beta}$.

(b) Define $\hat{Y} = X\hat{\beta}$. Show that \hat{Y} has distribution $N(X\beta, \sigma^2 H)$, where H is a matrix that you should define.

[You may quote without proof any results you require about the multivariate normal distribution.]

4/I/5I Statistical Modelling

You see below five R commands, and the corresponding output (which is slightly abbreviated). Without giving any mathematical proofs, explain the purpose of these commands, and interpret the output.

4/II/13I Statistical Modelling

(i) Suppose that Y_1, \ldots, Y_n are independent random variables, and that Y_i has probability density function

$$f(y_i|\beta,\nu) = \left(\frac{\nu y_i}{\mu_i}\right)^{\nu} e^{-y_i\nu/\mu_i} \frac{1}{\Gamma(\nu)} \frac{1}{y_i} \quad \text{for } y_i > 0$$

where

$$1/\mu_i = \beta^T x_i$$
, for $1 \leq i \leq n$,

and x_1, \ldots, x_n are given *p*-dimensional vectors, and ν is known.

Show that $\mathbb{E}(Y_i) = \mu_i$ and that $\operatorname{var}(Y_i) = \mu_i^2/\nu$.

(ii) Find the equation for $\hat{\beta}$, the maximum likelihood estimator of β , and suggest an iterative scheme for its solution.

(iii) If p = 2, and $x_i = \begin{pmatrix} 1 \\ z_i \end{pmatrix}$, find the large-sample distribution of $\hat{\beta}_2$. Write your answer in terms of a, b, c and ν , where a, b, c are defined by

$$a = \sum \mu_i^2, \quad b = \sum z_i \mu_i^2, \quad c = \sum z_i^2 \mu_i^2.$$

 $Part \ II \quad 2005$

A1/13 Computational Statistics and Statistical Modelling

(i) Assume that the *n*-dimensional vector Y may be written as $Y = X\beta + \epsilon$, where X is a given $n \times p$ matrix of rank p, β is an unknown vector, and

$$\epsilon \sim N_n(0, \sigma^2 I).$$

Let $Q(\beta) = (Y - X\beta)^T (Y - X\beta)$. Find $\hat{\beta}$, the least-squares estimator of β , and state without proof the joint distribution of $\hat{\beta}$ and $Q(\hat{\beta})$.

(ii) Now suppose that we have observations $(Y_{ij}, 1 \leq i \leq I, 1 \leq j \leq J)$ and consider the model

$$\Omega: Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij} ,$$

where $(\alpha_i), (\beta_j)$ are fixed parameters with $\Sigma \alpha_i = 0, \ \Sigma \beta_j = 0$, and (ϵ_{ij}) may be assumed independent normal variables, with $\epsilon_{ij} \sim N(0, \sigma^2)$, where σ^2 is unknown.

(a) Find $(\hat{\alpha}_i)$, $(\hat{\beta}_j)$, the least-squares estimators of (α_i) , (β_j) .

(b) Find the least-squares estimators of (α_i) under the hypothesis $H_0: \beta_j = 0$ for all j.

(c) Quoting any general theorems required, explain carefully how to test H_0 , assuming Ω is true.

(d) What would be the effect of fitting the model $\Omega_1 : Y_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ij}$, where now $(\alpha_i), (\beta_j), (\gamma_{ij})$ are all fixed unknown parameters, and (ϵ_{ij}) has the distribution given above?

A2/12 Computational Statistics and Statistical Modelling

(i) Suppose we have independent observations Y_1, \ldots, Y_n , and we assume that for $i = 1, \ldots, n, Y_i$ is Poisson with mean μ_i , and $\log(\mu_i) = \beta^T x_i$, where x_1, \ldots, x_n are given covariate vectors each of dimension p, where β is an unknown vector of dimension p, and p < n. Assuming that $\{x_1, \ldots, x_n\}$ span \mathbb{R}^p , find the equation for $\hat{\beta}$, the maximum likelihood estimator of β , and write down the large-sample distribution of $\hat{\beta}$.

