
Modern Statistical Methods
Rajen D. Shah r.shah@statslab.cam.ac.uk

Course webpage:
http://www.statslab.cam.ac.uk/~rds37/modern_stat_methods.html

The field of statistics has undergone profound changes in recent decades. Firstly, the types
of datasets that statisticians are asked to analyse have transformed dramatically. In the
past, we typically dealt with datasets containing many observations and a modest number
of carefully chosen variables. Today, by contrast, it is common to encounter datasets with
thousands of variables—sometimes even far exceeding the number of observations. For
instance, in genomics, we might measure the expression levels of several thousand genes
but only across a few hundred tissue samples. Classical statistical methods are often
simply not applicable in these “high-dimensional” settings. As the scale of data collection
has expanded, so too has the scope of the questions we seek to answer. Whereas statistics
was once primarily concerned with uncovering associations between variables, we are now
increasingly interested in understanding the causal structure of data. And rather than
focusing solely on prediction, we often aim to predict the effects of interventions. At the
same time, the rapid rise of machine learning has provided us with powerful new tools.
In this course, we will explore how these advances can be harnessed to tackle some of the
modern statistical challenges outlined above. The selection of material is heavily biased
towards my own interests, but I hope it will nevertheless give you a flavour of some of the
most important recent methodological developments in statistics.

The course is divided into 4 chapters (of unequal size). Our first chapter will start by
introducing ridge regression, a simple generalisation of ordinary least squares. Our study
of this will lead us to some beautiful connections with functional analysis and ultimately
one of the most successful and flexible classes of learning algorithms: kernel machines.
The second chapter concerns the Lasso and its extensions. The Lasso has been at the
centre of much of the developments that have occurred in high-dimensional statistics, and
will allow us to perform regression in the seemingly hopeless situation when the number
of parameters we are trying to estimate is larger than the number of observations. In
the third chapter we will study graphical modelling and provide an introduction to the
exciting field of causal inference. Where the previous chapters consider methods for relating
a particular response variable to a potentially large collection of (explanatory) variables, in
the third chapter, we will study how to infer relationships between the variables themselves
and answer causal questions using so-called double/debiased machine learning approaches.
In the final chapter, we will turn to the problem of multiple testing which concerns
handling settings where we may be performing thousands of hypothesis tests at the same
time.

Before we begin the main content of the course, we will briefly review two key classical
statistical methods: ordinary least squares and maximum likelihood estimation. This will
help to set the scene and provide a warm-up for the modern methods to come later.

i

http://www.statslab.cam.ac.uk/~rds37/modern_stat_methods.html

Classical statistics

Ordinary least squares

Imagine data are available in the form of observations (Yi, xi) ∈ R× Rp, i = 1, . . . , n, and
the aim is to infer a simple regression function relating the average value of a response, Yi,
and a collection of predictors or variables, xi. This is an example of regression analysis,
one of the most important tasks in statistics.

A linear model for the data assumes that it is generated according to

Y = Xβ0 + ε, (1)

where Y ∈ Rn is the vector of responses; X ∈ Rn×p is the predictor matrix (or design
matrix) with ith row x⊤

i ; ε ∈ Rn represents random error; and β0 ∈ Rp is the unknown
vector of coefficients.

Provided p ≪ n, a sensible way to estimate β is by ordinary least squares (OLS). This
yields an estimator β̂OLS with

β̂OLS := argmin
β∈Rp

∥Y −Xβ∥22 = (X⊤X)−1X⊤Y, (2)

provided X has full column rank.
Under the assumptions that (i) E(εi) = 0 and (ii) Var(ε) = σ2I, we have that:

� Eβ0,σ2(β̂OLS) = E{(X⊤X)−1X⊤(Xβ0 + ε)} = β0.

� Varβ0,σ2(β̂OLS) = (X⊤X)−1X⊤Var(ε)X(X⊤X)−1 = σ2(X⊤X)−1.

The Gauss–Markov theorem states that OLS is the best linear unbiased estimator in
our setting: for any other estimator β̃ that is linear in Y (so β̃ = AY for some fixed matrix
A), we have

Varβ0,σ2(β̃)− Varβ0,σ2(β̂OLS)

is positive semi-definite.

