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1. In this question we will outline an algorithm to compute the graphical Lasso.

(a) Let

Q(Q2) = —logdet(Q) + tr(SQ) + A||2|1
be the graphical Lasso objective with Q= argmin Q(2) assumed unique. Consider

Q>0
the following version of the graphical Lasso objective:

min {— log det(2) + tr(SQ) + A||©]1}

Q,6-0

subject to {2 = ©. By introducing the Lagrangian for this objective, show that

logdet(S +U) < Q(Q).
+U:S+U£%?|}|{U||oo§)\ 0gdet(S+U) = Q)

Here ||U||oo = max;; |Ujx| and p is the number of columns in the underlying data
matrix X. Hint: Write the additional term in the Lagrangian as tr(U(Q — ©)).
Solution: We know that for all symmetric U € RP*P,

Jnin {—log det(Q2) + tr(SQ) + A|O]1 + tr(U(2 - ©))} < QOY).

Subdifferentiating the LHS, we see that for a minimiser of the LHS, Q*, ©* we have
S+U = Q%! provided S+U = 0, and U = AT’ where ||T'||oc < 1 and T'j = sgn( )
when ©%, 7# 0. The latter implies that tr(©*U) = A[[©*|[1. Thus we get that the
LHS is

logdet(S 4+ U) +tr((S + U)(S + U)™1) = logdet(S + U) + p,
and as the inequality is true for all U, we may take the maximum over U.

Suppose that U* is the unique maximiser of the LHS. Show that () = (S+U")"L.
Solution: The KKT conditions for the original objective @ tell us that

Ol - S=\

where ||T]|oo < 1 and T'j; = sgn(Q;;,). Note that Q7" —S||o < A, s0 this is a feasible
value of U. We will show that it is the optimal U. We see that

r(QQ = 9)) = A2
SO
Q) =logdet(Q7Y) + tr(SQ) + tr(QQ ™ — 9))
= logdet(Q71) + p.

This show that taking U = Ql-g gives equality. So by uniqueness we must have

N

Ur=Q1-8.



(¢c) Now consider
Y= argmin — log det(W). (1)
WW =0, |[W—S|loc <A

By using the formula for the determinant in terms of Schur complements, show that
(X45,X-j5) = (o, B*), where (a*, %) solve the following optimisation problem over
(. B):

minimise —a+ ﬂTiijl- _iB,

such that 18— 5—jjllcc <A, Ja—Sjj| <A

Conclude that a* = Sj; + A. (8* can be found by standard quadratic programming
techniques, or by converting the optimisation to a standard Lasso optimisation prob-
lem; thus we can perform block coordinate descent on the optimisation problem in
(1), updating a row and corresponding column of W at each iteration.)

Solution: Follows from noting that

log det(W) = log(Wix, — Wi kW= _,W_g) + log det(W_, ).

2. Explain why if P is faithful to a DAG G then it also satisfies causal minimality w.r.t. G.
Solution: Removing an edge from G will introduce an extra conditional independency
in P, but this contradicts the fact that G contains all conditional independencies in P.
Therefore P cannot be Markov w.r.t. a proper subgraph of G.

3. Show that two DAGs G; and G, are Markov equivalent only if they have the same skeleton
and v-structures. You may assume that for every DAG G there is a distribution P which
is faithful to it.

Solution: Let P be faithful to G;. Note that P is Markov w.r.t. Go. We have

J, k not adjacent in Go = 3 set S such that j and k are d-separated by S in Go  (Prop. 34)
= Z; 1l Zy|Zs (Markov property)
= j and k are d-separated by S in G; (faithfulness)
= j, k not adjacent in G;  (Prop. 34).

Now repeat the argument with G; and Go swapping places to show that G; and Gy have
the same skeletons. The argument for the v-structures is similar but uses Prop. 35 instead
of Prop. 34.

4. Suppose P is faithful to a DAG G. Show that the moral graph of G is the CIG.
Solution: Consider two non-adjacent nodes j, k in G which do not have a common child.
We claim that j and k are d-separated by {j, k}¢. Indeed any path with 3 or more edges
will be blocked by {j, k}¢, and the only path of two edges that cannot be blocked is a
v-structure. Conversely, two non-adjacent nodes j, k with a common child cannot be d-
separated by {j,k}¢, so by faithfulness, we know Z, Y Z;|Z_j;. Clearly two adjacent
nodes j,k can also not be d-separated (by any set at all) and so again Z, YU Z;|Z_j.