(ii) A long-term agricultural experiment had 90 grassland plots, each $25m \times 25m$, differing in biomass, soil pH, and species richness (the count of species in the whole plot). While it was well-known that species richness declines with increasing biomass, it was not known how this relationship depends on soil pH, which for the given study has possible values "low", "medium" or "high", each taken 30 times. Explain the commands input, and interpret the resulting output in the (slightly edited) R output below, in which "species" represents the species count.

(The first and last 2 lines of the data are reproduced here as an aid. You may assume that the factor pH has been correctly set up.)

> species pН Biomass Species 1 high 0.46929722 30 2 high 1.73087043 39 89 low 4.36454121 7 90 low 4.87050789 3 > summary(glm(Species ~Biomass, family = poisson)) Call: glm(formula = Species ~ Biomass, family = poisson) Coefficients: Estimate Std. Error z value Pr(>|z|)81.31 < 2e-16 (Intercept) 3.184094 0.039159 Biomass -0.064441 0.009838 -6.55 5.74e-11 (Dispersion parameter for poisson family taken to be 1) Null deviance: 452.35 on 89 degrees of freedom Residual deviance: 407.67 on 88 degrees of freedom Number of Fisher Scoring iterations: 4 > summary(glm(Species ~pH*Biomass, family = poisson)) Call: glm(formula = Species ~ pH * Biomass, family = poisson) Coefficients: Estimate Std. Error z value Pr(>|z|)(Intercept) 0.06153 61.240 < 2e-16 3.76812 -0.81557 0.10284 -7.931 2.18e-15 pHlow

Question continues on next page.

pHmid	-0.33146	0.09217	-3.596	0.000323
Biomass	-0.10713	0.01249	-8.577	< 2e-16
pHlow:Biomass	-0.15503	0.04003	-3.873	0.000108
pHmid:Biomass	-0.03189	0.02308	-1.382	0.166954

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 452.346 on 89 degrees of freedom Residual deviance: 83.201 on 84 degrees of freedom

Number of Fisher Scoring iterations: 4

A4/14 Computational Statistics and Statistical Modelling

Suppose that Y_1, \ldots, Y_n are independent observations, with Y_i having probability density function of the following form

$$f(y_i|\theta_i, \phi) = \exp\left[\frac{y_i\theta_i - b(\theta_i)}{\phi} + c(y_i, \phi)\right]$$

where $\mathbb{E}(Y_i) = \mu_i$ and $g(\mu_i) = \beta^T x_i$. You should assume that g() is a known function, and β, ϕ are unknown parameters, with $\phi > 0$, and also x_1, \ldots, x_n are given linearly independent covariate vectors. Show that

$$\frac{\partial \ell}{\partial \beta} = \sum \frac{(y_i - \beta_i)}{g'(\mu_i)V_i} x_i,$$

where ℓ is the log-likelihood and $V_i = \operatorname{var}(Y_i) = \phi b''(\theta_i)$.

Discuss carefully the (slightly edited) R output given below, and briefly suggest another possible method of analysis using the function glm ().

```
> s <- scan()
1: 33 63 157 38 108 159
7:
Read 6 items
> r <- scan()
1: 3271 7256 5065 2486 8877 3520
7:
Read 6 items
> gender <- scan(,"")
1: b b b g g g
7:
Read 6 items
> age <- scan(,"")
1: 13&under 14-18 19&over
4: 13&under 14-18 19&over
7:
Read 6 items
> gender <- factor(gender) ; age <- factor(age)</pre>
  summary(glm(s/r ~ gender + age,binomial, weights=r))
>
```

Coefficients:

Question continues on next page.