Maximum likelihood estimation

The method of least squares is just one way to construct as estimator. A more general
technique is that of maximum likelihood estimation. Here given data y ∈ Rn that we take
as a realisation of a random variable Y , we specify its density f(y; θ) up to some unknown
vector of parameters θ ∈ Θ ⊆ Rd, where Θ is the parameter space. The likelihood function
is a function of θ for each fixed y given by

L(θ) := L(θ; y) = c(y)f(y; θ),

where c(y) is an arbitrary constant of proportionality. The maximum likelihood estimate
of θ maximises the likelihood, or equivalently it maximises the log-likelihood

ℓ(θ) := ℓ(θ; y) = log f(y; θ) + log(c(y)).

ii

A very useful quantity in the context of maximum likelihood estimation is the Fisher
information matrix with jkth (1 ≤ j, k ≤ d) entry

ijk(θ) := −Eθ

{
∂2

∂θj∂θk
ℓ(θ)

}
.

It can be thought of as a measure of how hard it is to estimate θ when it is the true
parameter value. The Cramér–Rao lower bound states that if θ̃ is an unbiased estimator
of θ, then under regularity conditions,

Varθ(θ̃)− i−1(θ)

is positive semi-definite.
A remarkable fact about maximum likelihood estimators (MLEs) is that (under quite

general conditions) they are asymptotically normally distributed, asymptotically unbiased
and asymptotically achieve the Cramér–Rao lower bound.

Assume that the Fisher information matrix when there are n observations, i(n)(θ) (where
we have made the dependence on n explicit) satisfies i(n)(θ)/n → I(θ) for some positive
definite matrix I. Then denoting the maximum likelihood estimator of θ when there are
n observations by θ̂(n), under regularity conditions, as the number of observations n → ∞
we have √

n(θ̂(n) − θ)
d→ Nd(0, I

−1(θ)).

Returning to our linear model, if we assume in addition that εi
i.i.d.∼ N(0, σ2), then the

log-likelihood for (β, σ2) is

ℓ(β, σ2) = −n

2
log(σ2)− 1

2σ2

n∑
i=1

(yi − x⊤
i β)

2.

We see that the maximum likelihood estimate of β and OLS coincide. It is easy to check
that

i(β, σ2) =

(
σ−2X⊤X 0

0 nσ−4/2

)
.

The general theory for MLEs would suggest that approximately
√
n(β̂−β) ∼ Np(0, σ

2(n−1X⊤X)−1);
in fact it is straight-forward to show that this distributional result is exact.

iii

Chapter 1

Kernel machines

Let us revisit the linear model with

Yi = x⊤
i β

0 + εi.

For unbiased estimators of β0, their variance gives a way of comparing their quality in
terms of squared error loss. For a potentially biased estimator, β̃, the relevant quantity is
the mean-squared error (MSE),

Eβ0,σ2{(β̃ − β0)(β̃ − β0)⊤} = E[{β̃ − E(β̃) + E(β̃)− β0}{β̃ − E(β̃) + E(β̃)− β0}⊤]
= Var(β̃) + {E(β̃ − β0)}{E(β̃ − β0)}⊤,

a sum of squared bias and variance terms. A crucial part of the optimality arguments
for OLS and MLEs was unbiasedness. Do there exist biased methods whose variance is is
reduced compared to OLS such that their overall prediction error is lower? Yes—in fact the
use of biased estimators is essential in dealing with settings where the number of parameters
to be estimated is large compared to the number of observations. In the first two chapters
we will explore two important methods for variance reduction based on different forms of
penalisation: rather than forming estimators via optimising a least squares or log-likelihood
term, we will introduce an additional penalty term that encourages estimates to be shrunk
towards 0 in some sense. This will allow us to produce reliable estimators that work well
when classical MLEs are infeasible, and in other situations can greatly outperform the
classical approaches.

1.1 Ridge regression

One way to reduce the variance of β̂OLS is to shrink the estimated coefficients towards 0.
Ridge regression [Hoerl and Kennard, 1970] does this by solving the following optimisation
problem

(µ̂R
λ , β̂

R
λ) = argmin

(µ,β)∈R×Rp

{∥Y − µ1−Xβ∥22 + λ∥β∥22}.