We therefore see that we don’t have an edge between j and k in the moral graph iff.
Zy W Zy|Z_jy.

5. In a DAG G = (V, E), define the set of non-descendants of a node k, written nd(k), by

nd(k) = V'\ (de(k) U {k})



Show that if P is global Markov w.r.t. G and Z ~ P then for any node k&

Z 1L Zna \Z

k)\pa(k

Solution: We need to show k and nd(k) \ pa(k) are d-separated by pa(k). Every path
from k to nd(k) \ pa(k) starting k < --- will be blocked. All other paths must contain
a collider, since we cannot have a directed path from k leading to nd(k) by definition of
nd(k). But the first collider along the path cannot have a descendant in pa(k) since this
would imply a cycle (c.f. Prop. 34).

. Consider an SEM for Z € RP where Z has a joint density f (w.r.t. a product measure).
Suppose that Z; has no parents. Show that

f(zldo(Zy = 2)) = f(z—k|2k)-

Here the LHS is the joint density of Z in the new SEM where we have replaced the
structural equation involving Z; with Z;, = z;, and the RHS is the conditional density of
Z 1| Z.

Solution: By the Markov factorisation property, the LHS is

11 /Gilzoa)
i#k
which is the same as the RHS.

In the following questions, let all quantities be as defined in Section 5 of the lecture notes
concerning the debiased Lasso.

. Show that )
(e207);; = ;I\Xj — X_j4D|3/75%.

Solution: It is easy to see that the LHS equals || X HA]H% /n, and the result follows from

the equation in the middle of page 53 in the notes.

. Show that 1
*XT(X X_40)) = *IIX — XD+ X591

Solution: Let us rewrite X; =Y, X_; = X, 40 ﬂ, Aj = A for notational simplicity.
Also let S = {k : B # 0}. We have

%YT(Y ~XB)==(Y - XB+XB)T(Y - XB)

SI=3I=

¥ — X313 + - ATXT(¥ — X7).

Also Xg(Y —XB)/n= Asgn(ﬁg), so we see the final term above is A||3|1.

. Prove that P(A,) — 1, where the sequence of events A,, is defined in the proof of Theorem
36.
Solution: We need to show that



(a) P({¢% | > cmin/2} U W%ﬂ,ﬁj,sj > Cmin/2}) — 1,
(b) P(U{2|XT;eD]| oo /n > A} U {2]| X Te||oo /n > A}) = 0,
(c) P(U{QlleW[13/n < 1 —4,/log(p)/n}) — O,

for A sufficiently large, where A = Ay/log(p)/n. Consider (a) first. Firstly, we know that

min,, gbém > Cmin (see the discussion preceding Theorem 21). Clearly also min,, q%_j’_jm >
Cmin-

From Lemma 22, we know that on the event
En = {H;%X |i]k - Z]k’ < Cmin/(323max>}

we have in particular that d)% , 2 $% /2 > cmin/2, and also q% . 2 % /2 >
; : —j,=38] -
¢min/2 for all j. Theorem 25 then shows that P(Z,,) — 1 provided smax+v/log(p)/n — 0

(which is true by assumption).

J,—3+53

For (c), note that [|()[|2Q;; ~ x2. From question 8 (a) on example sheet 2, we know that
if W~ x2, then P(W/d < 1—1t) < e %*/%_ Thus by a union bound, we have

P(U; {1913 /n < 1 — 4y/log(p) /n}) < pexp(—2log(p)) = 1/p — 0.

Finally, we turn to (b). We know that Xj;e; satisfies Bernstein’s condition with parameter
(82]']'0', 42]']'0-)' Thus noting that 0 < cpin < Ejj <1,
—n\?

n
P Xijei| > A ) <2 1 < gpA%/ertl
P <Z €| = ) = 2o (2(642§j02+42jjm) * ng) =P

i=1
for some constant ¢; > 0 and A sufficiently small (so n is sufficiently large). Similarly
noting that 1 < Q;; < -t

min’
p’P <

Z”: Xy
=1

for k # j, some constant cg > 0 and A sufficiently small. Thus by taking A sufficiently
large, we have

—n\2 2
>\ | <2ex +21o < gp~A%/e2tl
- ) = 2o (2(649]3.202 +4Qj—jla>\) gp) =P

21X 5D loo/n > A} U {21 X e]loo/n > A})

P(U
p
<Y PRIXTE >N+ D) PEIXTEW| > A) = 0.
j=1 i gk



