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1. This question proves a result needed for Theorem 7 in our notes. Let H be a RKHS of
functions on X with reproducing kernel k and suppose f0 ∈ H. Let x1, . . . , xn ∈ X and
let K be the kernel matrix Kij = k(xi, xj). Show that(

f0(x1), . . . , f
0(xn)

)T
= Kα,

for some α ∈ Rn and moreover that ‖f0‖2H ≥ αTKα.
Solution: Let V = span{k(·, x1), . . . , k(·, xn)} and write f0 = u + v where u ∈ V and
v ∈ V ⊥. Then

f0(xi) = 〈f0, k(·, xi)〉 = 〈u, k(·, xi)〉.

Write u =
∑n

i=1 αik(·, xi). Then

f0(xi) =
n∑
j=1

αj〈k(·, xj), k(·, xi)〉 =
n∑
j=1

αjk(xj , xi) = KT
i α,

where Ki is the ith column (or row) of K. Thus Kα =
(
f0(x1), . . . , f

0(xn)
)T

. By

Pythagoras’ theorem

‖f0‖2H = ‖u‖2H + ‖v‖2H ≥ ‖u‖2H = αTKα.

2. Let Y ∈ Rn be a vector of responses, Φ ∈ Rn×d a design matrix, J : [0,∞) → [0,∞) a
strictly increasing function and c : Rn × Rn some cost function. Set K = ΦΦT . Show,
without using the representer theorem, that θ̂ minimises

Q1(θ) := c(Y,Φθ) + J(‖θ‖22)

over θ ∈ Rp if and only if Φθ̂ = Kα̂ and α̂ minimises

Q2(α) := c(Y,Kα) + J(αTKα)

over α ∈ Rn.
Solution: Suppose θ̂ minimises Q1. Let Π ∈ Rd×d be the orthogonal projection on to
the row space of Φ. Then Φθ̂ = ΦΠθ̂ but ‖θ̂‖22 = ‖Πθ̂‖22 + ‖(I − Π)θ̂‖22. As J is strictly
increasing, and by minimality of θ̂, we must have (I − Π)θ̂ = 0. Thus θ̂ lies in the row
space of Φ, so θ̂ = ΦTα, for some α ∈ Rn. We see then that

Q1(θ̂) = c(Y,Kα) + J(αTKα) = Q2(α).

Thus by minimality of θ̂, α must be such that it minimises Q2. Now suppose α̂ minimises
Q2. Write θ̂ = ΦT α̂, and note that Q1(θ̂) = Q2(α̂). Suppose θ̃ has Q1(θ̃) ≤ Q1(θ̂). Then
from the argument above, Q1(Πθ̃) ≤ Q1(θ̃), and we may write Πθ̃ = ΦT α̃ for some α̃ ∈ Rn.
But then we have

Q2(α̂) = Q1(θ̂) ≥ Q1(θ̃) ≥ Q1(Πθ̃) = Q2(α̃) ≥ Q2(α̂),

the last inequality following from minimality of α̂.
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3. Let x, x′ ∈ Rp and let ψ ∈ {−1, 1}p be a random vector with independent components
taking the values −1, 1 each with probability 1/2. Show that E(ψTxψTx′) = xTx′. Con-
struct a random feature map φ̂ : Rp → R such that E{φ̂(x)φ̂(x′)} = (xTx′)2.
Solution: E(xTψψTx′) = xTE(ψψT )x′ = xTx′. Given two vectors independent vectors
ψ(1), ψ(2) each with the same distribution as ψ, set φ̂(x) = xTψ(1)xTψ(2).

4. Let X be the set of all subsets of {1, . . . , p} and let z, z′ ∈ X . Let k be the Jaccard similarity
kernel. Let π be a random permutation of {1, . . . , p}. Let M = min{π(j) : j ∈ z},
M ′ = min{π(j) : j ∈ z′}. Show that

P(M = M ′) = k(z, z′),

when z, z′ 6= ∅. Now let ψ ∈ {−1, 1}p be a random vector with i.i.d. components taking
the values -1 or 1, each with probability 1/2. By considering E(ψMψM ′) show that the
Jaccard similarity kernel is indeed a kernel. Explain how we can use the ideas above to
approximate kernel ridge regression with Jaccard similarity, when n is very large (you
may assume that none of the data points are the empty set).
Solution: Let H = argmin

k∈z∪z′
π(k). Then

P(M = M ′) = P(M = M ′ = π(H)) = P(H ∈ z ∩ z′) =
|z ∩ z′|
|z ∪ z′|

.

Now

E(ψMψM ′) = E(ψMψM ′ |M = M ′)P(M = M ′) + E(ψMψM ′ |M 6= M ′)P(M 6= M ′) = P(M = M ′).

Given z1, . . . , zn ∈ X \ {∅}, let Mi = min{π(k) : k ∈ zi} and define S ∈ {−1, 1}n
by Si = ψMi . Let K ∈ Rn×n have Kij = k(zi, zj). Then from the above we know
K = E(SST ) showing that it is positive semi-definite. If we have z′1, . . . , z

′
m = ∅, the

kernel matrix corresponding to z1, . . . , zn, z
′
1, . . . , z

′
m would be block diagonal with one

block corresponding to K above, and the other block being a matrix of ones. As both
blocks are positive-semidefinite, k must be a kernel.

5. Consider the logistic regression model where we assume Y1, . . . , Yn ∈ {−1, 1} are indepen-
dent and

log

(
P(Yi = 1)

P(Yi = −1)

)
= xTi β

0.