1

Here 1 is an n-vector of 1’s. We see that the usual OLS objective is penalised by an
additional term proportional to ∥β∥22. The parameter λ ≥ 0, which controls the severity of
the penalty and therefore the degree of the shrinkage towards 0, is known as a regularisation
parameter or tuning parameter. We have explicitly included an intercept term which is not
penalised. The reason for this is that were the variables to have their origins shifted so
e.g. a variable representing temperature is given in units of Kelvin rather than Celsius, the
fitted values would not change. However, Xβ̂ is not invariant under scale transformations
of the variables so it is standard practice to centre each column of X (hence making them
orthogonal to the intercept term) and then scale them to have ℓ2-norm

√
n.

It is straightforward to show that after this standardisation ofX, µ̂R
λ = Ȳ :=

∑n
i=1 Yi/n,

so we may assume that
∑n

i=1 Yi = 0 by replacing Yi by Yi − Ȳ and then we can remove µ
from our objective function. In this case

β̂R
λ = (X⊤X + λI)−1X⊤Y.

In this form, we can see how the addition of the λI term helps to stabilise the estimator.
Note that when X does not have full column rank (such as in high-dimensional situations),
we can still compute this estimator. On the other hand, when X does have full column
rank, we have the following theorem.

Theorem 1. For λ sufficiently small (depending on β0 and σ2),

E(β̂OLS − β0)(β̂OLS − β0)⊤ − E(β̂R
λ − β0)(β̂R

λ − β0)⊤

is positive definite.

Proof. First we compute the bias of β̂R
λ . We drop the subscript λ and superscript R for

convenience.

E(β̂)− β0 = (X⊤X + λI)−1X⊤Xβ0 − β0

= (X⊤X + λI)−1(X⊤X + λI − λI)β0 − β0

= −λ(X⊤X + λI)−1β0.

Now we look at the variance of β̂.

Var(β̂) = E{(X⊤X + λI)−1X⊤ε}{(X⊤X + λI)−1X⊤ε}⊤

= σ2(X⊤X + λI)−1X⊤X(X⊤X + λI)−1.

Thus E(β̂OLS − β0)(β̂OLS − β0)⊤ − E(β̂ − β0)(β̂ − β0)⊤ is equal to

σ2(X⊤X)−1 − σ2(X⊤X + λI)−1X⊤X(X⊤X + λI)−1 − λ2(X⊤X + λI)−1β0β0⊤(X⊤X + λI)−1.

After some simplification, we see that this is equal to

λ(X⊤X + λI)−1[σ2{2I + λ(X⊤X)−1} − λβ0β0⊤](X⊤X + λI)−1.

2

Thus E(β̂OLS − β0)(β̂OLS − β0)⊤ − E(β̂ − β0)(β̂ − β0)⊤ is positive definite for λ > 0 if and
only if

σ2{2I + λ(X⊤X)−1} − λβ0β0⊤

is positive definite, which is true for λ > 0 sufficiently small (we can take 0 < λ <
2σ2/∥β0∥22).

The theorem says that β̂R
λ outperforms β̂OLS provided λ is chosen appropriately. To

be able to use ridge regression effectively, we need a way of selecting a good λ—we will
come to this very shortly. What the theorem doesn’t really tell us is in what situations
we expect ridge regression to perform well. To understand that, we will turn to one of the
key matrix decompositions used in statistics, the singular value decomposition (SVD).

1.1.1 The singular value decomposition and principal compo-
nents analysis

The singular value decomposition (SVD) is a generalisation of an eigendecomposition of a
square matrix. We can factorise any X ∈ Rn×p into its SVD

X = UDV ⊤.

Here the U ∈ Rn×n and V ∈ Rp×p are orthogonal matrices and D ∈ Rn×p has D11 ≥ D22 ≥
· · · ≥ Dmm ≥ 0 where m := min(n, p) and all other entries of D are zero. To compute
such a decomposition requires O(npmin(n, p)) operations. The rth columns of U and V
are known as the rth left and right singular vectors of X respectively, and Drr is the rth
singular value.

When n > p, we can replace U by its first p columns and D by its first p rows to produce
another version of the SVD (sometimes known as the thin SVD). Then X = UDV ⊤ where
U ∈ Rn×p has orthonormal columns (but is no longer square) and D is square and diagonal.
There is an equivalent version for when p > n.

Let us take X ∈ Rn×p as our matrix of predictors and suppose n ≥ p. Using the (thin)
SVD we may write the fitted values from ridge regression as follows.

