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In all of the below, assume that any design matrices X are n×p and have their columns centred
and then scaled to have `2-norm

√
n, and that any responses Y ∈ Rn are centred.

1. Show that if λ ≥ λmax := ‖XTY ‖∞/n, then β̂Lλ = 0.

Solution: We need only check that β̂Lλ = 0 satisfies the KKT conditions and this is clear.
The solution is unique as the fitted values of the Lasso are unique.

2. Show that when the columns of X are orthogonal (so necessarily p ≤ n) and scaled to
have `2-norm

√
n, the kth component of the Lasso estimator is given by

β̂Lλ,k = (|β̂OLS
k | − λ)+sgn(β̂OLS

k )

where (·)+ = max(0, ·). What is the corresponding estimator if the `1 penalty ‖β‖1 in the
Lasso objective is replaced by the `0 penalty ‖β‖0 := |{k : βk 6= 0}|?
Solution: Note that

1

2n
‖Y −Xβ‖22 =

p∑
k=1

1

2
(β̂OLS
k − βk)2 +

1

2n
‖Y −Xβ̂OLS‖22.

Thus for the first part we need to find the minimiser of

1

2
(β̂OLS
k − βk)2 + λ|βk|.

We write β̂ for β̂Lλ for simplicity. Note that |β̂k| is unique. By the KKT conditions,

β̂OLS
k − β̂k = λν̂k

where |ν̂k| ≤ 1 and ν̂k = sgn(β̂k) if β̂k 6= 0. Thus β̂k = 0 when |β̂OLS
k | ≤ λ. If β̂OLS

k > λ,

β̂k = β̂OLS
k − λ; if β̂OLS

k < −λ, β̂k = β̂OLS
k + λ.

Now let β̂ be the optimising β with the `0 penalty. Clearly when (β̂OLS
k )

2
/2 < λ, β̂k = 0

is optimal. When (β̂OLS
k )

2
/2 = λ, two solutions β̂k = β̂OLS

k or β̂k = 0 both minimise the

objective. When (β̂OLS
k )

2
/2 > λ then β̂k = β̂OLS

k .

3. Let Y = Xβ0 + ε − ε̄1 and let S = {k : β0 6= 0}, N := {1, . . . , p} \ S. Without loss
of generality assume S = {1, . . . , |S|}. Assume that XS has full column rank and let
Ω = {‖XT ε‖∞/n ≤ λ0}. Show that, when λ > λ0, if the following two conditions hold

sup
τ :‖τ‖∞≤1

‖XT
NXS(XT

SXS)−1τ‖∞ <
λ− λ0
λ+ λ0

(λ+ λ0)‖{( 1
nX

T
SXS)−1}k‖1 < |β0k| for k ∈ S,

then on Ω the (unique) Lasso solution satisfies sgn(β̂Lλ ) = sgn(β0).

Solution: Suppressing the dependence of β̂Lλ on λ and dropping the superscript L for
ease of notation, we can write the KKT conditions as

1

n

(
XT
SXS XT

SXN

XT
NXS XT

NXN

)(
βS − β̂S
−β̂N

)
+

1

n

(
XT
S ε

XT
Nε

)
= λ

(
ν̂S
ν̂N

)
, (1)
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where ‖ν̂‖∞ ≤ 1 and writing Ŝ = {k : β̂k 6= 0}, we have sgn(β̂Ŝ) = ν̂Ŝ . Now if we do have

sgn(β̂) = sgn(β0), it must be the case that (considering the first block of (1)),

1

n
XT
SXS(βS − β̂S) +

1

n
XT
S ε = λsgn(β0S),

and, substituting this into the second block of (1),

XT
NXS(XT

SXS)−1{λsgn(β0S)− 1
nX

T
S ε}+ 1

nX
T
Nε = λν̂N .

Now we work on Ω and claim that

(β̂S , ν̂S) = (β0S − ( 1
nX

T
SXS)−1{λsgn(β0S)− 1

nX
T
S ε}, sgn(β0S)),

(β̂N , ν̂N ) = (0, [XT
NXS(XT

SXS)−1{λsgn(β0S)− 1
nX

T
S ε}+ 1

nX
T
Nε]/λ),

satisfy (1). We first check that sgn(β̂S) = sgn(β0S). This holds because

|[( 1
nX

T
SXS)−1{λsgn(β0S)− 1

nX
T
S ε}]k| ≤ ‖{( 1

nX
T
SXS)−1}k‖1{λ‖sgn(β0S)‖∞ + ‖ 1nX

T
S ε‖∞}

≤ ‖{( 1
nX

T
SXS)−1}k‖1(λ+ λ0).