Estimate	Std.Error	z-value	e Pr(> z)
-4.56479	0.12783	-35.710	< 2e-16
0.38028	0.08689	4.377	1.21e-05
-0.19797	0.14241	-1.390	0.164
1.12790	0.13252	8.511	< 2e-16
	Estimate -4.56479 0.38028 -0.19797 1.12790	Estimate Std.Error -4.56479 0.12783 0.38028 0.08689 -0.19797 0.14241 1.12790 0.13252	Estimate Std.Error z-value -4.56479 0.12783 -35.710 0.38028 0.08689 4.377 -0.19797 0.14241 -1.390 1.12790 0.13252 8.511

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 221.797542 on 5 degrees of freedom Residual deviance: 0.098749 on 2 degrees of freedom

Number of Fisher Scoring iterations: 3

A1/13 Computational Statistics and Statistical Modelling

(i) Suppose $Y_i, 1 \leq i \leq n$, are independent binomial observations, with $Y_i \sim Bi(t_i, \pi_i)$, $1 \leq i \leq n$, where t_1, \ldots, t_n are known, and we wish to fit the model

$$\omega : \log \frac{\pi_i}{1 - \pi_i} = \mu + \beta^T x_i \quad \text{for each } i,$$

where x_1, \ldots, x_n are given covariates, each of dimension p. Let $\hat{\mu}$, $\hat{\beta}$ be the maximum likelihood estimators of μ, β . Derive equations for $\hat{\mu}, \hat{\beta}$ and state without proof the form of the approximate distribution of $\hat{\beta}$.

(ii) In 1975, data were collected on the 3-year survival status of patients suffering from a type of cancer, yielding the following table

		surv	ive?
age in years	$\operatorname{malignant}$	yes	no
under 50	no	77	10
under 50	yes	51	13
50-69	no	51	11
50-69	yes	38	20
70+	no	7	3
70 +	ves	6	3

Here the second column represents whether the initial tumour was not malignant or was malignant.

Let Y_{ij} be the number surviving, for age group *i* and malignancy status *j*, for i = 1, 2, 3 and j = 1, 2, and let t_{ij} be the corresponding total number. Thus $Y_{11} = 77$, $t_{11} = 87$. Assume $Y_{ij} \sim Bi(t_{ij}, \pi_{ij}), 1 \leq i \leq 3, 1 \leq j \leq 2$. The results from fitting the model

$$\log(\pi_{ij}/(1-\pi_{ij})) = \mu + \alpha_i + \beta_j$$

with $\alpha_1 = 0$, $\beta_1 = 0$ give $\hat{\beta}_2 = -0.7328$ (se = 0.2985), and deviance = 0.4941. What do you conclude?

Why do we take $\alpha_1 = 0$, $\beta_1 = 0$ in the model?

What "residuals" should you compute, and to which distribution would you refer them?

A2/12 Computational Statistics and Statistical Modelling

(i) Suppose Y_1, \ldots, Y_n are independent Poisson variables, and

 $\mathbb{E}(Y_i) = \mu_i, \quad \log \mu_i = \alpha + \beta t_i, \quad \text{for} \quad i = 1, \dots, n,$

where α, β are two unknown parameters, and t_1, \ldots, t_n are given covariates, each of dimension 1. Find equations for $\hat{\alpha}, \hat{\beta}$, the maximum likelihood estimators of α, β , and show how an estimate of $\operatorname{var}(\hat{\beta})$ may be derived, quoting any standard theorems you may need.

(ii) By 31 December 2001, the number of new vCJD patients, classified by reported calendar year of onset, were

for the years

 $1994, \ldots, 2000$ respectively.

Discuss carefully the (slightly edited) R output for these data given below, quoting any standard theorems you may need.

```
> year
year
[1] 1994 1995 1996 1997 1998 1999 2000
> tot
[1] 8 10 11 14 17 29 23
>first.glm _ glm(tot ~ year, family = poisson)
> summary(first.glm)
Call:
glm(formula = tot ~ year, family = poisson)
Coefficients
                    Estimate Std. Error z value Pr(>|z|)
      (Intercept) -407.81285
                               99.35366 -4.105 4.05e-05
                     0.20556
                                0.04973
                                          4.133 3.57e-05
      year
```

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 20.7753 on 6 degrees of freedom Residual deviance: 2.7931 on 5 degrees of freedom

Number of Fisher Scoring iterations: 3

A4/14 Computational Statistics and Statistical Modelling

The nave height x, and the nave length y for 16 Gothic-style cathedrals and 9 Romanesque-style cathedrals, all in England, have been recorded, and the corresponding R output (slightly edited) is given below.

