
STATISTICAL MODELLING Part IIC
Practical 2: More on the basics of R RDS/Lent 2015

Writing functions

When writing anything but a short algorithm, it is often easiest to edit the commands from a text file.
In Rstudio create a new Rscript using Ctrl+Shift+N. Write out the following code:

f <- function (x, y) {

z <- x^2 + y^2

return(c(cos(z), sin(z)))

}

Once you have written the algorithm and saved the file as Rubbish.R, say, in the current working
directory, you can execute the commands by typing

> source("Rubbish.R")

in the console. Typing f in the console will now echo the code of your function, and you can run your
function by giving it the right arguments e.g. f(2, 3).
Now let’s write a function to simulate t-statistics,

β̂j√
σ̃2(XTX)−1jj

,

from a linear model. The arguments of our function will be a design matrix X, a vector of coefficients
Beta, a function for generating the errors (i.e. the εi) errors gen, and the number of repetitions of the
simulation we’d like to perform, B. The output will be a p by B matrix where each row is an i.i.d. sample
of t-statistics T1, . . . , TB , corresponding to the relevant component of Beta. Here is the code:

LinMod_sim <- function(X, Beta = rep(0, p), errors_gen = rnorm, B = 10000) {

n <- nrow(X)

p <- ncol(X)

y_mat <- as.vector(X %*% Beta) + matrix(errors_gen(n*B), n, B)

inv_gram <- solve(t(X) %*% X)

P <- X %*% solve(t(X) %*% X) %*% t(X)

Beta_hat_mat <- inv_gram %*% t(X) %*% y_mat

resid_mat <- y_mat - P %*% y_mat

sigma_tilde_vec <- colSums(resid_mat^2) / (n - p)

t_stat_mat <- Beta_hat_mat / sqrt(diag(inv_gram))

t_stat_mat <- t_stat_mat / rep(sqrt(sigma_tilde_vec), each = p)

return(t_stat_mat)

}

Notice we have specified default values for some of the arguments: for example the default error generating
function is rnorm. Go through each line of the function to make sure you understand what it is doing
(this may take some time), and look up any functions that you don’t know using ?. To understand what
is happening in the matrix vector addition in line 4, and the matrix vector divisions in lines 10 and 11,
it may help to try the following (we have omitted the output):

> 1:3 + matrix(0, nrow = 3, ncol = 2)

> rep(1:2, each = 3) + matrix(0, nrow = 3, ncol = 2)

The as.vector function used in line 4 of the code coerces X %∗% Beta into a vector so that when it is
added to the matrix of errors, the correct output is produced. Once the function LinMod sim has been
loaded into your workspace (either by copying and pasting, or saving the code and sourcing it), we can
use it. First create a matrix of predictors of your choice (perhaps using runif or rnorm) and store it in
X. Now try

> output <- LinMod_sim(X)

Notice we do not need to specify the arguments that have default values in order to run the function.
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Q–Q plots

We know that if βj = 0 and the design matrix X is n by p (with full column rank), provided the errors
satisfy ε ∼ Nn(0, σ2I),

β̂j√
σ̃2(XTX)−1jj

∼ tn−p.

To check that this is indeed the case, we can analyse the output of our function is via Quantile–Quantile,
or Q–Q, plots. This involves

1. sorting the t-statistics T1, . . . , TB into increasing order

2. plotting them against {F−1( k
B+1 ) : k = 1, . . . , B}, where F is the tn−p distribution function.

We expect an approximately straight line through the origin with gradient 1 if the Tk are distributed
according to tn−p. This is the case because the empirical distribution function FB of T1, . . . , TB , defined
as

FB(x) :=
1

B

B∑
k=1

1{Tk≤x}

satisfies FB(x) → F (x) (almost surely) as B → ∞. Thus for large B we can expect to see that
FB(x) ≈ F (x). Rather than looking at the t-statistics themselves, if we are interested in studying the
size of the two-sided t-test, it makes more sense to look at the squares of the t-statistics. What will their
distribution be? You can use the following function to produce the Q–Q plots.

qqplot_F <- function(f_stat, df1, df2) {

f_stat <- sort(f_stat)

B <- length(f_stat)

theoretical_quantiles <- qf((1:B) / (B + 1), df1, df2)

plot(theoretical_quantiles, f_stat)

abline(0, 1, col = "red")

return(mean(f_stat <= qf(0.95, df1, df2)))

}

As usual, use ? to query and functions you don’t know already. What does the final line of the function
do? Experiment with different values of n and p and error distributions. For example you could try

> output2 <- LinMod_sim(X, errors_gen = rcauchy)

> output3 <- LinMod_sim(X, errors_gen = function(x) rexp(x) - 1)

The reason we subtract 1 when the errors are exponential is to enforce that the errors have zero mean.
Note that if the points on the Q–Q plot lie above the diagonal it suggests that the usual t-test with
nominal level α will have a size greater than α (why?). On the other hand, if the points lie below the
diagonal, the t-test will be conservative and have size less than α.

Lists

Lists collect together items of different types, e.g.

> Empl <- list(employee="Eve", spouse = "Adam", children=2, child.ages = c(4, 7))

Elements of a list need not be of the same length, but its components are numbered. Thus Empl is a list
of length 4, and its components are referred to as Empl[[1]] etc.. Notice that Empl[[4]] is a vector, so
Empl[[4]][1] is its first entry. Names of components can also be used:

> Empl$employee

> Empl$child.ages[2]

The different components of a list can be almost anything, even functions or other lists.
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Exercises

1. Modify the LinMod sim to study what happens when the error variances are unequal. For example,
you could replace line 4 of the function by

y_mat <- as.vector(X %*% Beta) + matrix(errors_gen(n*B), n, B) * rnorm(n)

2. Modify the LinMod sim function so that

(a) it takes an extra argument, G 0, which can be used to specify a subset of the variables of X;

(b) letting the matrix formed from these variables be X0, the function outputs a list whose first
component is the existing t stat mat, and whose second component is simulated values of
the F statistic

1
p−p0
‖(P − P0)y‖2

1
n−p‖(I − P )y‖2

,

with P , P0 etc. defined as in lectures.

Compare the values of the simulated F statistics with the appropriate distribution using the
qqplot F function.

3