Next

‖XT
NXS(XT

SXS)−1{λsgn(β0S)− 1
nX

T
S ε}+ 1

nX
T
Nε‖∞ ≤ ‖XT

NXS(XT
SXS)−1{λsgn(β0S)− 1

nX
T
S ε}‖∞ + λ0

≤ (λ+ λ0) sup
τ :‖τ‖∞≤1

‖XT
NXS(XT

SXS)−1τ‖∞ + λ0

< λ,

by the first assumption given in the question. Thus the KKT conditions are satisfied.
Because we have the strict inequality ‖ν̂N‖∞ < 1, S is the equicorrelation set. Since XS

has full column rank, we know the Lasso solution is unique.

4. Find the KKT conditions for the group Lasso.
Solution: For G ⊂ {1, . . . , p}, consider the function β 7→ ‖βG‖2. The subdifferential of
this function at a β with βG 6= 0 is singleton a vector v with vGc = 0 and

vG =
βG
‖βG‖2

.

We claim that the subdifferential when βG = 0 is {v : vGc = 0 and ‖vG‖2 ≤ 1}. Indeed, if
vGc 6= 0 then taking y with yG = 0, yGc − βGc = vGc , we have

0 = ‖yG‖2 < vT (y − β) = ‖vGc‖22.

Now if vGc = 0 and ‖vG‖2 ≤ 1, then

‖yG‖2 ≥ ‖vG‖2‖yG‖2 ≥ vT y.

Conversely, if ‖vG‖2 > 1, then taking yG = vG (and yGc = 0), we have

‖yG‖2 < ‖vG‖2‖yG‖2 = vT y.

Since the subdifferential of a sum of convex functions is the set sum of the subdifferentials
of the individual functions, we see that the KKT conditions for the group Lasso objective

1

2n
‖Y −Xβ‖22 + λ

q∑
j=1

mj‖βGj‖2,
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are that β̂ is a minimiser if and only if, for j = 1, . . . , q,

1

n
XT
Gj (Y −Xβ̂) = λmj ν̂Gj ,

where ν̂ ∈ Rp is such that ‖ν̂Gj‖2 ≤ 1, and if β̂Gj 6= 0 then

ν̂Gj =
β̂Gj

‖β̂Gj‖2
.

5. (a) Consider the Lasso and let Êλ = {k : 1
n |X

T
k (Y − Xβ̂Lλ )| = λ} be the so-called

equicorrelation set at λ. Suppose that rank(XÊλ
) = |Êλ| for all λ > 0. Argue that

the Lasso solution is unique for all λ > 0.
Solution: From the KKT conditions, we know that Êλ contains Ŝλ := {j : β̂Lj 6= 0}.
We know from lectures that Xβ̂Lλ = XŜλ

β̂L
Ŝλ

is unique, but then as XŜλ
has full

column rank, we know β̂L
Ŝλ

and hence β̂Lλ is unique.

(b) Under the assumptions above, let β̂Lλ1 and β̂Lλ2 be two Lasso solutions at different

values of the regularisation parameter. Suppose that sgn(β̂Lλ1) = sgn(β̂Lλ2). Show
that then for all t ∈ [0, 1],

tβ̂Lλ1 + (1− t)β̂Lλ2 = β̂Ltλ1+(1−t)λ2 .

Hint: Check the KKT conditions.
Solution: We need only check that tβ̂Lλ1 + (1 − t)β̂Lλ2 satisfies the KKT conditions

for the Lasso at tλ1 + (1 − t)λ2. To ease notation, let us write β̂(j) = β̂Lλj , j = 1, 2.
Now we know that for j = 1, 2,

1

n
XT (Y −Xβ̂(j)) = λj ν̂

(j)

where, writing S = {k : β̂(1) 6= 0}, ν̂(1)S = ν̂
(2)
S = sgn(β̂

(1)
S ), and ‖ν̂(j)‖∞ ≤ 1. Thus

1

n
XT [Y −X{tβ̂(1) + (1− t)β̂(2)}] = t

1

n
XT (Y −Xβ̂(1)) + (1− t) 1

n
XT (Y −Xβ̂(2))

= tλ1ν̂
(1) + (1− t)λ2ν̂(2).

