STATISTICAL LEARNING II Example Sheet 2 (of 2)

- 1. In this question we will outline an algorithm to compute the graphical Lasso.
 - (a) Let

$$Q(\Omega) = -\log \det(\Omega) + \operatorname{tr}(S\Omega) + \lambda \|\Omega\|_{1}$$

be the graphical Lasso objective with $\hat{\Omega} = \underset{\Omega \succ 0}{\operatorname{argmin}} Q(\Omega)$ assumed unique. Consider the following version of the graphical Lasso objective:

$$\min_{\Omega,\Theta\succ 0} \{ -\log \det(\Omega) + \operatorname{tr}(S\Omega) + \lambda \|\Theta\|_1 \}$$

subject to $\Omega = \Theta$. By introducing the Lagrangian for this objective, show that

$$p + \max_{U:S+U \succ 0, \, \|U\|_{\infty} \le \lambda} \log \det(S+U) \le Q(\hat{\Omega}).$$

Here $||U||_{\infty} = \max_{j,k} |U_{jk}|$ and p is the number of columns in the underlying data matrix X. *Hint: Write the additional term in the Lagrangian as* tr $(U(\Omega - \Theta))$.

- (b) Suppose that U^* is the unique maximiser of the LHS. Show that $\hat{\Omega} = (S + U^*)^{-1}$.
- (c) Now consider

$$\hat{\Sigma} = \operatorname*{argmin}_{W:W \succ 0, \, \|W-S\|_{\infty} \le \lambda} - \log \det(W).$$
(1)

By using the formula for the determinant in terms of Schur complements, show that $(\hat{\Sigma}_{jj}, \hat{\Sigma}_{-j,j}) = (\alpha^*, \beta^*)$, where (α^*, β^*) solve the following optimisation problem over (α, β) :

minimise
$$-\alpha + \beta^T \hat{\Sigma}_{-j,-j}^{-1} \beta$$
,
such that $\|\beta - S_{-j,j}\|_{\infty} \leq \lambda, \ |\alpha - S_{jj}| \leq \lambda$.

Conclude that $\alpha^* = S_{jj} + \lambda$. (β^* can be found by standard quadratic programming techniques, or by converting the optimisation to a standard Lasso optimisation problem; thus we can perform block coordinate descent on the optimisation problem in (1), updating a row and corresponding column of W at each iteration.)

- 2. Explain why if P is faithful to a DAG \mathcal{G} then it also satisfies causal minimality w.r.t. \mathcal{G} .
- 3. Show that two DAGs \mathcal{G}_1 and \mathcal{G}_2 are Markov equivalent only if they have the same skeleton and *v*-structures. You may assume that for every DAG \mathcal{G} there is a distribution P which is faithful to it.
- 4. Suppose P is faithful to a DAG \mathcal{G} . Show that the moral graph of \mathcal{G} is the CIG.
- 5. In a DAG $\mathcal{G} = (V, E)$, define the set of *non-descendants* of a node k, written nd(k), by

$$\mathrm{nd}(k) = V \setminus (\mathrm{de}(k) \cup \{k\})$$

Show that if P is global Markov w.r.t. P and $Z \sim P$ then for any node k

$$Z_k \perp \!\!\!\perp Z_{\mathrm{nd}(k)} | Z_{\mathrm{pa}(k)}$$

6. Consider an SEM for $Z \in \mathbb{R}^p$ where Z has a joint density f (w.r.t. a product measure). Suppose that Z_k has no parents. Show that

$$f(z|do(Z_k = z_k)) = f(z_{-k}|z_k).$$

Here the LHS is the joint density of Z in the new SEM where we have replaced the structural equation involving Z_k with $Z_k = z_k$, and the RHS is the conditional density of $Z_{-k}|Z_k$.

In the following questions, let all quantities be as defined in Section 5 of the lecture notes concerning the debiased Lasso.

7. Show that

$$(\hat{\Theta}\hat{\Sigma}\hat{\Theta}^T)_{jj} = \frac{1}{n} \|X_j - X_{-j}\hat{\gamma}^{(j)}\|_2^2 / \hat{\tau} j^4.$$

8. Show that

$$\frac{1}{n}X_j^T(X_j - X_{-j}\hat{\gamma}^{(j)}) = \frac{1}{n}\|X_j - X_{-j}\hat{\gamma}^{(j)}\|_2^2 + \lambda_j\|\hat{\gamma}^{(j)}\|_1$$

9. Prove that $\mathbb{P}(\Lambda_n) \to 1$, where the sequence of events Λ_n is defined in the proof of Theorem 36. Hint: Note that here the design matrix X has not been centred and scaled. Therefore to control the probability of $\mathbb{P}(2||X^T \varepsilon||_{\infty}/n \leq \lambda)$ it may help to treat $X_j^T \varepsilon$ as a sum of *i.i.d.* products of (sub)-Gaussian random variables.