> first.lm _ lm(y ~ x + Style); summary(first.lm)
Call:
lm(formula = y ~ x + Style)
Residuals:

Min 1Q Median 3Q Max -172.67 -30.44 20.38 55.02 96.50

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	44.298	81.648	0.543	0.5929
x	4.712	1.058	4.452	0.0002
Style2	80.393	32.306	2.488	0.0209

Residual standard error: 77.53 on 22 degrees of freedom Multiple R-Squared: 0.5384

You may assume that x, y are in suitable units, and that "style" has been set up as a factor with levels 1,2 corresponding to Gothic, Romanesque respectively.

(a) Explain carefully, with suitable graph(s) if necessary, the results of this analysis.

(b) Using the general model $Y = X\beta + \epsilon$ (in the conventional notation) explain carefully the theory needed for (a).

[Standard theorems need not be proved.]

A1/13 Computational Statistics and Statistical Modelling

(i) Suppose Y_1, \ldots, Y_n are independent Poisson variables, and

$$\mathbb{E}(Y_i) = \mu_i \ , \ \log \mu_i = \alpha + \beta^T x_i \ , \ 1 \leqslant i \leqslant n$$

where α, β are unknown parameters, and x_1, \ldots, x_n are given covariates, each of dimension p. Obtain the maximum-likelihood equations for α, β , and explain briefly how you would check the validity of this model.

(ii) The data below show y_1, \ldots, y_{33} , which are the monthly accident counts on a major US highway for each of the 12 months of 1970, then for each of the 12 months of 1971, and finally for the first 9 months of 1972. The data-set is followed by the (slightly edited) R output. You may assume that the factors 'Year' and 'month' have been set up in the appropriate fashion. Give a careful interpretation of this R output, and explain (a) how you would derive the corresponding standardised residuals, and (b) how you would predict the number of accidents in October 1972.

52	37	49	29	31	32	28	34	32	39	50	63
35	22	27	27	34	23	42	30	36	56	48	40
33	26	31	25	23	20	25	20	36			

> first.glm _ glm(y~ Year + month, poisson) ; summary(first.glm)

Call:

 $glm(formula = y \sim Year + month, family = poisson)$

Coefficients:

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	3.81969	0.09896	38.600	< 2e - 16 ***
Year1971	-0.12516	0.06694	-1.870	0.061521 .
Year1972	-0.28794	0.08267	-3.483	0.000496 ***
month2	-0.34484	0.14176	-2.433	0.014994 *
month3	-0.11466	0.13296	-0.862	0.388459
month4	-0.39304	0.14380	-2.733	0.006271 **
month5	-0.31015	0.14034	-2.210	0.027108 *
month6	-0.47000	0.14719	-3.193	0.001408 **
month7	-0.23361	0.13732	-1.701	0.088889 .
month8	-0.35667	0.14226	-2.507	0.012168 *
month9	-0.14310	0.13397	-1.068	0.285444
month10	0.10167	0.13903	0.731	0.464628
month11	0.13276	0.13788	0.963	0.335639
month12	0.18252	0.13607	1.341	0.179812

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

(Dispersion parameter for poisson family taken to be 1)

Null	deviance:	101.143	on	32	degrees	of	${\tt freedom}$
Residual	deviance:	27.273	on	19	degrees	of	${\tt freedom}$

Number of Fisher Scoring iterations: 3

A2/12 Computational Statistics and Statistical Modelling

(i) Suppose that the random variable Y has density function of the form

$$f(y|\theta,\phi) = \exp\left[\frac{y\theta - b(\theta)}{\phi} + c(y,\phi)
ight]$$

where $\phi > 0$. Show that Y has expectation $b'(\theta)$ and variance $\phi b''(\theta)$.

(ii) Suppose now that Y_1, \ldots, Y_n are independent negative exponential variables, with Y_i having density function $f(y_i|\mu_i) = \frac{1}{\mu_i}e^{-y_i/\mu_i}$ for $y_i > 0$. Suppose further that $g(\mu_i) = \beta^T x_i$ for $1 \leq i \leq n$, where $g(\cdot)$ is a known 'link' function, and x_1, \ldots, x_n are given covariate vectors, each of dimension p. Discuss carefully the problem of finding $\hat{\beta}$, the maximum-likelihood estimator of β , firstly for the case $g(\mu_i) = 1/\mu_i$, and secondly for the case $g(\mu) = \log \mu_i$; in both cases you should state the large-sample distribution of $\hat{\beta}$.