Now the indices of the nonzero components of tβ̂(1) + (1− t)β̂(2) are S and

sgn(tβ̂
(1)
S + (1− t)β̂(2)S ) = ν̂

(1)
S = ν̂

(2)
S =

tλ1ν̂
(1)
S + (1− t)λ2ν̂(2)S

tλ1 + (1− t)λ2
.

Furthermore, by the triangle inequality,

‖tλ1ν̂(1) + (1− t)λ2ν̂(2)‖∞ ≤ tλ1‖ν̂(1)‖∞ + (1− t)λ2‖ν̂(2)‖∞ ≤ tλ1 + (1− t)λ2.

Thus the pair (
tβ̂(1) + (1− t)β̂(2), tλ1ν̂

(1) + (1− t)λ2ν̂(2)

tλ1 + (1− t)λ2

)
satisfies the KKT conditions at tλ1 + (1− t)λ2.
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(c) Conclude that the solution path λ 7→ β̂Lλ is piecewise linear with a finite number of
knots (points λ where the solution path is not linear at λ) and these occur when the
sign of the Lasso solution changes.
Solution: Since there are 3p sign patterns a Lasso solution can take (each component
can be either positive, negative or equal to 0), there are a finite number of knots.

6. When proving the theorems on the prediction error of the Lasso, we started with the
so-called basic inequality that

1

2n
‖X(β0 − β̂)‖22 ≤

1

n
εTX(β̂ − β0) + λ‖β0‖1 − λ‖β̂‖1.

Show that in fact we can improve this to

1

n
‖X(β0 − β̂)‖22 ≤

1

n
εTX(β̂ − β0) + λ‖β0‖1 − λ‖β̂‖1.

Solution: We start with the KKT conditions for the Lasso

1

n
XT (Y −Xβ̂) = λν̂,

where, writing Ŝ = {k : β̂k 6= 0}, we have sgn(β̂Ŝ = ν̂Ŝ , and also ‖ν̂‖∞ ≤ 1. Now we

multiply (both sides) by β0
T − β̂T . Note that β̂T ν̂ = β̂T

Ŝ
sgn(β̂Ŝ) = ‖β̂‖1. Furthermore, by

Hölder’s inequality, |β0T ν̂| ≤ ‖β0‖1‖ν̂‖∞ ≤ ‖β0‖1. Substituting Y = Xβ0 + ε− ε̄1 yields

1

n
‖X(β0 − β̂)‖22 +

1

n
εTX(β0 − β̂) ≤ λ‖β0‖1 − λ‖β̂‖1.

Rearranging gives the result.

An alternative solution is as follows. Let Q denote the Lasso objective as in lectures. We
have Q(β̂) ≤ Q((1− t)β0 + tβ̂) for all t. Thus

1

2n
‖Xβ0 −Xβ̂ + ε‖22 + λ‖β̂‖1 ≤

1

2n
‖t(Xβ0 −Xβ̂)− ε‖22 + tλ‖β̂‖1 + (1− t)‖β0‖1.

Dividing by 1− t and rearranging we have

1 + t

2n
‖Xβ0 −Xβ̂‖22 + λ‖β̂‖1 ≤

1

n
εTX(β̂ − β0) + λ‖β0‖1

for all t < 1. Letting t ↑ 1 then gives the result.

7. Under the assumptions of Theorem 21 on the prediction and estimation properties of the
Lasso under a compatibility condition, show that, with probability 1 − 2p−(A

2/8−1), we
have

1

n
‖X(β0 − β̂)‖22 ≤

9A2 log(p)

4φ2
σ2s

n
.

Solution: We follow the proof of Theorem 21, but starting with the improved “basic
inequality” in the previous question. We arrive at

2

n
‖X(β0 − β̂)‖22 + λ‖β̂N − β0N‖1 ≤ 3λ‖β̂S − β0S‖1.
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Using the compatibility condition, the RHS is at most

‖β̂S − β0S‖1 ≤
√
s‖X(β0 − β̂)‖2/

√
n

φ
.

