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1. This question proves a result needed for Theorem 7 in our notes. Let H be a RKHS of
functions on X with reproducing kernel k and suppose f® € H. Let z1,...,2, € X and
let K be the kernel matrix K;; = k(z;,2;). Show that

(fo(xl), N .,fo(zn)>T - Ka,

for some a € R and moreover that [|f°3, > o’ Ka.
Solution: Let V = span{k(-,z1),...,k(-,7,)} and write f* = u + v where u € V and
v € VL. Then

fo('xl) = <f0a k(vxl» = <u>k(axl)>
Write u = )" | a;k(-,z;). Then

i) = ailk(,ay) k() =Y ok, z) = Kl a,
=1 j=1

T
where Kj; is the ith column (or row) of K. Thus Ka = (fo(ml),...,fo(:cn)> . By
Pythagoras’ theorem

1013, = Iluli?, + lv]3, > llul3, = T Ka.

2. Let Y € R™ be a vector of responses, ® € R"*? a design matrix, .J : [0,00) — [0,00) a
strictly increasing function and ¢ : R” x R™ some cost function. Set K = ®®T. Show,
without using the representer theorem, that 6 minimises

Q1) = (Y, ®6) + J([|6]]3)
over § € R? if and only if ®0 = K& and & minimises
Qa(a) == c(Y,Ka) + J(o' Ka)

over a € R™.

Solution: Suppose 6 minimises Q1. Let II € R%*? be the orthogonal projection on to
the row space of ®. Then ®0 = ®II0 but ||0]|3 = ||T10||2 + ||(I — I)0||3. As J is strictly
increasing, and by minimality of 6, we must have (I — I1)d = 0. Thus @ lies in the row
space of ®, so 0 = ®T o, for some o € R™. We see then that

Q1(0) = c(Y,Ka) + J(aTKa) = Qa(a).

Thus by minimality of §, & must be such that it minimises Q2. Now suppose & minimises
Q2. Write 6 = ®Ta, and note that Q1(0) = Q2(&). Suppose 0 has Q1(8) < Q1(). Then
from the argument above, Q1 (I10) < Q1 (0), and we may write 110 = ®”'a for some & € R”.
But then we have

Q2(a) = Q1(0) > Q1(9) > Q1(T10) = Q2(a) > Q2(&),

the last inequality following from minimality of &.



3. Let z,2’ € RP and let ¢ € {—1,1}? be a random vector with independent components
taking the values —1,1 each with probability 1/2. Show that E(yTx ¢T "y =22’ Con-
struct a random feature map ¢ : R? — R such that E{¢(z)p(a')} = («Ta/)2.

Solution: E(zTvyyTz’') = 2TE(yyp?)a’ = 272’. Given two vectors independent vectors
P 2 each with the same distribution as ¢, set g%(:x) = 2T ypW T2,

4. Let X be the set of all subsets of {1,...,p} and let 2, 2’ € X. Let k be the Jaccard similarity
kernel. Let m be a random permutation of {1,...,p}. Let M = min{n(j) : j € z},
M’ = min{n(j) : j € z’}. Show that

P(M = M'") = k(z,2),

when z, 2" # (). Now let 1 € {—1,1}? be a random vector with i.i.d. components taking
the values -1 or 1, each with probability 1/2. By considering E(¢p;15s) show that the
Jaccard similarity kernel is indeed a kernel. Explain how we can use the ideas above to
approximate kernel ridge regression with Jaccard similarity, when n is very large (you
may assume that none of the data points are the empty set).

Solution: Let H = argmin 7(k). Then

kezUz!
|z N 2|
lzU 2|

P(M=M)=P(M=M =rH)=PHezn%)=

Now
E(artonr) = E(artonn M = MOB(M = M) + E(bngibar|M # MP(M # M') = P(M = M'),

Given z1,...,2z, € X\ {0}, let M; = min{n(k) : k € z} and define S € {-1,1}"
by Si = ¢¥u,. Let K € R™" have K;; = k(z,%;). Then from the above we know
K = E(SST) showing that it is positive semi-definite. If we have z},...,z., = 0, the
kernel matrix corresponding to z1,...,2n,2},..., 2, would be block diagonal with one
block corresponding to K above, and the other block being a matrix of ones. As both

blocks are positive-semidefinite, k must be a kernel.

5. Consider the logistic regression model where we assume Y7,...,Y, € {—1,1} are indepen-
dent and B(Y = 1)
1 S\ T ) ) TR0
ot (=) =+1°

Show that the maximum likelihood estimate B minimises

Z log{1 + exp(~Yiz! B)}

=1
over 3 € RP,
Solution: Fix ¢ and let u = xl-Tﬁo. We have
e 1

PYi=l= e = 1yew

and P(Y; = —1) = 1/(1 +€"), so P(Y; = y) = 1/(1 + e~"¥), from which the result easily
follows by noting that the Y; are independent.