[Any standard theorems used need not be proved.]

A4/14 Computational Statistics and Statistical Modelling

Assume that the *n*-dimensional observation vector Y may be written as $Y = X\beta + \epsilon$, where X is a given $n \times p$ matrix of rank p, β is an unknown vector, with $\beta^T = (\beta_1, \ldots, \beta_p)$, and

$$\epsilon \sim N_n(0, \sigma^2 I) \tag{(*)}$$

where σ^2 is unknown. Find $\hat{\beta}$, the least-squares estimator of β , and describe (without proof) how you would test

$$H_0:\beta_\nu=0$$

for a given ν .

Indicate briefly two plots that you could use as a check of the assumption (*). Continued opposite

Sulphur dioxide is one of the major air pollutants. A data-set presented by Sokal and Rohlf (1981) was collected on 41 US cities in 1969-71, corresponding to the following variables:

Y = sulphur dioxide content of air in micrograms per cubic metre

X1 = average annual temperature in degrees Fahrenheit

X2 = number of manufacturing enterprises employing 20 or more workers

X3 = population size (1970 census) in thousands

X4 = average annual wind speed in miles per hour

X5 = average annual precipitation in inches

X6 = average annual of days with precipitation per year.

Interpret the R output that follows below, quoting any standard theorems that you need to use.

 $> \text{next.lm} \ _ \ln(\log(Y) \sim X1 + X2 + X3 + X4 + X5 + X6)$

> summary(next.lm)

Call: $lm(formula = log(Y) \sim X1 + X2 + X3 + X4 + X5 + X6)$

Residuals:

Min	1Q	Median	3Q	Max
-0.79548	-0.25538	-0.01968	0.28328	0.98029

Coefficients:

	Estimate	Std. Error	t value	$\Pr(> t)$	
(Intercept)	7.2532456	1.4483686	5.008	1.68e-05	***
X1	-0.0599017	0.0190138	-3.150	0.00339	**
Х2	0.0012639	0.0004820	2.622	0.01298	*
ХЗ	-0.0007077	0.0004632	-1.528	0.13580	
X4	-0.1697171	0.0555563	-3.055	0.00436	**
Х5	0.0173723	0.0111036	1.565	0.12695	
Х6	0.0004347	0.0049591	0.088	0.93066	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

Residual standard error: 0.448 on 34 degrees of freedom

Multiple R-Squared: 0.6541

F-statistic: 10.72 on 6 and 34 degrees of freedom, p-value: 1.126e-06

A1/13 Computational Statistics and Statistical Modelling

(i) Assume that the n-dimensional observation vector Y may be written as

$$Y = X\beta + \epsilon \quad ,$$

where X is a given $n \times p$ matrix of rank p, β is an unknown vector, and

$$\epsilon \sim N_n(0, \sigma^2 I).$$

Let $Q(\beta) = (Y - X\beta)^T (Y - X\beta)$. Find $\hat{\beta}$, the least-squares estimator of β , and show that

$$Q(\widehat{\beta}) = Y^T (I - H) Y$$

where H is a matrix that you should define.

(ii) Show that $\sum_{i} H_{ii} = p$. Show further for the special case of

$$Y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \epsilon_i, \quad 1 \le i \le n,$$

where $\Sigma x_i = 0$, $\Sigma z_i = 0$, that

$$H = \frac{1}{n} \mathbf{1} \mathbf{1}^{T} + axx^{T} + b(xz^{T} + zx^{T}) + czz^{T} ;$$

here, $\mathbf{1}$ is a vector of which every element is one, and a, b, c, are constants that you should derive.