Substituting this into the previous inequality, we get

2

n
‖X(β0 − β̂)‖22 + λ‖β̂N − β0N‖1 ≤

3λ
√
s‖X(β0 − β̂)‖2/

√
n

φ

whence
1

n
‖X(β0 − β̂)‖22 ≤

9λ2s

4φ2

as required.

8. (a) Show that

max
θ:‖XT θ‖∞≤λ

G(θ) =
1

2n
‖Y −Xβ̂Lλ‖22 + λ‖β̂Lλ‖1,

where

G(θ) =
1

2n
‖Y ‖22 −

1

2n
‖Y − nθ‖22.

Show that the unique θ maximising G is θ∗ = (Y −Xβ̂Lλ )/n. Hint: Treat the Lasso
optimisation problem as minimising ‖Y − z‖22/(2n) + λ‖β‖1 subject to z −Xβ = 0
over (β, z) ∈ Rp × Rn and consider the Lagrangian.
Solution: Taking the hint, we write the Lagrangian for the Lasso problem

L(β, z, θ) =
1

2n
‖Y − z‖22 + λ‖β‖1 + θT (z −Xβ).

The minimising β and z, β∗ and z∗ satisfy

1

n
(Y − z∗) = θ,

λν∗ = XT θ,

provided θ is such that ‖ν∗‖∞ ≤ 1 so ‖XT θ‖∞ ≤ λ. Substituting into the Lagrangian
and using the fact that β∗TXT θ = λβ∗T ν∗ = λ‖β‖1 we get

L(β∗, z∗, θ) =
n

2
‖θ‖22 + θT (Y − nθ) = G(θ),

provided ‖XT θ‖∞ ≤ λ. Thus we have that

max
θ:‖XT θ‖∞≤λ

G(θ) ≤ 1

2n
‖Y −Xβ̂λ‖22 + λ‖β̂λ‖1.

To get equality we take θ = θ∗ = (Y −Xβ̂λ)/n (dropping the superscript L for the
Lasso solution for clarity) for then

G(θ∗) =
1

2n
‖Y −Xβ̂λ‖22 +

1

n
β̂TλX

T (Y −Xβ̂Lλ ),

the final term equalling λ‖β̂λ‖1 by the KKT conditions. Uniqueness of the maximiser
follows from the facts that −G is strictly convex and {θ : ‖XT θ‖∞ ≤ λ} is a convex
set.
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(b) Let θ̃ be such that ‖XT θ̃‖∞ ≤ λ. Explain why if

max
θ:G(θ)≥G(θ̃)

|XT
k θ| < λ,

then we know that β̂Lλ,k = 0. By considering θ̃ = Y λ/(nλmax) with λmax = ‖XTY ‖∞/n,

show that β̂Lλ,k = 0 if

1

n
|XT

k Y | < λ− ‖Y ‖2√
n

λmax − λ
λmax

.

Solution: θ∗ must be in the set {θ : G(θ) ≥ G(θ̃)} so if the inequality in the question
is true, then we know |XT

k (Y −Xβ̂λ)|/n < λ whence by the KKT conditions for the

Lasso, β̂λ,k must be zero. With the given choice of θ̃, we know ‖XT θ̃‖∞ ≤ λ.

We now need to show that when

1

n
|XT

k Y | < λ− ‖Y ‖2√
n

λmax − λ
λmax

and G(θ) ≥ G(Y λ/(nλmax)), we have |XT
k θ| < λ. Note the condition G(θ) ≥

G(Y λ/(nλmax)) is equivalent to

‖Y − nθ‖2 ≤ (1− λ/λmax)‖Y ‖2.

Now, under the conditions above,

|XT
k θ| = |XT

k (θ − Y/n+ Y/n)|
≤ |XT

k (θ − Y/n)|+ |XT
k Y |/n

< ‖Xk‖2(1− λ/λmax)‖Y ‖2/n+ λ− ‖Y ‖2√
n

λmax − λ
λmax

= λ,

using the fact that ‖Xk‖2 =
√
n to get the final equality.

