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1. In this question we will outline an algorithm to compute the graphical Lasso.

(a) Let
Q(Ω) = − log det(Ω) + tr(SΩ) + λ‖Ω‖1

be the graphical Lasso objective with Ω̂ = argmin
Ω�0

Q(Ω) assumed unique. Consider

the following version of the graphical Lasso objective:

min
Ω,Θ�0

{− log det(Ω) + tr(SΩ) + λ‖Θ‖1}

subject to Ω = Θ. By introducing the Lagrangian for this objective, show that

p+ max
U :S+U�0, ‖U‖∞≤λ

log det(S + U) ≤ Q(Ω̂).

Here ‖U‖∞ = maxj,k |Ujk| and p is the number of columns in the underlying data
matrix X. Hint: Write the additional term in the Lagrangian as tr(U(Ω−Θ)).
Solution: We know that for all symmetric U ∈ Rp×p,

min
Ω,Θ�0

{− log det(Ω) + tr(SΩ) + λ‖Θ‖1 + tr(U(Ω−Θ))} ≤ Q(Ω̂L).

Subdifferentiating the LHS, we see that for a minimiser of the LHS, Ω∗,Θ∗ we have
S+U = Ω∗,−1 provided S+U � 0, and U = λΓ where ‖Γ‖∞ ≤ 1 and Γjk = sgn(Θ∗jk)
when Θ∗jk 6= 0. The latter implies that tr(Θ∗U) = λ‖Θ∗‖1. Thus we get that the
LHS is

log det(S + U) + tr((S + U)(S + U)−1) = log det(S + U) + p,

and as the inequality is true for all U , we may take the maximum over U .

(b) Suppose that U∗ is the unique maximiser of the LHS. Show that Ω̂ = (S + U∗)−1.
Solution: The KKT conditions for the original objective Q tell us that

Ω̂−1 − S = λΓ̂

where ‖Γ̂‖∞ ≤ 1 and Γjk = sgn(Ωjk). Note that ‖Ω̂−1−S‖∞ ≤ λ, so this is a feasible
value of U . We will show that it is the optimal U . We see that

tr(Ω̂(Ω̂−1 − S)) = λ‖Ω‖1

so

Q(Ω̂) = log det(Ω̂−1) + tr(SΩ̂) + tr(Ω̂(Ω̂−1 − S))

= log det(Ω̂−1) + p.

This show that taking U = Ω̂−1 − S gives equality. So by uniqueness we must have
U∗ = Ω̂−1 − S.
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(c) Now consider
Σ̂ = argmin

W :W�0, ‖W−S‖∞≤λ
− log det(W ). (1)

By using the formula for the determinant in terms of Schur complements, show that
(Σ̂jj , Σ̂−j,j) = (α∗, β∗), where (α∗, β∗) solve the following optimisation problem over
(α, β):

minimise − α+ βT Σ̂−1
−j,−jβ,

such that ‖β − S−j,j‖∞ ≤ λ, |α− Sjj | ≤ λ.

Conclude that α∗ = Sjj + λ. (β∗ can be found by standard quadratic programming
techniques, or by converting the optimisation to a standard Lasso optimisation prob-
lem; thus we can perform block coordinate descent on the optimisation problem in
(1), updating a row and corresponding column of W at each iteration.)
Solution: Follows from noting that

log det(W ) = log(Wk,k, −Wk,−kW
−1
−k,−kW−k,k) + log det(W−k,−k).

2. Explain why if P is faithful to a DAG G then it also satisfies causal minimality w.r.t. G.
Solution: Removing an edge from G will introduce an extra conditional independency
in P , but this contradicts the fact that G contains all conditional independencies in P .
Therefore P cannot be Markov w.r.t. a proper subgraph of G.

3. Show that two DAGs G1 and G2 are Markov equivalent only if they have the same skeleton
and v-structures. You may assume that for every DAG G there is a distribution P which
is faithful to it.
Solution: Let P be faithful to G1. Note that P is Markov w.r.t. G2. We have

j, k not adjacent in G2 ⇒ ∃ set S such that j and k are d-separated by S in G2 (Prop. 34)

⇒ Zj ⊥⊥ Zk|ZS (Markov property)

⇒ j and k are d-separated by S in G1 (faithfulness)

⇒ j, k not adjacent in G1 (Prop. 34).

Now repeat the argument with G1 and G2 swapping places to show that G1 and G2 have
the same skeletons. The argument for the v-structures is similar but uses Prop. 35 instead
of Prop. 34.

4. Suppose P is faithful to a DAG G. Show that the moral graph of G is the CIG.
Solution: Consider two non-adjacent nodes j, k in G which do not have a common child.
We claim that j and k are d-separated by {j, k}c. Indeed any path with 3 or more edges
will be blocked by {j, k}c, and the only path of two edges that cannot be blocked is a
v-structure. Conversely, two non-adjacent nodes j, k with a common child cannot be d-
separated by {j, k}c, so by faithfulness, we know Zk 6⊥⊥ Zj |Z−jk. Clearly two adjacent
nodes j, k can also not be d-separated (by any set at all) and so again Zk 6⊥⊥ Zj |Z−jk.
We therefore see that we don’t have an edge between j and k in the moral graph iff.
Zj ⊥⊥ Zk|Z−jk.