Show that the maximum likelihood estimate β̂ minimises

n∑
i=1

log{1 + exp(−YixTi β)}

over β ∈ Rp.
Solution: Fix i and let u = xTi β

0. We have

P(Yi = 1) =
eu

1 + eu
=

1

1 + e−u
,

and P(Yi = −1) = 1/(1 + eu), so P(Yi = y) = 1/(1 + e−uy), from which the result easily
follows by noting that the Yi are independent.
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6. Show that if W is mean-zero and sub-Gaussian with parameter σ, then Var(W ) ≤ σ2.
Solution: We know that E(eαW ) ≤ eα2σ2/2 for all α ∈ R. A power series expansion both
sides of the above inequality yields

1 + αE(W ) + α2E(W 2)/2 + α2E
( ∞∑
r=3

αr−2W r

r!

)
≤ 1 + α2σ2/2 +O(α4).

Subtracting 1 and dividing by α2 gives

E(W 2)/2 + E
( ∞∑
r=2

αr−2W r

r!

)
≤ σ2/2 +O(α2).

Now eW + e−W ≥ e|W | so e|W | is integrable and e|W | ≥
∑∞

r=3
αr−2W r

r! for all α < 1. Thus

by dominated convergence theorem, E(
∑∞

r=3
αr−2W r

r! )→ 0 as α→ 0.

7. Verify Hoeffding’s lemma for the special case where W is a Rademacher random variable,
so W takes the values −1, 1 each with probability 1/2.
Solution:

EeαW =
1

2
(e−α + eα) =

∞∑
r=0

α2r

(2r)!
≤
∞∑
r=0

α2r

2rr!
= eα

2/2.

8. (a) Let W ∼ χ2
d. Show that

P(|W/d− 1| ≥ t) ≤ 2e−dt
2/8

for t ∈ (0, 1). You may use the facts that the mgf of a χ2
1 random variable is

1/
√

1− 2α for α < 1/2, and e−α/
√

1− 2α ≤ e2α2
when |α| < 1/4.

Solution: Note that W is the sum of d independent χ2
1-distributed random variables.

Thus
Eeα(W−d) = (1− 2α)−d/2e−αd

for α < 1/2. Suppose t ∈ (0, 1). Using the Chernoff bound, we get

P(W − d ≥ dt) ≤ inf
0<α<1/2

(
e−α√
1− 2α

e−αt
)d

≤ inf
0<α<1/4

exp{d(2α2 − αt)} using the hint,

= e−dt
2/8

setting α = t/4 in the last line, which is permitted since t < 1. The argument to
bound P(d−W ≥ dt) is similar, and the result follows from a union bound.

(b) Let A ∈ Rd×p have i.i.d. standard normal entries. Fix u ∈ Rp. Use the result above
to conclude that

P
(∣∣∣∣‖Au‖22d‖u‖22

− 1

∣∣∣∣ ≥ t) ≤ 2e−dt
2/8.

Solution: Let ai be the ith row of A. Then aTi u/‖u‖2 ∼ N(0, 1) and thus by
independence of the rows, ‖Au‖22/‖u‖22 has a χ2

d distribution. Now use the answer
from part (a).
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(c) Suppose we have (data) u1, . . . , un ∈ Rp (note each ui is a vector), with p large and
n ≥ 2. Show that for a given ε ∈ (0, 1) and d > 16 log(n/

√
ε)/t2, each data point

may be compressed down to ui 7→ Aui/
√
d = wi whilst approximately preserving the

distances between the points:

P
(

1− t ≤ ‖wi − wj‖
2
2

‖ui − uj‖22
≤ 1 + t for all i, j ∈ {1, . . . , n}, i 6= j

)
≥ 1− ε.

This is the famous Johnson–Lindenstrauss Lemma.
Solution: Apply the result from (b) with u = ui − uj . Using the union bound, we
get

P
(∣∣∣∣‖wi − wj‖22‖ui − uj‖22

− 1

∣∣∣∣ ≥ t) ≤ (n2
)
× 2e−dt

2/8 ≤ exp{−dt2/8 + 2 log(n)} ≤ ε.

In the following questions assume that X has had its columns centred and scaled to have
`2-norm

√
n, and that Y is also centred.

9. Show that any two Lasso solutions when λ > 0 must have the same `1-norm.
Solution: We know that for any two Lasso solutions β̂(1), β̂(2) we have that Xβ̂(1) =
Xβ̂(2). Thus the least squares part of their Lasso objectives will be equal. Since the two
Lasso objectives must be equal (they are both Lasso solutions), the `1 parts must also be
the same.

10. A convex combination of a set of points S = {v1, . . . , vm} ⊆ Rd′ is any point of the form

α1v1 + · · ·+ αmvm,

where αj ∈ R and αj ≥ 0 for j = 1, . . . ,m, and
∑m

j=1 αj = 1. Carathéodory’s Lemma
states that if S is in a subspace of dimension d, any v that is a convex combination of
points in S can be expressed as a convex combination of d + 1 points from S i.e. there
exist j1, . . . , jd+1 ∈ {1, . . . ,m} and non-negative reals α1, . . . , αd+1 summing to 1 with

v = α1vj1 + · · ·+ αd+1vjd+1
.

With this knowledge, show that for any value of λ, there is always a Lasso solution with
no more than n non-zero coefficients.
Solution: As the columns of X are centred, they live in an n − 1-dimensional subspace
of Rn. Xβ̂Lλ is a convex combination of points in

‖β̂Lλ‖1{±X1, . . . ,±Xp} ⊂ Rn.

By Carathéodory’s Lemma, there exist 1 ≤ k1, . . . , kn ≤ p and an α ∈ Rn with ‖α‖1 = 1
such that

Xβ̂Lλ = ‖β̂Lλ‖1
n∑
j=1

αjXkj .

Since ‖β̂Lλ‖1‖α‖1 = ‖β̂Lλ‖1, the expression on the RHS must also constitute a Lasso solution
with only n non-zero components.
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