Xβ̂R
λ = X(X⊤X + λI)−1X⊤Y

= UDV ⊤(V D2V ⊤ + λI)−1V DU⊤Y

= UD(D2 + λI)−1DU⊤Y

=

p∑
j=1

Uj

D2
jj

D2
jj + λ

U⊤
j Y.

Here we have used the notation (that we shall use throughout the course) that Uj is the
jth column of U . For comparison, the fitted values from OLS (when X has full column
rank) are

Xβ̂OLS = X(X⊤X)−1X⊤Y = UU⊤Y.

3

Both OLS and ridge regression compute the coordinates of Y with respect to the columns
of U . Ridge regression then shrinks these coordinates by the factors D2

jj/(D
2
jj + λ); if Djj

is small, the amount of shrinkage will be larger.
To interpret this further, note that the SVD is intimately connected with Principal

Components Analysis (PCA). Consider v ∈ Rp with ∥v∥2 = 1. Since the columns of X
have had their means subtracted, the sample variance of Xv ∈ Rn, is

1

n
v⊤X⊤Xv =

1

n
v⊤V D2V ⊤v.

Writing a = V ⊤v, so ∥a∥2 = 1, we have

1

n
v⊤V D2V ⊤v =

1

n
a⊤D2a =

1

n

∑
j

a2jD
2
jj ≤

1

n
D11

∑
j

a2j =
1

n
D2

11.

As ∥XV1∥22/n = D2
11/n, V1 determines the linear combination of the columns of X which

has the largest sample variance, when the coefficients of the linear combination are con-
strained to have ℓ2-norm 1. XV1 = D11U1 is known as the first principal component of
X. Subsequent principal components D22U2, . . . , DppUp have maximum variance D2

jj/n,
subject to being orthogonal to all earlier ones—see example sheet 1 for details.

Returning to ridge regression, we see that it shrinks Y most in the smaller principal
components of X. Thus it will work well when most of the signal is in the large principal
components of X. We now turn to the problem of choosing λ.

1.2 v-fold cross-validation

Cross-validation is a general technique for selecting a good regression method from among
several competing regression methods. We illustrate the principle with ridge regression,
where we have a family of regression methods given by different λ values.

So far, we have considered the matrix of predictors X as fixed and non-random. How-
ever, in many cases, it makes sense to think of it as random. Let us assume that our data
are i.i.d. pairs (xi, Yi), i = 1, . . . , n. Then ideally, we might want to pick a λ value such
that

E{(Y ∗ − x∗⊤β̂R
λ (X, Y))2|X, Y } (1.1)

is minimised. Here (x∗, Y ∗) ∈ Rp×R is independent of (X, Y) and has the same distribution
as (x1, Y1), and we have made the dependence of β̂R

λ on the training data (X, Y) explicit.
This λ is such that conditional on the original training data, it minimises the expected
prediction error on a new observation drawn from the same distribution as the training
data.

A less ambitious goal is to find a λ value to minimise the expected prediction error,

E[E{(Y ∗ − x∗⊤β̂R
λ (X, Y))2|X, Y }] (1.2)

where compared with (1.1), we have taken a further expectation over the training set.

4

We still have no way of computing (1.2) directly, but we can attempt to estimate it.
The idea of v-fold cross-validation is to split the data into v groups or folds of roughly equal
size: (X(1), Y (1)), . . . , (X(v), Y (v)). Let (X(−k), Y (−k)) be all the data except that in the kth
fold. For each λ on a grid of values, we compute β̂R

λ (X
(−k), Y (−k)): the ridge regression

estimate based on all the data except the kth fold. Writing κ(i) for the fold to which
(xi, Yi) belongs, we choose the value of λ that minimises

CV(λ) =
1

n

n∑
i=1

{Yi − x⊤
i β̂

R
λ (X

(−κ(i)), Y (−κ(i)))}2. (1.3)

Writing λCV for the minimiser, our final estimate of β0 can then be β̂R
λCV

(X, Y).
Note that for each i,

E{Yi − x⊤
i β̂

R
λ (X

(−κ(i)), Y (−κ(i)))}2 = E[E{Yi − x⊤
i β̂

R
λ (X

(−κ(i)), Y (−κ(i)))}2|X(−κ(i)), Y (−κ(i))].
(1.4)

This is precisely the expected prediction error in (1.2) but with the training data X, Y
replaced with a training data set of smaller size. If all the folds have the same size, then
CV(λ) is an average of n identically distributed quantities, each with expected value as in
(1.4). However, the quantities being averaged are not independent as they share the same
data.

