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1. When proving the theorems on the prediction error of the Lasso, we started with the
so-called basic inequality that

1

2n
‖X(β0 − β̂)‖22 ≤

1

n
εTX(β̂ − β0) + λ‖β0‖1 − λ‖β̂‖1.

Show that in fact we can improve this to

1

n
‖X(β0 − β̂)‖22 ≤

1

n
εTX(β̂ − β0) + λ‖β0‖1 − λ‖β̂‖1.

2. Under the assumptions of Theorem 23 on the prediction and estimation properties of the
Lasso under a compatibility condition, show that, with probability 1 − 2p−(A

2/8−1), we
have

1

n
‖X(β0 − β̂)‖22 ≤

9A2 log(p)

4φ2
σ2s

n
.

3. Let Y = Xβ0 + ε − ε̄1 and let S = {k : β0 6= 0}, N := {1, . . . , p} \ S. Without loss
of generality assume S = {1, . . . , |S|}. Assume that XS has full column rank and let
Ω = {‖XT ε‖∞/n ≤ λ0}. Show that, when λ > λ0, if the following two conditions hold

sup
τ :‖τ‖∞≤1

‖XT
NXS(XT

SXS)−1τ‖∞ <
λ− λ0
λ+ λ0

(λ+ λ0)‖{( 1
nX

T
SXS)−1}k‖1 < |β0k| for k ∈ S,

then on Ω the (unique) Lasso solution satisfies sgn(β̂Lλ ) = sgn(β0).

4. Find the KKT conditions for the group Lasso.

5. (a) Show that

max
θ:‖XT θ‖∞≤λ

G(θ) =
1

2n
‖Y −Xβ̂Lλ ‖22 + λ‖β̂Lλ ‖1,

where

G(θ) =
1

2n
‖Y ‖22 −

1

2n
‖Y − nθ‖22.

Show that the unique θ maximising G is θ∗ = (Y −Xβ̂Lλ )/n. Hint: Treat the Lasso
optimisation problem as minimising ‖Y − z‖22/(2n) + λ‖β‖1 subject to z −Xβ = 0
over (β, z) ∈ Rp × Rn and consider the Lagrangian.

(b) Let θ̃ be such that ‖XT θ̃‖∞ ≤ λ. Explain why if

max
θ:G(θ)≥G(θ̃)

|XT
k θ| < λ,

then we know that β̂Lλ,k = 0. By considering θ̃ = Y λ/(nλmax) with λmax = ‖XTY ‖∞/n,

show that β̂Lλ,k = 0 if

1

n
|XT

k Y | < λ− ‖Y ‖2√
n

λmax − λ
λmax

.

1



6. Consider the Lasso and let Êλ = {k : 1
n |X

T
k (Y − Xβ̂Lλ )| = λ} be the equicorrelation set

at λ. Suppose that rank(XÊλ
) = |Êλ| for all λ > 0, so the Lasso solution is unique for

all λ > 0. Let β̂Lλ1 and β̂Lλ2 be two Lasso solutions at different values of the regularisation

parameter. Suppose that sgn(β̂Lλ1) = sgn(β̂Lλ2). Show that then for all t ∈ [0, 1],

tβ̂Lλ1 + (1− t)β̂Lλ2 = β̂Ltλ1+(1−t)λ2 .

Hint: Check the KKT conditions. Conclude that the solution path λ 7→ β̂Lλ is piecewise
linear with a finite number of knots (points λ where the solution path is not linear at λ)
and these occur when the sign of the Lasso solution changes.

7. The elastic net estimator in the linear model minimises

1

2n
‖Y −Xβ‖22 + λ(α‖β‖1 + (1− α)‖β‖22/2)

over β ∈ Rp, where α ∈ [0, 1] is fixed.

(a) Suppose X has two columns Xj and Xk that are identical and α < 1. Explain why
the minimising β∗ above is unique and has β∗k = β∗j .

(b) Let β̂(0), β̂(1), . . . be the solutions from iterations of a coordinate descent procedure to
minimise the elastic net objective. For a fixed variable index k, let A = {1, . . . , k−1}
and B = {k + 1, . . . , p}. Show that for m ≥ 1,

β̂
(m)
k =

Sλα

(
n−1XT

k (Y −XAβ̂
(m)
A −XBβ̂

(m−1)
B )

)
1 + λ(1− α)

,

where St(u) = sgn(u)(|u| − t)+ is the soft-thresholding operator.

8. For the following DAG G

1 2 3

4 5 6

7 8

write down

(a) the descendants of 3;

(b) all sets of variables that d-separate 1 and 3;

(c) all sets of variables that d-separate {1, 4} and 6;

(d) all the v-structures.
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9. Let Z = (Z1, . . . , Zp)
T ∈ {0, 1}p be a binary random vector with probability mass function

given by

P(Z1 = z1, . . . , Zp = zp) = exp

Θ00 +

p∑
k=1

Θ0kzk +

p∑
k=1

k−1∑
j=1

Θjkzjzk − Φ(Θ)


where exp(−Φ(Θ)) is a normalising constant. Show that

logit(P(Zk = 1|Z−k = z−k)) = Θ0k +
∑
j:j<k

Θjkzj +
∑
j:j>k

Θkjzj ,

where logit(q) = log{q/(1− q)} for q ∈ (0, 1). Conclude that, for j < k,

Zj ⊥⊥ Zk|Z−jk ⇐⇒ Θjk = 0.

Note that for discrete random variables we can replace the densities in our definition of
conditional independence with probability mass functions (which are in any case densities
with respect to counting measure). How might we go about estimating the Θjk?

10. Let Z ∼ Np(µ,Σ) with Σ positive definite. Prove that if the distribution of Z is pairwise
Markov with respect to an undirected graph G, then it is also global Markov with respect
to G. Hint: First consider A∪B∪S = {1, . . . , p}; then argue that the general case follows.
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