
STATISTICAL MODELLING Part IIC
Practical 4: More on linear regression RDS/Lent 2015

Model selection

Reload the house prices data from Practical 3.

> file_path <- "http://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/"

> HousePrices <- read.csv(paste0(file_path, "HousePrices.csv"))

> HousePricesLM <- lm(Sale.price ~ ., data = HousePrices)

> summary(HousePricesLM)

The analysis we have performed so far on the houses data is not totally satisfactory. The p-values for
the null hypotheses that exclude each of the variables Bedrooms, Lot.size and Property.tax are rather
large. A simpler model may also explain the data adequately. The coefficient estimates in such a simpler
model will have greater precision and predictions will be more accurate. Let us fit a model without them.

> attach(HousePrices)

> HousePricesLM2 <- lm(Sale.price ~ Bathrooms + Living.area + Year.built)

> summary(HousePricesLM2)

Now we have a smaller model, call this S0, where each of the variables appears to be indispensable to
the model fit. For example, if we consider an even smaller model without Year.built, the chance of
observing data as extreme as ours (in terms of carrying evidence against the validity of the even simpler
model and in favour of the model S0) is a rather remote 3.7%. Note however, that this is different from
the p-value corresponding to Year.built observed in the full model. Of course, these different p-values
correspond to different null hypotheses, so this is certainly to be expected.
Is our smaller model better than the original full model? Although we have only discarded variables
that seemed insignificant, the t-tests performed only consider the individual contribution of each variable
to the model fit. It may well be the case that a group of individually insignificant variables are very
significant as a group. A rather extreme case of this arises in the following artificial scenario.

> set.seed(1)

> X1 <- rnorm(50)

> X2 <- X1 + 0.05 * rnorm(50)

> y <- 1 + X1 + X2 + rnorm(50)

> summary(lm(y ~ X1 + X2))

Neither of the variables above appear significant, though the result of the F -test in the final line of the
summary output suggests that the model that omits both variables is not consistent with the data. Note
X1 and X2 are very highly correlated (try cor(X1, X2)). We have seen in lectures and the example
sheets that this high correlation causes the coefficient estimates for X1 and X2 to have very high variance,
which explains why individually none is seen to be significant when the other is in the null model.
To check whether in simplifying our model for house prices we have not omitted any important variables,
we can perform an F -test to test the null hypothesis that the simpler model S0 is correct, against the
alternative of the full model. We do this by supplying both lm outputs to the anova function, with the
smaller model first

> anova(HousePricesLM2, HousePricesLM1)

Analysis of Variance Table

Model 1: Sale.price ~ Bathrooms + Living.area + Year.built

Model 2: Sale.price ~ Bedrooms + Bathrooms + Living.area + Lot.size +

Year.built + Property.tax

Res.Df RSS Df Sum of Sq F Pr(>F)

1 81 1.7963e+11

2 78 1.7511e+11 3 4520282578 0.6712 0.5723

1

The p-value of the test is 0.5723 so this gives no reason to reject the null hypothesis that our simpler
model is correct. The function model.matrix applied to output from lm gives the design matrix used in
the regression fit (try it out, and note the first column of 1’s representing an intercept term). Let X and
X0 be the outputs from model.matrix applied to HousePricesLM1 and HousePricesLM2 respectively,
and let P and P0 be the orthogonal projections on to the column spaces of X and X0 respectively (so e.g.
P = X(XTX)−1XT). Further let y be the response Sale.price, let n be the number of observations
and let p and p0 be the number of columns of X and X0 respectively. The following table gives the
formulae for the numbers in the output of the anova function.

Res.Df RSS Df Sum of Sq F Pr(>F)

1 n− p0 ‖(I − P0)y‖2

2 n− p ‖(I − P)y‖2 p− p0 ‖(P − P0)y‖2
1

p−p0
‖(P − P0)y‖2

1
n−p‖(I − P)y‖2

P(Z ≥ F)

where in the bottom right cell, Z ∼ Fp−p0,n−p.

Variable transformations

Now let us look at predicting the earnings of films based on their opening weekend takings, the number
of screens they opened to, their production budgets and their rating from the review aggregator Rotten
Tomatoes (rottentomatoes.com). Note that this prediction task is rather important for film studios,
who would want to get an idea of how well their film will do at the box office soon after it has opened.
It is also relevant for cinemas, who would want to know how often they should be showing the films in
order to maximise their profits. Although the Rotten Tomatoes rating would not be available at that
time, there would be some initial reviews, so our version of the prediction task is not too unrealistic.
The dataset we will study looks at the US takings (in millions of dollars) of films released in 2009 that
opened on more than 500 screens in the US. We only look at those films for which the production budget
is available.

> detach(HousePrices)

> Movies <- read.csv(paste(file_path, "Movies.csv", sep =""))

> Movies

> attach(Movies)

Plot the response Total.Gross against the explanatory variables. You can use par(mfrow = c(2, 2))

to get them all in one view; par(mfrow = c(1, 1)) will reset the plotting parameters to just show one
plot per view. We see that the plots of the response against the opening weekend takings and production
budget show the points are very bunched near the origin, with the points spreading out as we move away
to the top right-hand corner. Let us log transform the response and the variables for the opening weekend
takings and production budget, and repeat the same plots. Now a linear model looks more appropriate
for the data. A plot of the maximised log-likelihood when the response has been transformed using
Box–Cox transformations supports our choice to take the logarithm of the response. You will need to
have the MASS package loaded (do library(MASS)) in order to perform the following.