Thus cross-validation gives a biased estimate of the expected prediction error. The
amount of the bias depends on the size of the folds, the case when the v = n giving the
least bias—this is known as leave-one-out cross-validation. The quality of the estimate,
though, may be worse as the quantities being averaged in (1.3) will be highly positively
correlated. Typical choices of v are 5 or 10.

Cross-validation aims to allow us to choose the single best λ (or more generally regres-
sion procedure); we could instead aim to find the best weighted combination of regression
procedures. Returning to our ridge regression example, suppose λ is restricted to a grid of
values λ1 > λ2 > · · · > λL. We can then minimise

1

n

n∑
i=1

{
Yi −

L∑
l=1

wlx
⊤
i β̂

R
λl
(X(−κ(i)), Y (−κ(i)))

}2

over w ∈ RL subject to wl ≥ 0 for all l. This is a non-negative least-squares optimisation,
for which efficient algorithms are available. This is known as stacking [Wolpert, 1992,
Breiman, 1996] and it can often outperform cross-validation.

1.3 The kernel trick

The fitted values from ridge regression are

X(X⊤X + λI)−1X⊤Y. (1.5)

5

An alternative way of writing this is suggested by the following

X⊤(XX⊤ + λI) = (X⊤X + λI)X⊤

(X⊤X + λI)−1X⊤ = X⊤(XX⊤ + λI)−1

X(X⊤X + λI)−1X⊤Y = XX⊤(XX⊤ + λI)−1Y. (1.6)

Two remarks are in order:

� Note while X⊤X is p × p, XX⊤ is n × n. Computing fitted values using (1.5)
would require roughly O(np2 + p3) operations. If p ≫ n this could be extremely
costly. However, our alternative formulation would only require roughly O(n2p+n3)
operations, which could be substantially smaller.

� We see that the fitted values of ridge regression depend only on inner products
K = XX⊤ between observations (note Kij = x⊤

i xj).

Now suppose that we believe the signal depends quadratically on the predictors:

Yi = x⊤
i β +

∑
k,l

xikxilθkl + εi.

We can still use ridge regression provided we work with an enlarged set of predictors

xi1, . . . , xip, xi1xi1, . . . , xi1xip, xi2xi1, . . . , xi2xip, . . . , xipxip.

This will give us O(p2) predictors. Our new approach to computing fitted values would
therefore have complexity O(n2p2 + n3), which could be rather costly if p is large.

However, rather than first creating all the additional predictors and then computing
the new K matrix, we can attempt to directly compute K. To this end consider

(1 + x⊤
i xj)

2 =

(
1 +

∑
k

xikxjk

)2

= 1 + 2
∑
k

xikxjk +
∑
k,l

xikxilxjkxjl.

Observe this amounts to an inner product between vectors of the form

(1,
√
2xi1, . . . ,

√
2xip, xi1xi1, . . . , xi1xip, xi2xi1, . . . , xi2xip, . . . , xipxip)

⊤. (1.7)

Thus if we set
Kij = (1 + x⊤

i xj)
2 (1.8)

and plug this into the formula for the fitted values, it is exactly as if we had performed
ridge regression on an enlarged set of variables given by (1.7). Now computing K using
(1.8) would require only p operations per entry, so O(n2p) operations in total. It thus
seems we have improved things by a factor of p using our new approach. This is a nice
computational trick, but more importantly for us it serves to illustrate some general points.

6

� Since ridge regression only depends on inner products between observations, rather
than fitting non-linear models by first mapping the original data xi ∈ Rp to ϕ(xi) ∈ Rd

(say) using some feature map ϕ (which could, for example introduce quadratic effects),
we can instead try to directly compute k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩.

� In fact rather than thinking in terms of feature maps, we can instead try to think
about an appropriate measure of similarity k(xi, xj) between observations. Modelling
in this fashion is sometimes much easier.

We will now formalise and extend what we have learnt with this example.