9. The elastic net estimator in the linear model minimises

1

2n
‖Y −Xβ‖22 + λ(α‖β‖1 + (1− α)‖β‖22/2)

over β ∈ Rp, where α ∈ [0, 1] is fixed.

(a) Suppose X has two columns Xj and Xk that are identical and α < 1. Explain why
the minimising β∗ above is unique and has β∗k = β∗j .
Solution: The minimum is unique as the objective above is strictly convex, and
existence can be shown via the same argument used to show the existence of Lasso
solutions. Suppose then that β∗ is the unique minimiser. Let β′ = β∗ in all compo-
nents except β′j = β∗k and β′k = β∗j . The objective is strictly convex in β so β′/2+β∗/2
has an objective value at least as large small as that of β∗, so β′ = β∗ by uniqueness.

(b) Let β̂(0), β̂(1), . . . be the solutions from iterations of a coordinate descent procedure to
minimise the elastic net objective. For a fixed variable index k, let A = {1, . . . , k−1}
and B = {k + 1, . . . , p}. Show that for m ≥ 1,

β̂
(m)
k =

Sλα

(
n−1XT

k (Y −XAβ̂
(m)
A −XBβ̂

(m−1)
B )

)
1 + λ(1− α)

,
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where St(u) = sgn(u)(|u| − t)+ is the soft-thresholding operator.
Solution: We have that

β̂
(m)
k = argmin

β∈R
{‖Y −XAβ̂

(m)
A −XBβ̂

(m−1)
B − βXk‖22/(2n) + λ(α|β|+ (1− α)β2/2)}

The minimiser β̂
(m)
k must satisfy the subgradient optimality condition:

− 1

n
XT
k (Y −XAβ̂

(m)
A −XBβ̂

(m−1)
B ) + β̂

(m)
k + λ(1− α)β̂

(m)
k + λαν̂ = 0,

where ν̂ ∈ [−1, 1] and if β̂
(m)
k 6= 0, ν̂ = sgn(β̂

(m)
k ). Rearranging, we have

β̂
(m)
k =

1
nX

T
k (Y −XAβ̂

(m)
A −XBβ̂

(m−1)
B )− λαν̂

1 + λ(1− α)
,

and we may check that the given expression for β̂
(m)
k satisfies this. Note that β̂

(m)
k is

the unique minimiser as the objective is strictly convex.

10. For the following DAG G

1 2 3

4 5 6

7 8

write down

(a) the descendants of 3;
Solution: {2, 4, 5, 6, 7, 8}.

(b) all sets of variables that d-separate 1 and 3;
Solution: Note neither 2 nor any of its descendants can be in a d-separating set.
Thus we may take ∅, {5}.

(c) all sets of variables that d-separate {1, 4} and 6;
Solution: {3} ∪ {at least one of {7, 8}} ∪ {any subset of {2, 5}}.

(d) all the v-structures.
Solution: 1→ 2← 3, 8→ 6← 3, 7→ 8← 5.

11. Let Z = (Z1, . . . , Zp)
T ∈ {0, 1}p be a binary random vector with probability mass function

given by

P(Z1 = z1, . . . , Zp = zp) = exp

Θ00 +

p∑
k=1

Θ0kzk +

p∑
k=1

k−1∑
j=1

Θjkzjzk − Φ(Θ)


where exp(−Φ(Θ)) is a normalising constant. Show that

logit(P(Zk = 1|Z−k = z−k)) = Θ0k +
∑
j:j<k

Θjkzj +
∑
j:j>k

Θkjzj ,
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where logit(q) = log{q/(1− q)} for q ∈ (0, 1). Conclude that, for j < k,

Zj ⊥⊥ Zk|Z−jk ⇐⇒ Θjk = 0.

Note that for discrete random variables we can replace the densities in our definition of
conditional independence with probability mass functions (which are in any case densities
with respect to counting measure). How might we go about estimating the Θjk?
Solution: The result follows from noting that

logit(P(Zk = 1|Z−k = z−k)) = log{P(Zk = 1, Z−k = z−k)} − log{P(Zk = 0, Z−k = z−k)}.

Now iff. Θjk = 0, the distribution of Zk|Z−k does not depend on Zj , and so

Zj ⊥⊥ Zk|Z−jk ⇐⇒ Θjk = 0.

We can try to estimate the Θjk by logistic regression.
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