Hence show that, if $\widehat{Y} = X\widehat{\beta}$ is the vector of fitted values, then

$$\frac{1}{\sigma^2}\operatorname{var}(\widehat{Y}_i) = \frac{1}{n} + ax_i^2 + 2bx_iz_i + cz_i^2, \quad 1 \leq i \leq n.$$

A2/12 Computational Statistics and Statistical Modelling

(i) Suppose that Y_1, \ldots, Y_n are independent random variables, and that Y_i has probability density function

$$f(y_i|\theta_i,\phi) = \exp[(y_i\theta_i - b(\theta_i))/\phi + c(y_i,\phi)].$$

Assume that $E(Y_i) = \mu_i$, and that $g(\mu_i) = \beta^T x_i$, where $g(\cdot)$ is a known 'link' function, x_1, \ldots, x_n are known covariates, and β is an unknown vector. Show that

$$\mathbb{E}(Y_i) = b'(\theta_i), \text{ var}(Y_i) = \phi b''(\theta_i) = V_i, \text{ say,}$$

and hence

$$\frac{\partial l}{\partial \beta} = \sum_{i=1}^{n} \frac{(y_i - \mu_i) x_i}{g'(\mu_i) V_i}, \text{ where } l = l(\beta, \phi) \text{ is the log-likelihood.}$$

(ii) The table below shows the number of train miles (in millions) and the number of collisions involving British Rail passenger trains between 1970 and 1984. Give a detailed interpretation of the R output that is shown under this table:

	year	collisions	miles
1	1970	3	281
2	1971	6	276
3	1972	4	268
4	1973	7	269
5	1974	6	281
6	1975	2	271
7	1976	2	265
8	1977	4	264
9	1978	1	267
10	1979	7	265
11	1980	3	267
12	1981	5	260
13	1982	6	231
14	1983	1	249

Call:

	Lotimate	Stu. EIIOI	z varue	11(/ 2)
(Intercept)	127.14453	121.37796	1.048	0.295
year	-0.05398	0.05175	-1.043	0.297
log(miles)	-3.41654	4.18616	-0.816	0.414

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 15.937 on 13 degrees of freedom Residual deviance: 14.843 on 11 degrees of freedom Number of Fisher Scoring iterations: 4

A4/14 Computational Statistics and Statistical Modelling

(i) Assume that independent observations Y_1, \ldots, Y_n are such that

$$Y_i \sim \text{Binomial}(t_i, \pi_i), \ \log \ \frac{\pi_i}{1 - \pi_i} = \beta^T x_i \quad \text{for } 1 \leqslant i \leqslant n$$
,

where x_1, \ldots, x_n are given covariates. Discuss carefully how to estimate β , and how to test that the model fits.

(ii) Carmichael *et al.* (1989) collected data on the numbers of 5-year old children with "dmft", i.e. with 5 or more decayed, missing or filled teeth, classified by social class, and by whether or not their tap water was fluoridated or non-fluoridated. The numbers of such children with dmft, and the total numbers, are given in the table below:

dmft						
Social Class	Fluoridated	Non-fluoridated				
Ι	12/117	12/56				
II	26/170	48/146				
III	11/52	29/64				
Unclassified	24/118	49/104				

A (slightly edited) version of the R output is given below. Explain carefully what model is being fitted, whether it does actually fit, and what the parameter estimates and Std. Errors are telling you. (You may assume that the factors SClass (social class) and Fl (with/without) have been correctly set up.)

Call:

```
glm(formula = Yes/Total \sim SClass + Fl, family = binomial, weights = Total)
```

Coefficients:

	Estimate	Std.	Error	z value
(Intercept)	-2.2716		0.2396	-9.480
SClassII	0.5099		0.2628	1.940
SClassIII	0.9857		0.3021	3.262
SClassUnc	1.0020		0.2684	3.734
Flwithout	1.0813		0.1694	6.383

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 68.53785 on 7 degrees of freedom

Residual deviance: 0.64225 on 3 degrees of freedom

Number of Fisher Scoring iterations: 3

Here 'Yes' is the vector of numbers with dmft, taking values $12, 12, \ldots, 24, 49$, 'Total' is the vector of Total in each category, taking values $117, 56, \ldots, 118, 104$, and SClass, Fl are the factors corresponding to Social class and Fluoride status, defined in the obvious way.