1.4 Kernels

We have seen how a model with quadratic effects can be fitted very efficiently by replacing
the inner product matrix (known as the Gram matrix) XX⊤ in (1.6) with the matrix in
(1.8). It is then natural to ask what other non-linear models can be fitted efficiently using
this sort of approach.

We won’t answer this question directly, but instead we will try to understand the sorts
of similarity measures k that can be represented as inner products between transformations
of the original data.

That is, we will study the similarity measures k : X × X → R from the input space X
to R for which there exists a feature map ϕ : X → H where H is some (real) inner product
space with

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩. (1.9)

Recall that an inner product space is a real vector space H endowed with a map ⟨·, ·⟩ :
H×H → R that obeys the following properties.

(i) Symmetry: ⟨u, v⟩ = ⟨v, u⟩.

(ii) Linearity: for a, b ∈ R ⟨au+ bw, v⟩ = a⟨u, v⟩+ b⟨w, v⟩.

(iii) Positive-definiteness: ⟨u, u⟩ ≥ 0 with equality if and only if u = 0.

Definition 1. A positive definite kernel or more simply a kernel (for brevity) k is a
symmetric map k : X ×X → R for which for all n ∈ N and all x1, . . . , xn ∈ X , the matrix
K with entries

Kij = k(xi, xj)

is positive semi-definite.

A kernel is a little like an inner product, but need not be bilinear in general. However,
a form of the Cauchy–Schwarz inequality does hold for kernels.

Proposition 2.
k(x, x′)2 ≤ k(x, x)k(x′, x′).

7

Proof. The matrix (
k(x, x) k(x, x′)
k(x′, x) k(x′, x′)

)
must be positive semi-definite so in particular its determinant must be non-negative.

First we show that any inner product of feature maps will give rise to a kernel.

Proposition 3. k defined by k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ is a kernel.

Proof. Let x1, . . . , xn ∈ X , α1, . . . , αn ∈ R and consider∑
i,j

αik(xi, xj)αj =
∑
i,j

αi⟨ϕ(xi), ϕ(xj)⟩αj

=

〈∑
i

αiϕ(xi),
∑
j

αjϕ(xj)

〉
≥ 0.

Showing that every kernel admits a representation of the form (1.9) is slightly more
involved, and we delay this until after we have studied some examples.

1.4.1 Examples of kernels

Proposition 4. Suppose k1, k2, . . . are kernels.

(i) If α1, α2 ≥ 0 then α1k1 + α2k2 is a kernel. If limm→∞ km(x, x
′) =: k(x, x′) exists for

all x, x′ ∈ X , then k is a kernel.

(ii) The pointwise product k = k1k2 is a kernel.

Linear kernel. k(x, x′) = x⊤x′.

Polynomial kernel. k(x, x′) = (1+x⊤x′)d. To show this is a kernel, we can simply note
that 1 + x⊤x′ gives a kernel owing to the fact that 1 is a kernel and (i) of Proposition 4.
Next (ii) and induction shows that k as defined above is a kernel.

Gaussian kernel. The highly popular Gaussian kernel is defined by

k(x, x′) = exp

(
− ∥x− x′∥22

2σ2

)
.

For x close to x′ it is large whilst for x far from x′ the kernel quickly decays towards 0.
The additional parameter σ2 known as the bandwidth controls the speed of the decay to
zero. Note it is less clear how one might find a corresponding feature map and indeed any
feature map that represents this must be infinite dimensional.

8

To show that it is a kernel first decompose ∥x−x′∥22 = ∥x∥22+∥x′∥22− 2x⊤x′. Note that
by Proposition 3,

k1(x, x
′) = exp

(
− ∥x∥22

2σ2

)
exp

(
− ∥x′∥22

2σ2

)
is a kernel. Next writing

k2(x, x
′) = exp(x⊤x′/σ2) =

∞∑
r=0

(x⊤x′/σ2)r

r!

and using (i) of Proposition 4 shows that k2 is a kernel. Finally observing that k = k1k2
and using (ii) shows that the Gaussian kernel is indeed a kernel.

Sobolev kernel. Take X to be [0, 1] and let k(x, x′) = min(x, x′). Note this is the
covariance function of Brownian motion so it must be positive definite.

Jaccard similarity kernel. Take X to be the set of all subsets of {1, . . . , p}. For
x, x′ ∈ X with x ∪ x′ ̸= ∅ define

k(x, x′) =
|x ∩ x′|
|x ∪ x′|

and if x ∪ x′ = ∅ then set k(x, x′) = 1. Showing that this is a kernel is left to the example
sheet.

