
STATISTICAL MODELLING Part IIC
Practical 8: Contingency tables and gamma regression RDS/Lent 2015

Contingency tables

Fisman et al. conducted a study on dating behaviour using data from a Speed Dating experiment at
Columbia University. Pairs of men and women students interacted for four minutes and then each filled
out a form which recorded whether or not they wanted to receive the other’s email address, and also
various details about themselves including their chosen subject of study, what motivated them to sign
up for the speed dating experiment, how often they go out and how often then go on dates. If both
individuals wanted each others email addresses, it is considered a match. The original data are available
at http://andrewgelman.com/2008/01/21/the_speeddating_1/. Download an edited version of the
data from the course webpage with

> file_path <- "http://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/"

> SD_data <- read.csv(paste0(file_path, "SD_match.csv"))

> SD_data[1:3, ]

match subject_m goal_m date_m go_out_m subject_f goal_f date_f go_out_f

1 0 Econ fun several/yr > 2/week Law meet ppl almost never > 2/week

2 0 Econ fun 1/month 2/month Law meet ppl almost never > 2/week

3 1 Econ date > 2/week > 2/week Law meet ppl almost never > 2/week

The first row records the meeting of a male Economics student and a female Law student, which did not
result in a match (match is 0). The goals of the man and woman were to have fun and to meet people,
respectively. We also have the frequencies with which the individuals go out and go out on dates. Let
us first focus on the relationship between match and the subjects of the individuals.

> SD_subj <- table(SD_data[, c("match", "subject_m", "subject_f")])

The table function converts the data into contingency table format, though the output from SD subj

is perhaps not the easiest to interpret. In order to fit models to the data, we apply as.data.frame to
the contingency table SD subj. This produces a data frame where each each row gives the number of
original observations (Freq) that fall into each of the possible categories given by each pair of subject
types and match category.

> SD_subj

match subject_m subject_f Freq

1 0 Arts+Humanities Arts+Humanities 305

2 1 Arts+Humanities Arts+Humanities 69

3 0 Econ Arts+Humanities 625

The xtabs function gives a handy way of visualising the data in a more helpful contingency table:

> xtabs(Freq ~ subject_m + subject_f + match, data=SD_subj)

Since the numbers of Law students are fairly low, we could considering combining them with the Eco-
nomics students. One way of doing this is as follows (the vcd package has a dedicated function to do this,
but we will not use this here). Note that typically we wouldn’t modify the actual data object SD data

but create a copy and then modify the copy.

> levels(SD_subj$subject_m)

[1] "Arts+Humanities" "Econ" "Law" "Sciences"

> levels(SD_subj$subject_m) <- c("Arts+Humanities", "Econ+Law", "Econ+Law", "Sciences")

> levels(SD_subj$subject_f) <- c("Arts+Humanities", "Econ+Law", "Econ+Law", "Sciences")

Now we need to add the frequencies for Economics and Law.

> SD_subj <- as.data.frame(xtabs(Freq ~ subject_m + subject_f + match, data=SD_subj))

This then makes SD subj have the desired form.
Let us fit a simple independence model using a surrogate Poisson model.
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> mod1 <- glm(Freq ~., data=SD_subj, family=poisson)

> mod1$dev

[1] 60.74671

The final line gives the deviance of the model. What should we compare this to when testing at the 5%
level?

It appears that the model doesn’t fit too well so we should seek a more complex model. Perhaps the
question of interest is whether the the joint distribution of the male and female subject choices is the
same in the match or non-match group. The most complex model that allows for this joint distribution
to be the same can be fitted as follows.

> mod2 <- glm(Freq ~ subject_m*subject_f + match, data=SD_subj, family=poisson)

> anova(mod1, mod2, test="LR")

The output indicates we should prefer the second model over the first, but the second model is still not
a great fit as can be seen from its high deviance compared to χ2

8(0.05).

> qchisq(0.05, df=8, lower.tail=FALSE)

This suggests then that the joint distribution of the male and female subject choices is different for the
match and non-match groups. We can view how this differs from the model that assumes (subject m,
subject f) are independent of match by comparing the fitted values of the latter model with the observed
counts.

> xtabs(Freq ~ subject_m + subject_f + match, data=SD_subj)

> xtabs(predict(mod2, newdata=SD_subj, type="response")

+ ~ subject_m + subject_f + match, data=SD_subj)

Let us now fit a model with no 3-way interactions, but which includes mod2 (c.f. H4 on the final page of
you notes).

mod3 <- glm(Freq ~ subject_m*subject_f + subject_m*match + subject_f*match,

+ data=SD_subj, family=poisson)

summary(mod3)

Although this does appear to fit better than mod2, the deviance is still slightly large. What is the p-value
for the test against the saturated model? You can view the difference between the fitted values of this

model and the observed counts as before. Feel free to now explore other models using SD data—for
example you could try to ascertain whether people who tend to go out roughly the same amount tend
to match (or perhaps opposites attract?).