5. In a DAG G = (V,E), define the set of non-descendants of a node k, written nd(k), by

nd(k) = V \ (de(k) ∪ {k})
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Show that if P is global Markov w.r.t. G and Z ∼ P then for any node k

Zk ⊥⊥ Znd(k)\pa(k)|Zpa(k).

Solution: We need to show k and nd(k) \ pa(k) are d-separated by pa(k). Every path
from k to nd(k) \ pa(k) starting k ← · · · will be blocked. All other paths must contain
a collider, since we cannot have a directed path from k leading to nd(k) by definition of
nd(k). But the first collider along the path cannot have a descendant in pa(k) since this
would imply a cycle (c.f. Prop. 34).

6. Consider an SEM for Z ∈ Rp where Z has a joint density f (w.r.t. a product measure).
Suppose that Zk has no parents. Show that

f(z|do(Zk = zk)) = f(z−k|zk).

Here the LHS is the joint density of Z in the new SEM where we have replaced the
structural equation involving Zk with Zk = zk, and the RHS is the conditional density of
Z−k|Zk.
Solution: By the Markov factorisation property, the LHS is∏

j 6=k
f(zj |zpa(j))

which is the same as the RHS.

In the following questions, let all quantities be as defined in Section 5 of the lecture notes
concerning the debiased Lasso.

7. Show that

(Θ̂Σ̂Θ̂T )jj =
1

n
‖Xj −X−j γ̂(j)‖22/τ̂j4.

Solution: It is easy to see that the LHS equals ‖Xθ̂j‖22/n, and the result follows from
the equation in the middle of page 53 in the notes.

8. Show that
1

n
XT
j (Xj −X−j γ̂(j)) =

1

n
‖Xj −X−j γ̂(j)‖22 + λj‖γ̂(j)‖1.

Solution: Let us rewrite Xj = Y , X−j = X, γ̂(j) = β̂, λj = λ for notational simplicity.

Also let Ŝ = {k : β̂k 6= 0}. We have

1

n
Y T (Y −Xβ̂) =

1

n
(Y −Xβ̂ +Xβ̂)T (Y −Xβ̂)

=
1

n
‖Y −Xβ̂‖22 +

1

n
β̂TXT (Y −Xβ̂).

Also XT
Ŝ

(Y −Xβ̂)/n = λsgn(β̂Ŝ), so we see the final term above is λ‖β̂‖1.

9. Prove that P(Λn)→ 1, where the sequence of events Λn is defined in the proof of Theorem
36.
Solution: We need to show that
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(a) P({φ2
Σ̂,smax

≥ cmin/2} ∪j {φ2
Σ̂−j,−j ,sj

≥ cmin/2})→ 1,

(b) P(∪j{2‖XT
−jε

(j)‖∞/n > λ} ∪ {2‖XT ε‖∞/n > λ})→ 0,

(c) P(∪j{Ωjj‖ε(j)‖22/n < 1− 4
√

log(p)/n})→ 0,

for A sufficiently large, where λ = A
√

log(p)/n. Consider (a) first. Firstly, we know that
minm φ

2
Σ,m ≥ cmin (see the discussion preceding Theorem 21). Clearly also minm φ

2
Σ−j,−j ,m

≥
cmin.

From Lemma 22, we know that on the event

Ξn = {max
jk
|Σ̂jk − Σjk| ≤ cmin/(32smax)}

we have in particular that φ2
Σ̂,s
≥ φ2

Σ,s/2 ≥ cmin/2, and also φ2
Σ̂−j,−j ,sj

≥ φ2
Σ−j,−j ,sj

/2 ≥

cmin/2 for all j. Theorem 25 then shows that P(Ξn) → 1 provided smax

√
log(p)/n → 0

(which is true by assumption).

For (c), note that ‖ε(j)‖22Ωjj ∼ χ2
n. From question 8 (a) on example sheet 2, we know that

if W ∼ χ2
d, then P(W/d ≤ 1− t) ≤ e−dt2/8. Thus by a union bound, we have

P(∪j{Ωjj‖ε(j)‖22/n < 1− 4
√

log(p)/n}) ≤ p exp(−2 log(p)) = 1/p→ 0.

Finally, we turn to (b). We know that Xijεi satisfies Bernstein’s condition with parameter
(8Σjjσ, 4Σjjσ). Thus noting that 0 < cmin < Σjj ≤ 1,

pP

(∣∣∣∣∣
n∑
i=1

Xijεi

∣∣∣∣∣ ≥ λ
)
≤ 2 exp

(
−nλ2

2(64Σ2
jjσ

2 + 4Σjjσλ)
+ log p

)
≤ 2p−A

2/c1+1

for some constant c1 > 0 and λ sufficiently small (so n is sufficiently large). Similarly
noting that 1 ≤ Ωjj ≤ c−1

min,

p2P

(∣∣∣∣∣
n∑
i=1

Xikε
(j)
i

∣∣∣∣∣ ≥ λ
)
≤ 2 exp

(
−nλ2

2(64Ω−2
jj σ

2 + 4Ω−1
jj σλ)

+ 2 log p

)
≤ 2p−A

2/c2+1

for k 6= j, some constant c2 > 0 and λ sufficiently small. Thus by taking A sufficiently
large, we have

P(∪j{2‖XT
−jε

(j)‖∞/n > λ} ∪ {2‖XT ε‖∞/n > λ})

≤
p∑
j=1

P(2|XT
j ε| > λ) +

∑
j

∑
j 6=k

P(2|XT
k ε

(j)| > λ)→ 0.
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