1.4.2 Reproducing kernel Hilbert spaces

Theorem 5. For every kernel k there exists a feature map ϕ taking values in some inner
product space H such that

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩. (1.10)

Proof. We will take H to be the vector space of functions of the form

f(·) =
n∑

i=1

αik(·, xi), (1.11)

where n ∈ N, xi ∈ X and αi ∈ R. Our feature map ϕ : X → H will be

ϕ(x) = k(·, x). (1.12)

We now define an inner product on H. If f is given by (1.11) and

g(·) =
m∑
j=1

βjk(·, x′
j) (1.13)

9

we define their inner product to be

⟨f, g⟩ =
n∑

i=1

m∑
j=1

αiβjk(xi, x
′
j). (1.14)

We need to check this is well-defined as the representations of f and g in (1.11) and
(1.13) need not be unique. To this end, note that

n∑
i=1

m∑
j=1

αiβjk(xi, x
′
j) =

n∑
i=1

αig(xi) =
m∑
j=1

βjf(x
′
j). (1.15)

The first equality shows that the inner product does not depend on the particular expansion
of g whilst the second equality shows that it also does not depend on the expansion of f .
Thus the inner product is well-defined.

First we check that with ϕ defined as in (1.12) we do have relationship (1.10). Observe
that

⟨k(·, x), f⟩ =
n∑

i=1

αik(xi, x) = f(x), (1.16)

so in particular we have

⟨ϕ(x), ϕ(x′)⟩ = ⟨k(·, x), k(·, x′)⟩ = k(x, x′).

It remains to show that it is indeed an inner product. It is clearly symmetric and (1.15)
shows linearity. We now need to show positive definiteness.

First note that
⟨f, f⟩ =

∑
i,j

αik(xi, xj)αj ≥ 0 (1.17)

by positive definiteness of the kernel. Now from (1.16),

f(x)2 = (⟨k(·, x), f⟩)2.
If we could use the Cauchy–Schwarz inequality on the right-hand side, we would have

f(x)2 ≤ ⟨k(·, x), k(·, x)⟩⟨f, f⟩, (1.18)

which would show that if ⟨f, f⟩ = 0 then necessarily f = 0; the final property we need
to show that ⟨·, ·⟩ is an inner product. However, in order to use the traditional Cauchy–
Schwarz inequality we need to first know we’re dealing with an inner product, which is
precisely what we’re trying to show!

Although we haven’t shown that ⟨·, ·⟩ is an inner product, we do have enough infor-
mation to show that it is itself a kernel. We may then appeal to Proposition 2 to obtain
(1.18). With this in mind, we argue as follows. Given functions f1, . . . , fm and coefficients
γ1, . . . , γm ∈ R, we have∑

i,j

γi⟨fi, fj⟩γj =
〈∑

i

γifi,
∑
j

γjfj

〉
≥ 0

where we have used linearity and (1.17), showing that it is a kernel.

10

	Kernel machines
	Ridge regression
	The singular value decomposition and principal components analysis

	v-fold cross-validation
	The kernel trick
	Kernels
	Examples of kernels
	Reproducing kernel Hilbert spaces
	The representer theorem

	Kernel ridge regression
	Large-scale kernel machines

	The Lasso and beyond
	Model selection
	The Lasso estimator
	Prediction error of the Lasso (slow rate)
	Concentration inequalities I
	Some facts from optimisation theory and convex analysis
	Lasso solutions
	Variable selection
	Prediction and estimation
	The compatibility condition
	Concentration inequalities II
	Random design
	Computation

	Extensions of the Lasso
	Structural penalties
	Reducing the bias of the Lasso

	Graphical modelling and causal inference
	Graphs
	Conditional independence graphs
	Gaussian graphical models
	Normal conditionals
	Nodewise regression
	The precision matrix and conditional independence
	The Graphical Lasso

	Structural equation models
	Interventions
	The Markov properties on DAGs
	Causal structure learning
	Three obstacles
	The PC algorithm

	Multiple testing and high-dimensional inference
	The closed testing procedure
	The False Discovery Rate
	Inference in high-dimensional regression
	Using the debiased Lasso in practice