6. Show that if W is mean-zero and sub-Gaussian with parameter o, then Var(W) < o2.
Solution: We know that E(e®") < e®*?*/2 for all o € R. A power series expansion both
sides of the above inequality yields

> r=271/T
OZ'VV) <1+a%?/2+0(a?).
r!

14 aB(W) + o*E(W?)/2 + QZE(Z;

Subtracting 1 and dividing by o? gives

E(W?)/2 + E(i; 0‘_:,W) < 0?/24 0(a?).

Now eV 4+ e W > Wl so el is integrable and el > Z;)i:«; W for all o < 1. Thus

7!
by dominated convergence theorem, E(} 77, O‘T_TQ,WT) —0asa—0.

7. Verify Hoeffding’s lemma for the special case where W is a Rademacher random variable,
so W takes the values —1,1 each with probability 1/2.
Solution:

r oo 2r

< (6] _ ea2/2'

oo
EeaW — l(e—a _|_€a) _ @2
2 Z 2r)! — 2rr!

r=0 r=0

8. (a) Let W ~ x?2. Show that
P(|W/d— 1| > t) < 2~ %°/8

for t € (0,1). You may use the facts that the mgf of a x? random variable is

1/v/T=2a for a < 1/2, and e=*//T = 2a < ¢2*” when |a| < 1/4.
Solution: Note that W is the sum of d independent y?-distributed random variables.

Thus
Eea(W—d) — (1 _ 2a)—d/2€—ad

for a < 1/2. Suppose t € (0,1). Using the Chernoff bound, we get

—a d
e
P(W —d>dt) < inf — e
( - )_0<gxn<1/2(\/1—2a6 >

< inf exp{d(20® —at)} using the hint,
0<a<1/4

12
_ dt?/8

setting a = ¢/4 in the last line, which is permitted since ¢ < 1. The argument to
bound P(d — W > dt) is similar, and the result follows from a union bound.

(b) Let A € R¥P have i.i.d. standard normal entries. Fix u € RP. Use the result above

to conclude that )
(|14 o[> ) <o,
dl|ull3

Solution: Let a; be the ith row of A. Then alu/|lull2 ~ N(0,1) and thus by
independence of the rows, ||Aul3/||ul|3 has a x? distribution. Now use the answer
from part (a).



(c) Suppose we have (data) ui,...,u, € RP (note each u; is a vector), with p large and
n > 2. Show that for a given € € (0,1) and d > 16log(n/\/€)/t?, each data point
may be compressed down to u; — Au;/ v/d = w; whilst approximately preserving the
distances between the points:

lwi Zwils ) |y gor att i € (1., m), i#i) zl-e

This is the famous Johnson—Lindenstrauss Lemma.
Solution: Apply the result from (b) with « = u; — u;. Using the union bound, we

get
p< ey = wjllz

1‘ > t) < <Z> x 2¢7U/8 < exp{—dt®/8 + 2log(n)} < e.

In the following questions assume that X has had its columns centred and scaled to have
{y-norm /n, and that Y is also centred.

9.

10.

Show that any two Lasso solutions when A > 0 must have the same ¢;-norm.

Solution: We know that for any two Lasso solutions B(l), 3(2) we have that XB(l) =
X 5(2). Thus the least squares part of their Lasso objectives will be equal. Since the two
Lasso objectives must be equal (they are both Lasso solutions), the ¢; parts must also be
the same.

A convex combination of a set of points S = {v1,..., v} C RY is any point of the form
QiU + - F QU

where a; € R and o; > 0 for j = 1,...,m, and Z;”Zl aj = 1. Carathéodory’s Lemma
states that if S is in a subspace of dimension d, any v that is a convex combination of
points in S can be expressed as a convex combination of d 4+ 1 points from S i.e. there
exist ji,...,74+1 € {1,...,m} and non-negative reals ai, ..., a4+1 summing to 1 with

V= Q1Uj o+ g1V, -

With this knowledge, show that for any value of A, there is always a Lasso solution with
no more than n non-zero coefficients.

Solution: As the columns of X are centred, they live in an n — 1-dimensional subspace
of R™". X Bf is a convex combination of points in

185 {£X1, ..., £X,} C R
By Carathéodory’s Lemma, there exist 1 < ky,...,k, < p and an a € R" with ||a|; =1
such that i
XBY = 18X1 D~ e X,

=1

Since H@( lillef]s = HﬂAI/\JHl, the expression on the RHS must also constitute a Lasso solution
with only n non-zero components.