*Gamma regression*

The following section is optional. A soft drink bottler is analysing vending machine service routes in
his distribution system, and is interested in predicting the amount of time required by the route driver
to service the vending machines in an outlet. The industrial engineer responsible for the study has
suggested that the two most important variables affecting the delivery time are the number of cases of
product stocked and the distance walked by the route driver. The engineer has collected 25 observations
on delivery time (in minutes), number of cases and distance walked (feet). Download the data from the
course webpage with
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> file_path <- "http://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/"

> (Drinks <- read.table(paste(file_path, "drinks.txt", sep =""), header = TRUE))

> attach(Drinks)

Note we have used read.table rather than read.csv as the data is tab delimited rather than comma
separated. It could be argued that for this data, the standard deviation of the time should not be
constant, but should be proportional to the number of cases and/or the distance walked. We can
consider the errors to multiplicative, rather than additive. One option is to transform the responses
using a logarithmic transformation, much as we did with the hills and mammals datasets studied in the
example sheets. An alternative, which retains the original scale of measurement, is to observe that if

Y = µε,

where, without loss of generality, E(ε) = 1 and Var(ε) = σ2, then Var(Y ) = σ2µ2. This suggests using
a gamma model for the data, as it has variance function V (µ) = µ2. The canonical link function for the
gamma family is g(µ) = −1/µ. We can fit a gamma model with

> GammaMod1 <- glm(Time ~ Distance + Cases, family = Gamma)

> summary(GammaMod1)

The style of most of the output should be familiar by now. Let Yi denote the ith time, let xi denote
the ith number of cases, and let zi denote the distance. The model is that Y1, . . . , Yn are independent
gamma random variables, with Yi having shape parameter ν = 1/σ2 and mean µi, where

1

µi
= β1 + β2xi + β3zi,

for i = 1, . . . , n. Notice that R uses 1/µ, rather than −1/µ as the link function (though of course the
only effect is to multiply the parameter estimates by −1). One new piece of information in the summary
is the estimate of the dispersion parameter, which is based on the estimate

σ̃2 =
1

n− p

n∑
i=1

(Yi − µ̂i)
2

aiV (µ̂i)

discussed in lectures (here we have ai = 1 for all i). If you compute this for GammaMod1 you will notice
that you get a slightly different estimate to that shown in the summary output. The reason is that R
approximates σ̃2 above by

1

n− p

n∑
i=1

{Ỹi(µ̂m−1)}2

Wii(µ̂m−1)

where m is the final iteration in the IWLS algorithm for computing the m.l.e. Since

Ỹi(µ) = g′(µi)(yi − µi)

and

Wii(µ) =
1

aiV (µi){g′(µi)}2
,

our σ̃2 and the estimate produced by R are essentially the same.
Note that since the dispersion parameter is unknown here, the p × p block of the Fisher information
matrix corresponding to β, which we have written as i(β) in fact depends on σ2. The standard errors

in the summary output are given by the square roots of the diagonal entries of i(β)−1 with the m.l.e. β̂
plugged in for β and σ̃2 substituted in for σ2.
From the p-values based on asymptotic normality of the m.l.e. in the summary output, it appears that
one of the explanatory variables could be removed from the model. Try fitting a new model with this
term removed and store this in GammaMod0.
Is the increase in deviance significant? Recall that when testing model M0 against M1 , where M0 ⊂M1

with parameters p0 < p, respectively, we can employ the likelihood ratio statistic

D(y;M0)−D(y;M1)

σ2
,
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which approximately follows a χ2
p−p0

distribution (here D(y;M0) and D(y;M1) are the deviances of
models M0 and M1 respectively). If σ2 is not known but is instead estimated by σ̃2, then the following
approximate result is used

1
p−p0
{D(y;M0)−D(y;M1)}

σ̃2
∼ Fp−p0,n−p.

The deviance and dispersion are stored as components of the glm object and the output of summary.glm
respectively. Therefore we can calculate the approximate p-value for the test above with

> Ftest <- (GammaMod0$dev - GammaMod1$dev) / summary(GammaMod1)$dispersion

> pf(Ftest, df1 = 1, df2 = 25 - 3, lower.tail = FALSE)

anova also performs this for you if you supply the test = ‘‘F’’ option.
Are there any disadvantages to the link function that we have used? We can also fit a model with log
link using.

> GammaMod2 <- glm(Time ~ Distance + Cases, family = Gamma(link = log))

How can we interpret the coefficients of this model? How does the fit compare to that of GammaMod1?

4