> boxcox(lm(Total.Gross ~ log(Opening) + Screens + RT + log(Budget)))

Let us fit a linear model to the transformed data.

> MoviesLM <- lm(log(Total.Gross) ~ log(Opening) + Screens + RT + log(Budget))

> summary(MoviesLM)

The high R2 value shows we have a good fit, and the large F -statistic in the bottom row of the summary
output shows that the simple intercept-only model is not at all adequate. The number of opening screens,
however, does not appear to be significant, and indeed its coefficient estimate is quite close to 0.
We can try to improve the model by omitting the Screens variable.

> MoviesLM2 <- lm(log(Total.Gross) ~ log(Opening) + RT + log(Budget))

> summary(MoviesLM2)

2

rottentomatoes.com

Why is there no point in doing anova(MoviesLM2, MoviesLM)? Examining the diagnostic plots for
MoviesLM2 shows there is some heteroscedasticity, with the variance of the errors appearing to increase
with the mean response: we shouldn’t trust our p-values too much. The exercises below continue the
analysis of this data.

Exercises

1. There is one high leverage observation in the movies dataset. Fit a new linear model omitting
this observation (and also omitting the Screens variable. (Recall the hatvalues function and the
subset option of lm).

2. Download the data for film earnings in 2010.

> Movies2010 <- read.csv(paste(file_path, "Movies2010.csv", sep =""))

Compute 95% prediction intervals (see ?predict.lm) for each of the earnings of these films. Re-
member that you will need to transform prediction intervals you get (though you will not need
to transform the data). What proportion of the actual film earnings fall within the prediction
intervals you have calculated?

Forward and backward selection

We can also employ forward and backward selection methods to guide our model choice in the house
prices example. Implementations of these algorithms are not part of the standard R functions but are
contained in a package called MASS.

> library(MASS)

> stepAIC(lm(Sale.price ~ 1, data = HousePrices), scope =

+ Sale.price ~ Bedrooms + Bathrooms + Living.area + Lot.size + Year.built + Property.tax,

+ direction = "forward") # forward selection

> stepAIC(HousePricesLM1, direction = "backward") # backward selection

Note that the plus signs on the left-hand side simply indicate that the command spans more than one line:
they are not part of the command itself. In both of the algorithms, variables are added or deleted until
no addition or deletion of a variable decreases the AIC. Reassuringly, both automatic model selection
methods deliver our model S0.

Post model selection inference

As discussed in lectures, confidence intervals formed after model selection has been performed can have
less coverage than their nominal value. Let us explore this with the house prices data. First we create a
matrix of artificial responses based on the fitted values from HousePricesLM2 with Gaussian noise whose
standard deviation is set to the estimated of σ from the same model. We have omitted the prompt > in
the code below.

set.seed(2)

n <- nrow(HousePrices)

n_reps <- 1000

Sale.price_mat <- fitted.values(HousePricesLM2) +

summary(HousePricesLM2)$sigma * matrix(rnorm(n*n_reps), n, n_reps)

The apply function applies a given function to each row or each column of a matrix. It is essentially a
quick way of writing a loop. For example, apply(A, 1, mean) computes the row means of a matrix A.
Note however this example is for illustration only—rowMeans will be (much) faster. Here is a function
that returns the confidence interval for Bedrooms when y is the response given.

confint_Bdrm <- function(y) {

LinMod <- lm(y ~ Bedrooms + Bathrooms + Living.area + Lot.size + Year.built + Property.tax)

return(confint(LinMod)["Bedrooms",])

}

3

The following function returns a confidence interval for Bedrooms after model selection has been per-
formed using backward selection. Note that for each response y, there is a chance that Bedrooms will
not be in the selected model, and so a confidence interval cannot be computed. In this case we return a
vector of NA values: these represent missing values in R. Do not worry about understanding every line
of the code.

confint_bkwd_Bdrm <- function(y) {

LinMod1 <- lm(y ~ Bedrooms + Bathrooms + Living.area + Lot.size + Year.built + Property.tax)

LinMod2 <- stepAIC(LinMod1, direction = "backward", trace = 0)

ConfInt2 <- confint(LinMod2)

if ("Bedrooms" %in% row.names(ConfInt2)) {

return(confint(LinMod1)["Bedrooms",])

} else {

return(c(NA, NA))

}

}

Next we compute the coverage probabilities of the confidence intervals returned. The code may take
some time to run, so read on in the sheet. The na.rm option of mean allows us to compute the mean
ignoring NA values. We can query the proportion of times Bedrooms is not selected by backward selection
using mean(is.na(ConfInts bkwd[1,])).

ConfInts <- apply(Sale.price_mat, 2, confint_Bdrm)

ConfInts_bkwd <- apply(Sale.price_mat, 2, confint_bkwd_Bdrm)

mean((ConfInts[1,] < 0) * (0 < ConfInts[2,]))

mean((ConfInts_bkwd[1,] < 0) * (0 < ConfInts_bkwd[2,]), na.rm = TRUE)

4

